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Abstract of the Dissertation

Image based 3D Sensing and Modeling Technology for High-end Digital

Cameras

by

Xue Tu

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

Image-based 3D sensing techniques have become increasingly important due to

advances in digital camera technology. These techniques can be used in numerous

applications like auto-focusing, 3D modeling, and photorealistic rendering. In this

dissertation, we first present Depth from Defocus (DFD) technology used in camera

auto-focusing. This technique models image formation process as a convolution

operation and recovers the depth of an object in a scene by comparing two different
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blurred images. We extend the technique for cameras operating in macro-mode by

adopting a new lens setting, a new magnification normalization algorithm, and a

three-image DFD scheme in a certain error sensitive area. We then present a novel

Shape from Shift-variant Blurring technique to relax the shift-invariance assumption

in the DFD technique. This technique localizes the global shift-variant transform

in a small neighborhood which elegantly models the actual imaging process. The

process can be inverted to recover not only depth of the object, but also its slope and

curvature. Both simulation and experimental results are presented to illustrate its

high potential. We also present a novel multi-stereo camera system for 3D modeling.

This multi-camera system consists of three recently designed stereo cameras. Each

camera is equipped with a stereo adaptor which splits the incoming light and projects

random patterns onto the object in a scene. The camera is programmed to capture

two images consecutively in a short time. The first image is with the random dots

projected and the second is the normal texture image. Through the Stereopsis

technique, each camera is able to reconstruct a partial shape of the target object. We

propose a new calibration algorithm specially tailored for its unique stereo camera

architecture that significantly improves the accuracy. Then a fast Gaussian-Pyramid

based stereo matching technique is presented for partial shape recovery. Three stereo

cameras are placed about 1.2 m away from the object and at 45 degrees apart. After

stereo matching, a fast registration algorithm is carried out to bring three partial

shapes into a common camera coordinate system. Then we adopt a volumetric

based shape integration method to extract an iso-surface from layered point clouds

and construct a complete triangle mesh using Marching-Cube algorithm. Finally,

we combine three texture images to render a photorealistic model on a computer
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Chapter 1

Introduction

With the development of high-quality and inexpensive digital cameras in recent

decades, image-based sensing techniques have become increasingly important in many

applications such as 3D modeling and autofocusing. In this dissertation, we present

different image-based sensing techniques including Depth from Defocus (DFD), Shape

from Shift-variant Blurring and Stereopsis. We also address issues related to 3D

modeling including camera calibration, point cloud registration, shape integration

and photo-realistic model rendering.

This chapter begins with describing a set of problems related to 3D sensing and

modeling. We then briefly review some existing techniques and conclude with an

overview of the dissertation.

1.1 Motivation

The core task of 3D sensing and modeling is to retrieve 3D surface information

of an object and build a digital geometric model. Along with the development of new
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digitizing techniques, high power computing, and inexpensive hardware, 3D sensing

technology has very wide applications. Autofocusing is one example that requires

a camera to automatically determine the distance of an object and move the lens

system to corresponding focus position. Reverse engineering is another application.

It usually measures object surface through laser scanner or structured light system and

then converts the obtained point cloud into polygonal models. In virtual reality, the

3D models are often further processed with texture mapping in order to be rendered

photo-realistically on a computer screen.

In the research area of 3D sensing and modeling, the following steps are involved:

• Camera Calibration

Camera calibration is the process to retrieve camera parameters such as focal

length, optical center, aperture diameter, etc. It is the very first step of 3D

sensing. In most applications, camera is considered as pin-hole model where

only focal length, pixel size, optical center and camera position need to be

calibrated. Some other applications (like autofocusing) adopt a more elaborate

camera model where more parameters need to be retrieved.

• Depth-map Retrieval

Depth-map represents the geometric 3D structure of the scene as a 2D image,

where the value at specific pixel is the distance from the sensor to corresponding

scene point. Techniques for depth-map retrieval are mainly divided into

two classes: active techniques and passive techniques. Image-based sensing

techniques belong to the latter.

• Multi-view Registration
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The range image obtained from a single sensor provides only a partial surface

of the object. To get a complete 3D structure, we need several range images

from different view points. These range images must be brought into a common

coordinate system so that geometric and photometric structures from multi-view

range images could be fused into a single complete model. This process is called

multi-view registration. It requires determining rigid body transformations

between different coordinate systems.

• Multi-view Integration

Multi-view integration is the technique to merge registered range images into

a single model. Usually partial surfaces do not mesh with each other perfectly

even after registration, therefore integration algorithm has to extract an iso-

surface from layered partial surfaces.

• Texture Mapping

After multi-view integration, we obtain only the geometric information of the

3D object which is usually represented as a set of polygons. We have to add

surface reflectance and color to reconstruct a photo-realistic model. This is

termed as texture mapping. It is akin to wrapping a gift paper onto a white

box.

The ultimate goal of our research project is to build a real-time camera system

to reconstruct a 3D photo-realistic model of the object from its 2D images. In this

dissertation, we discuss the underlying theory, techniques, and our experiments.
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1.2 Literature Review

In this section, we review some existing techniques in 3D sensing and modeling

literature.

1.2.1 Camera Calibration

Camera calibration can be mainly divided into two categories: photogrammetric

method and self calibration. Photogrammetric method determines camera parameters

by observing a known geometry object (like checker board pattern) [1, 2], while

self calibration can recover camera parameters up to a scale by exploring different

constraints in arbitrary scene [3, 4]. 3D sensing tasks often require precisely

measuring the surface structure, where photogrammetric methods are more suitable.

Commonly adopted photogrammetric methods include DLT [5], Tsai [2] and Zhang’s

methods [1]. Direct Linear Method (DLT) first computes general projective matrix

and then uses RQ factorization to retrieve intrinsic camera matrix and extrinsic

transformation matrix. Tsai’s calibration method assumes some parameters are

provided by manufactures and use them as initial guess. It requires n feature points

(n >= 8) per image and solves the problem with a set of n linear equations based

on radial alignment constraint. Zhang’s method requires a planar checkerboard grid

to be placed at different orientations in front of the camera. It first provides a

closed-form solution by exploring constraints from homography and then refine it

through minimizing reprojected geometric errors. Both Tsai and Zhang’s methods can

incorporate lens distortion estimation in iterative refinement step, while DLT corrects

the lens distortion separately and conducts calibration algorithm on ”distortion
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free” images. It employs the property that perspective projective projection retains

linearity to estimate distortion , i.e., a straight line in 3D space should remain as

straight after imaging process if lens distortion effect dose not exist. Most methods

use sum of line fitting residues as error measure and estimate distortion parameters

through minimizing the residue [6], [7], [8]. Recently, some researchers propose to

incorporate lens distortion into fundamental matrix computation [9] [10] and solve

the distortion values based on 8-point algorithm [11].

1.2.2 Depth-map Retrieval

There are mainly two groups of techniques to acquire depth maps: active

techniques and passive techniques.

Active techniques can be understood as a modulation and demodulation

procedure. A carrier signal is projected onto the object surface, and the modulated

reflected light is detected by the sensor. The measurement result is obtained from

demodulation calculation. Laser range imaging and structured light techniques are

the most common active techniques. Some recent investigation [12, 13, 14] on these

techniques show that they can measure the depth very accurately in real time.

However, active techniques are much more expensive than passive techniques.

In contrast, passive techniques work with only naturally formed images produced

by reflected light from object. Some common methods include stereopsis, motion

parallax, shape from shading, depth from focus and depth from defocus.

Stereopsis is a widely used technique for 3D shape reconstruction without active

illumination. It is similar to human visual perception in that object depth is sensed

from two slightly different projections on the retinas. If two cameras are fixed
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in parallel facing the object, the depth of certain object point can be recovered

through triangulation from its corresponding points in two images. There are two

main different classes of algorithms to perform stereo matching: local (window-

based) algorithms and global algorithms. Local (window-based) algorithms computes

the disparity at a given pixel by searching for the point with highest similarity

within a finite window. Sum-of-Squared-Differences (SSD)[15, 16], normalized cross-

correlation [17] are two popular criteria to measure similarity. Other criteria

include binary matching costs (i.e. match/no match) [18, 19], rank transform [20]

and gradient based measures [21]. On the other hand, global algorithms make

explicit smoothness assumptions and seek a disparity (distance between corresponding

points) assignment minimizing a global cost function. The main distinction between

these algorithms is the minimization method used, e.g., simulated annealing [22],

probabilistic (mean-field) diffusion [23] or graph cuts [24]. In between these two

broad classes are certain iterative algorithms, which do not explicitly state a global

function but whose behavior mimics closely that of iterative optimization algorithm

[18, 23, 25]. Hierarchical (coarse-to-fine) algorithms are one example. They typically

operate on an image pyramid, where results from coarser levels are used to constrain

a more local search at finer levels [26, 27, 28].

Motion parallax is similar to stereopsis, which also utilizes disparity between

corresponding points to recover depth, except that the disparity is from relative

movement. Most stereopsis techniques can be all applied to motion-structure

estimation. Unlike stereopsis, the movement can be either caused by the object

or the camera, so there exists an ambiguity. In most cases, motion parallax can only

reconstruct the scene geometry up to a a scale unless more information is provided

6



[5, 29].

Shape from shading (SFS) recovers object shape from a gradual variation of

shading in the image. SFS technique adopts a Lambertian reflectance model, where

the gray level at a pixel depends on the light source direction and the surface normal.

Given a set of images captured with different light sources, SFS usually first recovers

the surface normal (or gradient) and then the shape through integration [30]. There

are mainly four classes of techniques in SFS literature: minimization approaches,

propagation approaches, local approaches and linear approaches. Minimization

approaches obtain the solution by minimizing an energy function [31, 32, 33].

Propagation approaches propagate the shape information from a set of surface points

to the whole image [34, 35]. Local approaches derive shape based on the assumption

of surface type [36, 37]. Linear approaches compute the solution based on the

linearization of the reflectance map [38, 39].

Depth from focus and depth from defocus both retrieve depth map from a set

of different blurred images captured by a single camera. Depth from focus (DFF)

technique acquires many images with different lens settings, then searches for the

best setting through a focus measure [40, 41, 42]. The ideal focus measure should be

unimodal, monotonic, and reaches its maximum when the object is in focus. However,

due to lens configuration, the residual error of focus motor and device noise, there exist

many local maxima. A more complicated searching strategy that combines Fibonacci

search and quadratic curve fitting has been demonstrated to find the global maximum

[42, 43]. Normally, DFF algorithm is slow because of the multiple image acquisition.

Depth from Defocus requires only two or three images, and recovers the

depth information by computing the degree of blur. This makes it suitable for
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realtime autofocusing and distance measurement. Early algorithms extracted depth

information from blur measurement of an edge [44, 45]. Later methods for arbitrary

objects can be classified as frequency domain approaches [46, 47, 43, 48, 49], spatial

domain approaches [50, 51, 52, 53, 54, 55], and statistical approaches [56, 57].

The frequency domain based methods tend to recover the depth through inverse

filtering in Fourier domain. Subbarao [46] removes the constraint of pinhole aperture

and allows several camera parameters to be varied simultaneously. To avoid the

sensitivity to the frequency spectra of local scene textures, Xiong and Shafer [43] use

moment filters compensate the frequency spectra within passband of each narrowband

filter. Watanabe and Nayar [48] propose a class of broadband filters instead of a

series of narrowband filters. They claim that the filters are sufficient to achieve high-

resolution depth map of image even with complex texture information.

The statistical approach formulates the image formation process as a convolution

plus additive noise. The depth information coded in Point Spread Function (PSF) can

be estimated through Maximum a Posterior (MAP) criteria [56]. In [57], Rajagopalan

and Chaudhuri model the image as Markov Random Field to add some smooth

constraints between pixels during estimation. Statistical approach usually requires

higher computation power and yields lower depth-map density.

The spatial domain approach usually involves less computation as it preserves the

spatial correspondence information. Subbarao and Surya propose a spatial-domain

Convolution/Deconvolution Transform (S Transform) for n-dimensional signals in [58]

and apply S Transform in depth recovery [51, 59]. They approximate blurred images

as cubic polynomial in local neighborhood and estimate depth-related blur parameter

by solving a quadratic equation. Two variations of this method have been developed
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where the quadratic equation is reduced to liner equation. Ziou et al. [55, 60, 61] fits

the image with Hermite polynomial basis and illustrates that the Hermite coefficients

of one blurred image are functions of partial derivatives of other images and blur

difference. They calculate the blur difference through a group of equations and then

recover the depth map. Favaro et al. [53] infer the 3D geometry from defocused

images through computing PSF related orthogonal operators which are regularized

through functional singular value decomposition.

Most methods in DFD literature assume the scene (or small surface patch) is

planar and parallel to lens system (so called equifocal or shift-invariant assumption),

which limits the accuracy of reconstructed depth-map. Recently, Subbarao et al.

[62, 63, 64] propose a new framework to model the actual shift-variant blurring

process. Based on the new theory, they develop a method to recover both depth

and slopes of local planar surface patches. Favaro et al. [65] convert the shift-variant

integral equation to diffusion equation and solve partial differential equation through

gradient flow. Namboodiri et al. [66] also convert the problem to diffusion equation

but estimate the parameters through MRF-graph cuts based methods.

1.2.3 Multi-view Registration

Depth map (or point cloud) from single sensor only reveals partial surface

information. To build a full surface model, more depth maps obtained from different

viewing directions are needed. Usually point clouds are constructed with respect

to their own camera frames, therefore they need to be aligned into a common

coordinate system. Transformation between different coordinate systems can be

parameterized as a rotation and a translation. Registration is the procedure to
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identify the transformation between each camera coordinate system and the reference

system.

Registration of multi-view range images is generally done in two steps: coarse

registration and registration refinement [67]. Most registration algorithms assume

the initial approximate transformation is provided and concentrate on improving

it. With calibrated camera systems, the transformation parameters can be derived

from calibration result. If the system is uncalibrated, auto calibration [3, 4], wide

baseline stereo [68] or motion parallax [29] techniques can be used to estimate the

relative motion parameters between different views. Starting from initial solution,

registration refinement improves the result by iteratively minimizing certain error

measure. Iterative Closest Point (ICP) approach [69, 70, 71] first pairs points in

one depth map with nearby points in the other, then calculates the rigid motion

that better aligns the two point clouds, and iterates these steps as long as the result

improves. Exhaustive search for closest points can be used to identify matching

pair, but it is very computationally expensive [69, 71]. Some approaches speed

up the process by projecting the point along its normal vector [70, 72] or viewing

direction [73, 74] line onto the other mesh and searching within the neighborhood

of the intersection. There are mainly two approaches to align point clouds: aligning

points with their mates (point-point alignment) [75, 76] and aligning points with

the tangent planes of their mates (point-plane alignment) [70]. Besides using pure

geometrical information, Johnson and Kang [77] improve registration by combining

texture information.
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1.2.4 Integration

After being aligned into a common coordinate system, multiple partial shapes

have to be integrated into a single 3D model. There are two common categories

of multi-view modeling techniques. The first one deals with multiple point clouds

obtained from different sensors [78, 79, 80, 81]. The other approach is based on

processing photographic images using volumetric modeling techniques, such as voxel

coloring or shape from silhouettes [82, 83, 84]. In this dissertation, we adopt the

technique belonging to the first category, which works with point clouds acquired by

three stereo cameras placed at different positions.

Among the point clouds merging techniques, mesh-based integration and

volumetric integration are two popular approaches. One of the mesh-based integration

techniques is based on stitching neighborhood meshes from one view after segmenting

meshes according to ’Region of Construction’ algorithm [85]. Mesh ’zippering’ and

mesh ’growing’ are other techniques investigated by Turk et al. [86] and Rutishauser

et al. [87]. Volumetric integration usually adopts an implicit representation of the

object’s surface [88, 79, 80, 89, 90]. Hoppe et al. [88] produce a surface mesh from a

group of unorganized points assuming that every point is on object surface, which can

hardly be true in practice. Curless and Levoy [79] extract the iso-surface of object

based on signed distances of voxel grid. Hilton et al. [80] employ a similar procedure

but assume the implicit surface function be continuous. Most of the approaches

assume a noise-free data set as the range images are acquired by high-accuracy laser

scanners. An approach to handle the noise problem in partial shapes is investigated by

Wheeler et al. [81]. They exclude the noise data using a ’consensus surface’ algorithm.

For point clouds acquired by stereo camera system, stereo matching algorithms can
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also be combined to create 3D models [91, 92].

1.2.5 Texture Mapping

Texture mapping is the last step in 3D reconstruction. The reconstructed mesh

model consists of numerous triangles on its surface. To reconstruct a photo-realistic

model, we need to map the texture information onto 3D wire-frame model. The

process is akin to wrapping a patterned paper onto a plain white box.

In image-based rendering application, based on several acquired texture images

and scene geometry, a new synthetic image is generated according to the virtual

camera position for texture mapping [93, 94]. This is termed as view-dependent

texture mapping. In 3D modeling applications, view-independent texture mapping

techniques are usually employed, where a big texture atlas is produced and wrapped

onto the whole model [95, 96]. With OpenGL or DirectX library, such techniques can

be easily implemented by establishing the mapping between vertices of triangle mesh

and their corresponding pixels in texture image. The system would automatically

perform perspective correction, stretching and squeezing through interpolation and

filtering.

When stitching multiple texture images together, there usually present obvious

seams and color difference the the 3D model. Bannai et al. propose to use several

global color transform functions to normalize the overall color tone [97]. Baumberg

blends the texture images in frequency domain with camera weight function [98].

Rocchini et al. blend the texture of frontier triangles using barycentric coordinate

factors [99]. Zhou et al. combine several techniques including gradient filed fusion

and texture impainting to generate a seamless textured 3D model [100].
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1.3 Dissertation Overview

This dissertation is organized as follows:

In Chapter 2, we first briefly review the spatial-domain depth from defocus (DFD)

algorithm [51] which can recover depth from only two different blurred images. We

then present new algorithms to extend the DFD method to cameras working in macro

mode used for very close objects in a distance range of 5 cm to 20 cm. We adopt

a new lens position setting suitable for macro mode to avoid serious blurring. We

also develop a magnification normalization algorithm to normalize images’ viewing

fields. In some range intervals with high error sensitivity, we use an additional image

to reduce the error caused by drastic change of lens positions. Experimental results

on a high-end digital camera show that the new algorithms significantly improve the

accuracy of DFD in the macro mode. In terms of focusing accuracy, the RMS error

is about 15 lens steps out of 1500 steps, which is around 1%.

In Chapter 3, we propose a new approach for 3D shape recovery of local planar

surface patches from two shift-variant blurred images. It is based on a recently

proposed technique Rao Transform/Inverse Rao Transform. The shape of a visible

object at each pixel is specified by the distance and slopes of a local planar surface

patch. Our method elegantly models the actual imaging process and recovers the

shape by inverting the shift-variant blurring in camera system. It is completely

localized, applicable to general Point Spread Function and facilitates fine-grain

parallel implementation. Results of both simulation and real experiments indicate

that the new approach is effective and useful in practical applications.

In Chapter 4, we present new camera calibration techniques for a novel designed

stereo camera. The stereo camera features a digital camera and a stereo adaptor
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attached in front of the lens. With a pair of periscope-like mirror system, the adaptor

splits the incoming light and form a pair of stereo image on left and right half sensor

respectively. Straightforward extension of the traditional calibration techniques are

found to be inaccurate and ineffective. Our new technique fully exploits the physical

constraint that the stereo image pair have the same intrinsic camera parameters such

as focal length, principle point and pixel size. Our method involves taking one image

of a calibration object and estimating one set of intrinsic parameters and two sets

of extrinsic parameters corresponding to the mirror adaptor simultaneously. The

method also includes lens distortion correction to improve the calibration accuracy.

Experimental results on a real camera system are presented to demonstrate that the

new calibration technique is accurate and robust.

In Chapter 5, we first review the basic theory of stereopsis and introduce our

novel stereo camera system. We then present several fast implementation methods to

meet the requirements of real time processing. We combine lens distortion correction

and rectification in one single step. We also adopt a multi-resolution search scheme

to identify corresponding points pair using Gaussian pyramid structure. The search

window size is limited based on the system design to further improve the speed. A

simple object segmentation is employed to exclude erroneous results of background

pixels. The experiments carried out on our stereo camera system illustrates that our

fast stereo matching algorithm is reliable.

In Chapter 6, we introduce our multi-stereo camera system where three stereo

cameras are placed at different positions to capture images. Each camera is able to

reconstruct partial shape of the object with respect to its own coordinate system.

Registration is the process to retrieve the transformation matrices between different

14



camera frames and bring partial shapes into a common coordinate system. The

coarse registration can be done using information derived from calibration result.

We then present a fast Iterative Closest Surface Patch (ICSP) approach to refine

the registration. It finds the closest surface patches in overlapping parts of two

point clouds and compute the transformation matrices that minimize the error

distance. The process is carried out iteratively until the error measure converges.

The experimental results on real system data illustrate that our registration method

is fast and accurate.

In Chapter 7, we first describe a volumetric method to extract the object surface

from layered point clouds. It calculates the signed distances from every voxel to

different range surfaces and averages them according to viewing angles. The true

object surface rises at voxels whose signed distances are zero. The Marching Cube

algorithm is employed to generate a triangle mesh that intersect voxel grid at zero

distance. With preset lookup table, such process can be done in real time. Finally, we

present the texture mapping techniques to render a photo-realistic 3D model. Among

three texture images, the one with best viewing direction is selected as map source.

Due to inherent manufacturing differences and viewing directions, images captured

by different cameras would present serious blocking artifacts when they are stitched

together. To remove the artifacts, global color normalization followed by local edge

smoothing is performed. The final model appearance is satisfactory.

Finally, conclusion and future work are discussed in chapter 8.
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Chapter 2

Depth from Defocus

One important passive technique for acquiring range images is depth from defocus

(DFD) [51]. It requires the camera to capture two or three images with different lens

settings and recover the depth of an object by computing the degree of blurring. There

are two main categories of DFD algorithms: statistical and deterministic. Statistical

approaches like Maximum likelihood[57] and Markov Random field methods[56] are

computationally intensive. They formulate the task as a global estimation problem

and solve it through iterative techniques. Deterministic algorithms can be classified

as frequency domain approaches[43, 48] and spatial domain approaches[51, 55, 54].

The frequency domain approaches transform images to frequency domain and recover

the depth through different filtering techniques. They usually yield lower depth-map

resolution. In comparison, spatial domain approaches use only a small image region

and therefore require less computation and generate a denser depth-map. Due to

the inherent advantage of being local in nature, spatial domain approaches are more

suitable for real-time autofocusing applications.
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A Spatial-domain Convolution/Deconvolution Transform (S Transform)[58] was

proposed for n-dimensional signals and arbitrary order polynomials. Surya and

Subbarao[51] utilized S Transform to estimate the blur parameter in the spatial

domain using a method named STM. There are two basic variations of STM: STM1

uses two images captured by changing the lens position, and STM2 is based on varying

the aperture diameter. In practice, STM1 has been found to have good accuracy

for cameras operating in the normal mode used for objects at a distance of 20 cm

or more[52]. When cameras operate under macro-mode used for objects at close

range between 5 cm to 20 cm, many difficulties arise, such as highly blurred images,

significant magnification change for small lens displacement, and specific settings in

lens parameters.

In this Chapter, we first review the basics of S Transform and STM-DFD, then

we present some new techniques to extend STM1 to cameras working in macro-mode.

We adopt a new lens setting suitable for macro-mode to avoid serious blurring and

develop a new calibration algorithm to normalize the magnification of images captured

with different lens positions. In some range intervals with high error sensitivity,

we use an additional image to reduce the error caused by drastic change of lens

settings. Experimental results on different test objects show that the new algorithm

significantly improves the accuracy of STM1 for macro mode. The RMS error is

about 15 lens steps out of 1500 steps, which is around 1%.
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2.1 Camera Model

In the defocus problem, we adopt a more elaborate camera model rather than the

common pinhole camera model. Figure 2.1 shows a schematic diagram of a camera

system, where L1 and L2 are two lenses, OA is the optical axis, P1 and P2 are the

principal planes, Q1 and Q2 are the principal points, ID is the image detector, D is

the aperture diameter, s is the distance between the second principal plane and the

image detector, u is the distance of the object from the first principal plane, and v

is the distance of the focused image from the second principal plane. The relation

Figure 2.1: Schematic diagram of a camera system
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between f , u and v is expressed by the well-known lens formula

1

f
=

1

u
+

1

v
(2.1)

The distance s, focal length f and aperture diameter D will be referred together as

camera parameters and denoted by e, i.e.,

e = (s, f, D). (2.2)

If the object point p is not in focus, then it gives rise to a blurred image p′′ on

the image detector ID. According to geometric optics, p′′ has the same shape as the

lens aperture but scaled by a factor. If we assume the lens system to be a circular

system, p′′ is then a circle with uniform brightness. Its distribution can be expressed

as a cylindrical function:

h(x, y) =















1
πR2 if x2 + y2 ≤ R2

0 otherwise

(2.3)

In practice, usually blurred circle is not a crisp circular patch of constant brightness

as suggested by geometric optics. It is more like a circular blob with brightness falling

off gradually at the border rather than sharply. Another popular PSF model is 2D

Gaussian function:

h(x, y) =
1

2πσ2
e−

x2
+y2

2σ2 (2.4)

where σ is a spread parameter corresponding to the standard deviation of Gaussian

distribution.
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If the blur circle radius R is constant over some region on the image plane,

the camera can then be modeled as a linear shift invariant system. Therefore, the

observed image g(x, y) is the convolution of focused image f(x, y) with Point Spread

Function h(x, y), i.e.,

g(x, y) = f(x, y) ∗ h(x, y) (2.5)

where * denotes the convolution operation.

2.2 S Transform

A new Spatial-Domain Convolution/Deconvolution Transform (S Transform) was

proposed for images and n-dimensional signals [58] for the case of arbitrary order

polynomials.

Let f(x, y) be an image. Within a small region, we approximate it as a two

variable cubic polynomial:

f(x, y) =
3

∑

m=0

3−m
∑

n=0

am,nx
myn (2.6)

where am,n are the polynomial coefficients. This assumption of f can be made valid

by applying a polynomial fitting least square smoothing filter to the image.

Let h(x, y) be a rotationally symmetric point spread function. The moments of

the point spread function are defined by

hm,n =

∫ ∞

−∞

∫ ∞

−∞

xmynh(x, y) dx dy (2.7)

The observed image g(x, y) is the convolution of the focused image f(x, y) and
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the PSF h(x, y):

g(x, y) = f(x, y) ∗ h(x, y)

=

∫ ∞

−∞

∫ ∞

−∞

f(x − ζ, y − η)h(ζ, η) dζ dη (2.8)

Since f(x, y) is a cubic polynomial, it can be expressed in a Taylor series as

f(x − ζ, y − η) =
∑

0≤m+n≤3

−ζm

m!

−ηn

n!
fm,n(x, y) (2.9)

where

fm,n(x, y) =
∂m

∂xm

∂n

∂yn
f(x, y) (2.10)

Substituting Eq.(2.9) into Eq.(2.8), we have

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞

∑

0≤m+n≤3

(−1)m+n

m!n!
fm,n(x, y)ζmηnh(ζ, η) dζ dη

=
∑

0≤m+n≤3

(−1)m+n

m!n!
fm,n(x, y)

∫ ∞

−∞

∫ ∞

−∞

ζmηnh(ζ, η) dζ dη

=
∑

0≤m+n≤3

(−1)m+n

m!n!
fm,n(x, y)hm,n (2.11)

where

hm,n =

∫ ∞

−∞

∫ ∞

−∞

h(x, y)xmyn dx dy (2.12)

Equation 2.11 expresses the convolution as a summation involving the derivatives

of f(x, y) and moments of h(x, y). This corresponds to the forward S-Transform. Now

we can use this formula to derive a deconvolution formula. Since h(x, y) is circularly
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symmetric, it can be shown that

h0,1 = h1,0 = h1,1 = h0,3 = h3,0 = h2,1 = h1,2 = 0 (2.13)

h2,0 = h0,2 (2.14)

Also if we assume the camera to be a lossless system (i.e., no light energy is absorbed

by the camera system), then

h0,0 =

∫∫

h(x, y) dx dy = 1 (2.15)

Therefore we obtain

f(x, y) = g(x, y)− h2,0

2
(f 2,0(x, y) + f 0,2(x, y)) (2.16)

Applying ∂2

∂x2 to the above equation on both sides and noting that derivatives of order

higher than 3 are zero (because f is cubic), we obtain

f 2,0(x, y) = g2,0(x, y) (2.17)

Similarly applying ∂2

∂y2 , we get

f 0,2(x, y) = g0,2(x, y) (2.18)

Therefore

f(x, y) = g(x, y) − h2,0

2
∇2g(x, y) (2.19)
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where ∇2 is the Laplacian operator, and σh is the spread parameter of h, by the

definition of moments of h, we have h2,0 = h0,2 = σ2
h/2, so the above deconvolution

equation can be written as:

f(x, y) = g(x, y) − σ2
h

4
∇2g(x, y) (2.20)

Equation (2.20) is Inverse S-Transform. In the following section, we will describe the

application of this formula to distance estimation.

2.3 STM Autofocusing

Let f(x, y) be the focused image of a planar object at distance u, g1(x, y) and

g2(x, y) be two images of the object recorded for two different camera parameter

settings e1 and e2 where

e1 = (s1, f1, D1)

e2 = (s2, f2, D2)

Left R be the radius of the blur circle and q be the scale factor defined as

q = 2R/D. Using the property of similar triangles in Figure 2.1, we have

q =
2R

D
=

s − v

v
= s

(

1

v
− 1

s

)

(2.21)
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Substituting for 1/v from Eq. (2.1), we obtain

R = q
D

2
= s

D

2

(

1

f
− 1

u
− 1

s

)

(2.22)

In a practical camera system, if two images gi(x, y) for i = 1, 2 are captured with

camera parameter settings of ei, then image magnification and mean image brightness

may change even though nothing has changed in the scene. To compare the blurring

in two images g1 and g2 in a correct and consistent manner, both image brightness

and magnification have to be normalized. In the following discussion, we will assume

that images have been normalized. Without loss of generality, we assume that the

brightness normalization has been carried out by dividing the gray-scale value at

every pixel by the mean brightness value, and magnification has been normalized

corresponding to s = s0. After magnification normalization, the normalized radius

R′ can be expressed as a function of camera parameters e and object distance u

R′(e; u) =
s0R

s
=

Ds0

2

(

1

f
− 1

u
− 1

s

)

(2.23)

In practice, it is found that [101] the blur spread parameter σ is proportional to

R′, i.e.

σ = kR′ for k > 0 (2.24)

In most cases, k = 1/
√

2 is a good approximation [101, 45, 102].

The actual PSF of camera system is much more complicated than Cylindrical

or Gaussian due to diffraction, polychromatic illumination and lens aberrations, etc.

Yet the spread parameter σ can be used to characterize the extent of blurring, where
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σ is the standard deviation of the PSF h(x, y), i.e., the second central moment of

h(x, y):

σ2 =

∫∫

(

(x − x̄)2 + (y − ȳ)2
)

h(x, y) dx dy (2.25)

where (x̄, ȳ) is the position of the centroid of PSF h(x, y).

For a planar object perpendicular to the optical axis, the camera acts as a linear

shift invariant system. Therefore gi will be the convolution of focused image f(x, y)

and the corresponding point spread function hi(x, y). The spread parameter σ is

linear to reciprocal of object distance u−1 (see Eq.3.25 and Eq.2.24) [102]. Let the

spread parameter σ for h1 be σ1 and for h2 be σ2. From the polar coordinate system,

and equation (3.25), we obtain:

σ1 = m1u
−1 + c1 (2.26)

σ2 = m2u
−1 + c2 (2.27)

where

m1 = −D1s0

2
√

2
(2.28)

c1 =
D1s0

2
√

2

(

1

f1
− 1

s1

)

(2.29)

m2 = −D2s0

2
√

2
(2.30)

c2 =
D2s0

2
√

2

(

1

f2

− 1

s2

)

(2.31)
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Then σ1 can then be expressed in terms of σ2 as

σ1 = ασ2 + β (2.32)

where

α =
m1

m2
and β = c1 − c2

m1

m2
(2.33)

We assume that in a small image neighborhood the focused image f(x, y) can

be adequately approximated by a cubic polynomial. Now we can apply the inverse S

Transform (Eq. (2.20)) on both observed images g1 and g2:

f = g1 −
1

4
σ2

1∇2g1 (2.34)

f = g2 −
1

4
σ2

2∇2g2 (2.35)

Equating the right sides of both equations, we obtain

g1 −
1

4
σ2

1∇2g1 = g2 −
1

4
σ2

2∇2g2 (2.36)

If we take partial derivatives on both sides, together with the fact that f is cubic

polynomial, it can be easily verified that ∇2g1 = ∇2g2. Therefore, the above equations

can be expressed as

g1 − g2 =
1

4
G∇2g (2.37)

where

G = σ2
1 − σ2

2 (2.38)
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and

∇2g = ∇2g1 = ∇2g2 =
∇2g1 + ∇2g2

2
(2.39)

Substituting for σ1 in terms of σ2 from Equation (2.32) and using the definition of G

in Equation (2.38), we obtain

σ2
2(α

2 − 1) + 2αβσ2 + β2 = G (2.40)

where α and β are defined in Equation (2.33).

In STM1, the aperture diameter is not changed but the lens position is changed

during capture of two images g1 and g2, ( i.e., f1 6= f2 and s1 6= s2, but D1 = D2).

Therefore

α =
m1

m2
=

D1

D2
= 1 (2.41)

so the quadratic equation is reduced to a linear equation which can be solved directly:

σ2 =
G

2β
− β

2
(2.42)

and object distance can be retrieved using Eq. (2.27).

2.4 Extension to Macromode

In practical implementation of STM autofocusing, especially when camera is

operating in macromode, a many changes are needed to make the method applicable.
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2.4.1 SNR Mask

Ideally it should be possible to compute the value of σ2 at each pixel (x, y) and

obtain an estimate of the specific distance. However, because of digitization and noise,

it is necessary to combine information from its neighboring pixels. From Equation

(2.38), we notice that Laplacian of observed images ∇2g plays an important role

in σ2 computation. Unfortunately, Laplacian estimates are very much sensitive to

camera noise and quantization. Its low Signal-to-Noise Ratio (SNR) will lead to large

errors in estimation of σ2. Therefore, we introduce a binary mask [52] to improve

the robustness of STM1 algorithm. The binary mask is defined by thresholding the

Laplacian values:

M0(x, y) =















1 |∇2g| ≥ T,

0 otherwise.

(2.43)

where T is a threshold on the Laplacian. It can be determined experimentally. We

then compute the average G within a small neighborhood W :

G =
4

N

∑∑

(x,y)∈W

M0(x, y)
g1(x, y) − g2(x, y)

∇2g(x, y)
(2.44)

where

N =
∑ ∑

(x,y)∈W

M0(x, y) (2.45)

Upon getting average G, the average σ2 and average inverse distance 1/u for the

small image patch can be calculated. This operation will remove unreliable points

with low SNR and optimize the estimation of depth, but at the cost of reducing

spatial resolution.
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2.4.2 Magnification Normalization

As stated earlier, the observed images g1 and g2 should be normalized in terms

of both brightness and magnification. In practical implementation, as magnification

change is less than 3% in most cases for consumer digital cameras, it is usually ignored

in favor of computational speed. However, when a camera is working in macro-mode

(for objects closer than 20 cm) instead of the standard mode (for objects farther than

20 cm), such change (shown in Fig. 2.2) has to be taken into account as the shift

between corresponding points could be up to 20 pixels near the image borders. To

ensure the correct calculation of the blur parameter σ2 at each pair of corresponding

pixels, image magnification normalization becomes a necessity.

Figure 2.2: Images taken with different camera settings in macro mode

The relation between two images’ magnifications can be expressed as
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(2.46)
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where [x(1), y(1), z(1)]t and [x(2), y(2), z(2)]t are homogeneous coordinates of

corresponding pixels in observed images g1 and g2.

To compute the transformation matrix between magnification of two images, we

need to calculate three coefficients s, sx, sy from calibration. One method is to take

pictures of a simple pattern object (like black dots on white paper), and get two sets

of corresponding pixel coordinates from pattern images g1 and g2. Then we can form

a group of over constrained equations as shown below, which can be solved through

least square criterion.
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(2.47)

If we write it as Ax = b, then x could be solved through pseudo inverse method:

x = (AtA)−1Atb (2.48)

After getting the transformation matrix, the next step is to warp the target image

(e.g., g1, usually the one with larger field of view). As forward warping usually maps

integer pixel coordinates to sub pixel coordinates, here a backward warping scheme
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is applied. Integer pixel coordinates in transformed image are projected back to the

original image, usually resulting in sub pixel position. Then its gray scale value will

be computed by linear interpolation. The results of magnification correction is shown

in Figure 2.3. we can clearly notice that the viewing field are about the same in both

images.

Figure 2.3: Images with Normalized Magnification

2.4.3 New Lens Setting

Besides magnification change, another problem in macro-mode DFD is that

images are extremely blurred if the same lens positions are adopted as that for the

standard mode. In this case, the estimated Laplacian of observed image ∇2g is noisy

and unreliable (SNR will be low as Laplacian magnitude is reduced due to high levels

of blur). We have to change the camera settings so that the images used in estimating

σ have a moderate or low blur.

Another problem is that the relation between σ and distance u is not exactly

linear (Eq. (2.27)) due to change of multiple unknown parameters in the lens system

(e.g. lens position and focal length). Therefore, we calibrate the camera to obtain
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a new lookup table specifically for macro-mode autofocusing. The lookup table has

two entries: step number and blur parameter σ. Step number is a measure of lens

position. It is approximately linear with reciprocal of object distance 1/u. We use

Depth-from-Focus (DFF) [42] method to obtain the step number corresponding to the

object distance that is in best focus. DFF acquires a number of images and searches

for the best camera parameter that maximizes a focus measure. It needs much more

computation than DFD but is usually more accurate. The results are stored in a

table indexed by step number that gives focused object distance.

We place objects at several specified distances and compute the corresponding

blur parameter σ through Eq.(2.42) and the focusing step number by DFF method.

These results were stored in a table indexed by σ. After establishing this lookup table,

we use linear interpolation to get the focusing step number for any blur parameter σ.

The lens step number is then indexed into another table to obtain the depth.

Due to some special change of lens position when camera operates in macro-

mode, mapping from σ to step number is not linear or even monotonic in a particular

sensitive region (shown in Figure 2.4). This makes the looking up task ambiguous and

difficult. In such a case, we capture an additional image with a new camera setting

and use a new lookup table to get the step number. The new lookup table will be

such that its sensitive region differs from the previous one. This strategy of using

an additional image and two lookup tables will effectively improve the accuracy as

the sensitive region of both lookup tables are avoided. Results of this 3 image DFD

approach is illustrated in Section 2.5.
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Figure 2.4: Step-σ Table for Different Camera Settings

2.5 Experimental Results

We conducted our experiments on Olympus E-1 digital camera. The camera is

controlled by a host computer (Pentium 4 2.4GHz) from a USB port. The lens’ focus

motor position range from step 0 to step 1500, where step 0 corresponds to focusing

at infinity and step 1500 corresponds to focusing at a nearby object.

Figure 2.5: Test Objects

The performance of modified DFD algorithms for macro-mode was evaluated

with experiments using different objects shown in Figure 2.5. Each object is placed

at eight different distances in the range of 5 cm to 20 cm at roughly 2 cm intervals.

The distance and the corresponding focused step numbers are listed in Table 2.1. The
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steps are obtained using the DFF algorithm. Two images are taken with camera set

to step 800 and step 1100. If the focus step calculated by DFD is between 1000 and

1150, then a third image will be taken with the camera set to step 1250. In this case

a different lookup table is used to retrieve the depth. The focusing window is set to

96×96 located at the center of the scene. Before performing DFD, all the images are

normalized with respect to magnification and brightness and smoothed by a Gaussian

filter. The image Laplacians are thresholded to weed out low contrast pixels with low

SNR.

Position 1 2 3 4 5 6 7 8 9

Distance(mm) 250 225 200 180 150 120 100 80 55

Step 786 806 893 902 993 1099 1158 1217 1401

Table 2.1: Distance-Step Table
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Figure 2.6: RMS Error of 2 Images DFD

First we present the RMS errors for 2 Image DFD and 3 Image DFD for objects at
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different distances. All test objects are flat and parallel to the lens plane. Therefore,

computing depth from central focus window is sufficient. For 2 Image DFD, RMS

errors are quite small for most regions, except in the range u = 10 cm to 12.5 cm, or

focus step position around 1100. This is the sensitive region shown in Figure 2.4. If

we combine the result from the third image, we find that the results are significantly

improved. Most RMS errors are less than 15 steps out of 1500 steps. The maximum

error is just 22 steps and the average error is about 1%.
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Figure 2.7: RMS Error of 3 Images DFD

Next we present the shape reconstruction results for planar objects. We split

the image into smaller blocks and compute depth separately in each block. The

magnification normalization procedure plays an important role here as magnification

can change up to 20 pixels near image borders.

Figure 2.10 displays the estimated shape of object in Figure 2.2. With

magnification normalization, the results around image borders are improved
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significantly.

The next example is to an inclined poster shown in Figure 2.9. Once again,

magnification normalization is found to be very effective in improving accuracy.

Figure 2.8: Shape of Flat Poster without and with Magnification Normalization
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Figure 2.9: Images of Inclined Flat Poster

2.6 Summary

In this chapter, a modified DFD algorithm is presented for cameras operating in

macro-mode. Before performing DFD, we first normalize the magnification of both

images to ensure the correct comparison between corresponding pixels. The results

are substantially better, especially for areas far away from the image center. We also

use new lens settings and lookup table specifically for macro-mode. In some range

of object distance, a third image is taken and depth is determined through a second

lookup table. Such 3 image DFD scheme is found to be very accurate. The RMS

error in this case is around 15 steps out of 1500 steps, which is about 1% on average.
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Figure 2.10: Shape of Inclined Poster without and with Magnification Normalization
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Chapter 3

Shape from Shift-variant Blurred

Images

In Chapter 2, we model the camera system as a linear shift-invariant system.

This model is valid only when the object is planar and perpendicular to the optical

axis. If an object is of arbitrary shape or various optical abberations are present in the

view, this assumption does not hold. One way to approximate shift-variance is to split

the image into small blocks and model each block as a shift-invariant system [48, 54].

Others convert shift variant integral equation to inhomogeneous diffusion equation

and solve shape related diffusion coefficients through different numerical methods

[65]. In this Chapter, we present a new method to extend the S Transform approach

to shift-variant case. It is based on the recently developed Rao Transform (RT)

[62, 63] for image restoration and linear integral equations. In the new method, the

computations are completely localized (i.e. solution at a pixel is computed using image

data in a small neighborhood around that same pixel), efficient, and suitable for fine-
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grain parallel implementation. The effectiveness of the new approach is demonstrated

with both simulation and real experiments.

3.1 Rao Transform (RT)

We first illustrate Rao Transform for one dimensional signals. Let us express the

shift variant system as

g(x) =

∫ s

r

k(x, α)f(α) dα (3.1)

We define:

h(x, α) = k(x + α, x) (3.2)

and

β = x − α (3.3)

If we substitute α with x − β in Eq. (3.1), we have:

g(x) =

∫ s

r

k(x, α)f(α) dα

=

∫ s

r

k(x, x − β))f(x− β) d(x− β) (3.4)

where

k(x, x − β) = k((x − β) + β, x − β) = h(x − β, β) (3.5)

40



Substituting Eq. (3.5) into Eq. (3.4), we have

g(x) =

∫ s

r

h(x − β, β)f(x − β) d(x− β)

=

∫ x−s

x−r

h(x − β, β)f(x− β) d(β)

(3.6)

The above transform is termed as Rao Transform (RT), which localizes a global

integral equation within a small region around x. Similarly, a two dimensional Rao

Transform to model shift-variant image blurring process can be expressed as:

g(x, y) =

∫ x−a

x−b

∫ y−c

y−d

h(x − u, y − v, u, v)f(x− u, y − v) du dv (3.7)

where f(x, y) is focused image, h(x, y, u, v) is shift-variant Point Spread Function

(PSF), and g(x, y) is blurred image.

Eq. (3.7) provides an intuitive and elegant way to model the actual blurring

process that takes place in a physical linear shift variant system. It also facilitates

the derivation of an explicit closed-form formula for inverting the transform.

3.2 Inverse Rao Transform (IRT)

The shift-variant blurring in Eq. (3.7) can be inverted to solve for the focused

image f(x, y) and related shape information. A summary of the inversion are

presented below.

We use superscript (m, n) to denote the mth partial derivative with respect x

and nth partial derivative with respect to y and the subscript p, q to denote (p, q)th
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moments with respect to u, v:

g(m,n) =
∂m

∂xm

∂n

∂yn
g(x, y) (3.8)

f (m,n) =
∂m

∂xm

∂n

∂yn
f(x, y) (3.9)

h(m,n) =
∂m

∂xm

∂n

∂yn
h(x, y, u, v) (3.10)

h(m,n)
p,q =

∫ x−a

x−b

∫ y−c

y−d

upvq ∂m

∂xm

∂n

∂yn
h(x, y, u, v) du dv (3.11)

for m, n, p, q = 0, 1, 2, . . . .

Using the above notation, the truncated Taylor series expansion of f(x−u, y−v)

around (x, y) up to order N and h(x − u, y − v, u, v) around the point (x, y, u, v) up

to order M are given by

f(x − u, y − v) ≈
N

∑

n=0

an

n
∑

i=0

Cn
i un−ivif (n−i,i) (3.12)

h(x − u, y − v, u, v) ≈
M

∑

m=0

am

m
∑

j=0

Cm
j um−jvjh(m−j,j) (3.13)

where Cn
i and Cm

j denote the binomial coefficients

Ck
p =

k!

p!(k − p)!

and an, am are defined as

ak = (−1)k/k! (3.14)

Substituting the truncated Taylor-series expansions of h and f into 2D Rao Transform
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in Eq.(3.7) and simplifying, we get

g(x, y) ≈
N

∑

n=0

an

n
∑

i=0

Cn
i f (n−i,i)

M
∑

m=0

am

m
∑

j=0

Cm
j h

(m−j,j)
m+n−i−j,i+j (3.15)

The above equation can be rewritten as

g(x, y) ≈
N

∑

n=0

n
∑

i=0

Sn,if
(n−i,i) (3.16)

where

Sn,i = anCn
i

M
∑

m=0

am

m
∑

j=0

Cm
j h

(m−j,j)
m+n−i−j,i+j (3.17)

We can now write expressions for the various partial derivatives of g with respect to

x, y as

g(p,q) ≈
N

∑

n=0

n
∑

i=0

∂p

∂xp

∂q

∂yq
[Sn,if

(n−i,i)]T (n + p + q) (3.18)

where

T (n + p + q) =















1 if n + p + q ≤ N

0 otherwise

(3.19)

As we assume that f(x, y) can only be expanded up to certain order of Taylor Series,

then the terms with derivatives of f of order greater than N are set to zero, for

p + q = 0, 1, 2, . . . , N . Note that

S
(p,q)
n,i =

∂p

∂xp

∂q

∂yq
Sn,i = anCm

i

M−(p+q)
∑

m=0

am

m
∑

j=0

Cm
j hm−j+p,j+p

m+n−i−j,i+j (3.20)
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and

∂p

∂xp

∂q

∂yq
fn−i,i = f (n−i+p,i+q) (3.21)

The above equation for g(p,q) for p, q = 0, 1, 2, · · · , N and 0 ≤ p + q ≤ N constitute

(N + 1)(N + 2)/2 equations with as many unknowns f (p,q). The system of equations

for g(p,q) can be expressed in a vector-matrix form as
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
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



(3.22)

or

gx,y = Kx,y fx,y (3.23)

where the subscripts (x, y) make explicit the dependence of the vectors/matrix on

(x, y). This matrix equation can be solved to obtain f (p,q), by inverting the kernel

matrix Kx,y. The solution can be written in the form

fx,y = K′
x,y gx,y (3.24)

where K′
x,y = K−1

x,y.

3.3 Shape Recovery

In this section we derive an interesting result that the blur circle radius R

corresponding to points on the same planar surface is a linear function of image
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coordinates. This result provides the crucial relation between the shift-variant blur

parameter σ (or blur circle radius R) and the 3D shape parameters of the planar

surface patch. Using this relation, we obtain the 3D shape parameters given the blur

parameters at each pixel.

Figure 2.1 in Chapter 2 shows a schematic diagram of image formation by a thin

lens L with diameter D, focal length f , object point P at distance u, focused image

p′ at distance v, image detector ID at distance s, and blur circle with radius R. From

Chapter 2, we derive that the normalized blur circle radius is :

R′ = s0
D

2
(
1

f
− 1

u
− 1

s
) (3.25)

where image magnification is normalized with respect to uniform sensor distance s0.

In order to compare images captured with different parameters s, image magnification

is normalized with s = s0.

Using a world coordinate system with its origin at the optical center Q and Z-axis

along the optical axis, the image p′′ of the object point P at (X, Y, Z) has the image

coordinates (x, y) given by perspective projection relations:

x = s0
X

Z

y = s0
Y

Z
(3.26)

The tangent plane of object surface at point P can be expressed as

Z(X, Y ) = Z0 + ZXX + ZY Y (3.27)
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where Z0 is the distance of the plane along the optical axis at P , and ZX and ZY are

slopes along the X and Y axes respectively. The three parameters Z0, ZX , and ZY ,

are the 3D shape parameters to be determined. Substituting X and Y in Eq. (3.27)

with its corresponding image projection x and y using Eq. (3.26), we can express Z

as a function of x and y:

Z = Z0 + ZXX + ZY Y

= Z0 + ZX

xZ

s0
+ ZY

yZ

s0

(3.28)

Rearrange equation:

Z

(

1 − ZX

s0

x − ZY

s0

y

)

= Z0 (3.29)

Finally, we obtain:

Z(x, y) =
Z0

1 − ZX

s0
x − ZY

s0
y

(3.30)

Substitute Z(x, y) as object distance u in Eq.(3.25), we can derive the relation between

normalized blur circle radius R′ and shape parameters Z0, ZX and ZY :

R′(x, y) = s0
D

2
(
1

f
− 1

Z(x, y)
− 1

s
)

= s0
D

2
(
1

f
− 1 − ZXx/s0 − ZY y/s0

Z0
− 1

s
)

= s0
D

2
(
1

f
− 1

Z0
− 1

s
) +

DZX

2Z0
x +

DZY

2S0
y

= R0 + Rxx + Ryy

(3.31)
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where

R0 =
Ds0

2
(
1

f
− 1

Z0
− 1

s
) (3.32)

Rx =
DZX

2Z0
(3.33)

Ry =
DZY

2Z0
(3.34)

The normalized blur circle radius R′ is a linear function of the image coordinates

(x, y) within a planar surface patch. The cylindrical PSF within a planar surface

follows:

h(x, y, u, v) =















1
πR′2(x,y)

for u2 + v2 ≤ R′2

0 otherwise

Also note that the blur spread parameter σ, defined as square root of the second

central moment of PSF:

σ2(x, y) =

∫∫

h(x, y, u, v)u2v2 du dv (3.35)

For real camera systems, σ is known to be proportional to blur circle radius R′[?],

therefore σ is also a linear function of the image coordinates. The shift-variant

Gaussian PSF can be expressed as:

h(x, y, u, v) =
1

2πσ2(x, y)
exp (− u2 + v2

2σ2(x, y)
) (3.36)

Within the planar surface patch, different moments of Shift-Variant PSF (SV-PSF)

at each pixel (x, y) can be explicitly expressed as functions of shape parameters Z0,
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ZX and ZY . From inverse RT (Eq. (3.24)), we can establish two groups of equations

for two different blurred images g1(x, y) and g2(x, y), which are recored with different

camera parameter settings (e.g., s = s1 and s = s2):

f = K′
1 g1 (3.37)

f = K′
2 g2 (3.38)

Equating the left hand sides, we obtain

K′
1 g1 = K′

2 g2. (3.39)

Given the camera parameters Di, si, and fi, associated with the blurred images gi

for i = 1, 2, the matrix K′
i (different terms of moments of SV-PSF)can be expressed

in terms of the shape parameters Z0, ZX and ZY . The theory here can be extended

to include higher order shape parameters such as surface curvatures (e.g. ZXX , ZY Y

and ZXY ) but in practice such extension does not seem to be useful because of the

limited gray level and spatial resolution of image data and noise. Curved surfaces

can be adequately approximated by planar polygons (e.g. triangles) on local tangent

planes at each pixel. Therefore solving Eq. (3.39) at each pixel (x, y) will provide a

solution for 3D shape of the whole object in the scene.

3.4 Experiments

In practice image derivatives are very noise sensitive. Therefore it is necessary to

truncate the Taylor Series expansion of the image function f . Experimental results
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indicated that N = 2 and M = 1 would provide good results. We also assume that

SV-PSF h(x, y, u, v) to be rotationally symmetric, then all odd moments of h become

zero:

h
(1,0)
i,j = h

(0,1)
i,j = 0 if i is odd or j is odd (3.40)

Also,

h
(0,0)
0,0 =

∫ ∞

−∞

∫ ∞

−∞

h(x, y, α, β) dαdβ = 1 (3.41)

Since M = 1, all derivatives of h of order more than 1 with respect to x and y are

zero. In summary,

h
(0,0)
0,0 = 1 (3.42)

h
(0,0)
1,0 = h

(0,0)
0,1 = h0,0

1,1 = 0 (3.43)

h
(1,0)
1,0 = h

(1,0)
1,1 = h

(1,0)
2,1 = h

(1,0)
1,2 = h

(1,0)
3,0 = 0 (3.44)

h
(0,1)
0,1 = h

(0,1)
1,1 = h

(0,1)
2,1 = h

(0,1)
1,2 = h

(0,1)
0,3 = 0 (3.45)

Therefore g(0,0) can be express as

g(0,0) = f (0,0) + f (1,0)h
(1,0)
2,0 + f (0,1)h

(0,1)
0,2 +

1

2
f (2,0)h

(0,0)
2,0 +

1

2
f (0,2)h

(0,0)
0,2 (3.46)
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In this case, inverse RT in Eq. (3.24) provides the following simplified expression for

the focused image f(x, y) = f (0,0):

f (0,0) = g(0,0) − h
(1,0)
2,0 g(1,0) − h

(0,1)
0,2 g(0,1) + 2h

(1,0)
2,0 h

(0,1)
0,2 g(1,1)

+

(

3

2
(h

(1,0)
2,0 )2 +

1

2
h

(0,1)
0,2 h

(0,1)
2,0 − 1

2
h2,0

)

g(2,0)

+

(

1

2
h

(1,0)
2,0 h

(1,0)
0,2 +

3

2
(h

(0,1)
0,2 )2 − 1

2
h0,2

)

g(0,2) (3.47)

f (1,0) = g(1,0) − 3

2
h

(1,0)
2,0 g(2,0) − h

(0,1)
0,2 g(1,1) − 1

2
h

(1,0)
0,2 g(0,2) (3.48)

f (0,1) = g(0,1) − 1

2
h

(0,1)
2,0 g(2,0) − h

(1,0)
2,0 g(1,1) − 3

2
h

(0,1)
0,2 g(0,2) (3.49)

f (2,0) = g(2,0) (3.50)

f (0,2) = g(0,2) (3.51)

f (1,1) = g(1,1) (3.52)

Savitzky-Golay filters are used to compute image derivatives g
(m,n)
i (x, y) after

smoothing the images with Gaussian filter. As second order derivatives are highly

noise sensitive, especially when the image contrast is low, we use data at only those

pixels where the image derivative magnitudes were above a preset threshold. For

each pixel with reliable data in a small image block, we equate the right sides of the

above equations and form a set of non-linear equations with unknowns Z0, ZX and

ZY . Using data at more than 3 nearby pixels will result in an over-constrained set

of non-linear equations. These were solved iteratively in a least square sense to solve

for the unknowns.

Both simulation and real experiments on simple objects were carried-out. In

simulation experiments, a slanted planar object with a chessboard pattern was
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Figure 3.1: Simulated blur images

assumed, and two shift-variant blurred images were generated using corresponding

SV-PSFs (shown in Figure 3.1). Then an exhaustive search of the shape parameter

space was carried-out to find a solution that minimized an error measure. From the

piecewise STM1 method [51], we can get a rough estimation on depth, then from

depth between neighboring patches, we could estimate the local slope. Starting from

these initial values, we can compare the results between different parameter values

around the initials to get the optimum. Solutions in small overlapping image blocks

were averaged to obtain the final results. The depth map is presented in Figure 3.4

along with its ground truth for comparison. The average and maximum error in depth

were around 1% and 3% respectively.

In real experiments a slanted textured poster on a plane was recorded with a

calibrated digital camera at different focus settings (See Figure 3.3). Then, using the

same approach as in the simulation experiments, the depth map of the object was

computed. The result is shown in Figure 3.4. Images of size 640×480 were processed

in blocks of size 30 × 30 on a 1.6GHz laptop computer with unoptimized code. The
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Figure 3.2: Depth map of Recovered scene and Ground truth

processing time was about 5 minutes, most of which was spent on searching for the

final solution. This step could be improved substantially.

Figure 3.3: Images taken with different camera settings

Results of our experiments show that the new approach presented here is effective

and efficient for computing the 3D shape of a planar object using shift-variant blurred

images. Unlike approaches based on piecewise constant distance approximation (local

convolution or shift-invariant blurring) the results of the new method does not exhibit

blocking artifacts in the shape.
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Figure 3.4: Depth Map of Inclined Plane

This method can be extended from planar to more complex 3D shapes. For

example, curvature parameters (second-order partial derivatives ZXX , ZXY , and ZY Y )

can be included in Eq. (3.27) by approximating the surface patch as

Z(X, Y ) = Z0 + ZXX + ZY Y + ZXXX2 + ZXY XY + ZY Y Y 2. (3.53)

In this case, with two images captured at two different camera parameter settings,

image derivatives at six or more (non-degenerate) pixels will need to be used to

determine the six shape parameters. Six simultaneous equations corresponding to Eq.

(3.39), one at each pixel, is solved. As an alternative, image derivatives at a single

pixel can be used by using seven defocused images as follows. A set of simultaneous

equations correponding to Eq. (3.39) of the form

K′
i gi = K′

i+1 gi+1 (3.54)
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could be solved for i = 1, 2, · · · , 6 by processing 7 images gi recorded with 7 different

(non-degenerate) camera parameter settings. Note that, in addition to the six shape

parameters, the focused image at a pixel is the seventh parameter to be determined.

In the case of a planar surface patch, there is an alternative to the method presented

earlier based on two defocused images at three or more pixels. Four images captured

at four different camera parameter settings and image derivatives at a single pixel can

be used to obtain three equations from Eq. (3.54). They can be solved to determine

the three shape parameters. These approaches are under investigation.

3.5 Summary

In this Chapter, we present a new theoretical framework to recover 3D shape

of object from shift-variant blurred images. It represents a basic theoretical and

computational advance in the literature. Experimental results indicate that the

method is effective and efficient. In addition to shape, the new method can be used

to compute the focused image of the object from its blurred images [63]. The method

here will be further improved using regularization and better iterative techniques for

solving non-linear system of equations.
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Chapter 4

Stereo Camera Calibration

Stereopsis is widely used in many applications such as surface reconstruction

and robot vision. Traditional stereo vision systems usually consist of two cameras

attached to a mount to implement the epipolar geometry. Recently, some researchers

have designed a novel stereo camera as an alternative to the two-camera stereo system.

This new architecture features a single digital camera with an adaptor attached in

front of the camera lens. The adaptor has a pair of periscopes, where the incoming

light is split to form two stereo images as shown in Figure 4.1. Figure 4.2 is a sample

stereo image captured by an actual camera with the new architecture. In Figure 4.2,

left half and the right half are pictures of the same object from different views.

The calibration of a stereo camera requires estimating two sets of external

transformation parameters and one set of intrinsic camera parameters. One

straightforward strategy is to separate the left half and the right half image as if

they were captured with two distinct cameras, and calibrate them independently using

existing state-of-the-art techniques [5, 2, 1]. In practice, we have found that this direct
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Figure 4.1: Optics of Stereo Adaptor

Figure 4.2: Stereo Image of Calibration Pattern

extension is not accurate and reliable, because using information from only half the

image sensor is very sensitive to noise. Instead, we present an effective new technique

which fully exploits the physical constraints. Our method first provides a closed-

form solution for all camera parameters (both intrinsic and extrinsic) from a single

stereo image. The initial results are then refined by minimizing reprojected errors

between model-computed image points and observed points. We also provide some

pre-processing techniques including corner detection and lens distortion correction

to improve calibration accuracy. Experiments on a real camera system is shown to
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validate the effectiveness of our new calibration technique.

4.1 Camera Calibration

Our goal is to find a fast and reliable method to determine all the camera

parameters from a single image captured by the new stereo camera system. It is well-

known from the principles of projective geometry [5] that reliable calibration requires

the use of a 3D non-planar calibration object to avoid degenerate configurations.

We use a 3D calibration object where checkerboard patterns are pasted on two

perpendicular planar surfaces as shown in Figure 4.2.

4.2 Camera Model

We adopt the conventional pin-hole camera model which assumes that object is

in perfect focus. The perspective projection between 3D object and its 2D image

projection is modeled by a 3 × 3 matrix C as:

C =













fx s u0

0 fy v0

0 0 1













(4.1)

where fx and fy denote focal lengths in pixel units along x and y axes, u0 and v0 specify

the position of the optical center, and s denotes the skew factor. Rigid transformation

between the world coordinate system and the camera frame is modeled by a rotation
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matrix R and translation vector t, where

R =













r11 r12 r13

r21 r22 r23

r31 r32 r33













(4.2)

is a 3 × 3 orthogonal matrix and

t =













t1

t2

t3













(4.3)

is a 3 × 1 vector.

Given the world coordinates of scene points as X = (X, Y, Z, W )t and their

corresponding image points u = (u, v, w)t, where W and w are homogeneous scalars,

the projection relation between them can be expressed as:

u = C [R t]X. (4.4)

In the case of our novel stereo camera system, image points on the left half and

the right half are modeled separately (due to the split optical path) as:

ul = C [Rl tl]X (4.5)

ur = C [Rr tr]X (4.6)

Note that the intrinsic camera matrices C for the left and the right half are the

same because the stereo image is formed using a single lens and a single sensor. This

58



important constraint will be fully exploited in our calibration scheme.

4.2.1 Closed-form Solution

Given a group of measured 3D scene coordinates Xi = (Xi, Yi, Zi) and their

corresponding left and right image coordinates uli = (uli, vli) and uri = (uri, vri),

two general 3 projective matrices Pl and Pr can be recovered through Direct Linear

Transform (DLT) [5] which satisfy:













uli

vli

1













=

[

pl1 pl2 pl3 pl4

]



















Xi

Yi

Zi

1



















(4.7)

and












uri

vri

1













=

[

pr1 pr2 pr3 pr4

]



















Xi

Yi

Zi

1



















(4.8)

where plj and prj are column vectors of Pl and Pr respectively. From Eq. (4.6), we

have
[

pl1 pl2 pl3 pl4

]

= λlC

[

rl1 rl2 rl3 tl

]

(4.9)

and
[

pr1 pr2 pr3 pr4

]

= λrC

[

rr1 rr2 rr3 tr

]

(4.10)
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where λl and λr are arbitrary scalars. Employing the orthogonal property of rotation

matrix Rl and Rr, we can derive

pt
l1C

−tC−1pl2 = 0 (4.11)

pt
l2C

−tC−1pl3 = 0 (4.12)

pt
l1C

−tC−1pl1 = pt
l2C

−tC−1pl2 (4.13)

pt
l2C

−tC−1pl2 = pt
l3C

−tC−1pl3 (4.14)

pt
r1C

−tC−1pr2 = 0 (4.15)

pt
r2C

−tC−1pr3 = 0 (4.16)

pt
r1C

−tC−1pr1 = pt
r2C

−tC−1pr2 (4.17)

pt
r2C

−tC−1pr2 = pt
r3C

−tC−1pr3 (4.18)

where C−t denotes (C−1)t. Note that matrix B = C−tC−1 is symmetric, whose degree

of freedom is only 6. The above 8 linear equations can be easily solved to determine

B through Singular Value Decomposition (SVD) or Pseudo-Inverse.

¿From B = C−tC−1, we can easily derive that B−1 = CCt. Because of the

scaling factor in projective matrices Pl and Pr, the actual relation between B and C

should be B−1 = λCCt, i.e.

B−1 =













b11 b12 b13

b12 b22 b23

b13 b23 b33













= λ













fx s u0

0 fy v0

0 0 1

























fx 0 0

s fy 0

u0 v0 1













(4.19)
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The unknowns in camera matrix C can then be solved as follows:

λ = b33 (4.20)

u0 = b13/λ (4.21)

v0 = b23/λ (4.22)

fy =
√

b22 − v0
2 (4.23)

s = (b12 − u0v0)/fy (4.24)

fx =
√

b11 − s2 − u0
2 (4.25)

After solving the intrinsic camera matrix C, the next step is to calculate rotation

matrices and translation vectors. From Eq.(4.9) and Eq.(4.10), we have

Rl = 1/λl C
−1

[

pl1 pl2 pl3

]

(4.26)

tl = 1/λl C
−1pl4 (4.27)

Rr = 1/λr C−1

[

pr1 pr2 pr3

]

(4.28)

tr = 1/λr C−1pr4 (4.29)

with λl = ||pl1|| = ||pl2|| = ||pl3|| and, similarly, λr = ||pr1|| = ||pr2|| = ||pr3||.

In practice, usually, norms of different column vectors would not be equal to each

other and thus the resulting rotation matrix R would not satisfy the orthogonality

constraint. Therefore a standard method [1] to estimate the best rotation matrix

from a general 3 × 3 matrix is used.
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4.2.2 Iterative Refinement

The closed-form solution described above tends to minimize the algebraic error of

equations (Eq.(4.11)-Eq.(4.18)), which is not physically meaningful. We can further

refine the initial result by minimizing geometric errors between reprojected image

points and actual image points. Radial distortion can also be incorporated in this

process to improve calibration accuracy.

Due to complex design of lens system and imperfect manufacturing, practical

lens system usually can not be modeled as linear system (described by camera matrix

C). It usually shifts image points to new positions along their normalized radius

(which is termed as radial distortion). Here we use simple polynomials to model the

shift to achieve numerical stability [1].

Let (xj , yj) be ideal normalized image projections of scene point (X, Y, Z) through

stereo adaptor, where

wj













xj

yj

1













=

[

Rj tj

]



















X

Y

Z

1



















(4.30)

and the distorted normalized image coordinates are:

rj =
√

xj
2 + yj

2 (4.31)

x̂j = xj + xj(k1rj
2 + k2rj

4) (4.32)

ŷj = yj + yj(k1rj
2 + k2rj

4) (4.33)

where j = l, r, denoting coordinates from left and right half of stereo image and (k1,
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k2) are radial distortion coefficients. The final observed image coordinates in pixel

unit are:












ûj

v̂j

1













=













fx s u0

0 fy v0

0 0 1

























x̂j

ŷj

1













(4.34)

We assume that each detected image coordinate û′ is corrupted Gaussian noise

with zero mean and uniform standard deviation σ that û′ = û + ∆u and

P (∆u) =
1

2πσ2
exp (−||∆u||2

2σ2
) (4.35)

We also assume noises are independent and identically distributed, then the

Probability Density Function (PDF) of noise perturbed data is

P (û′
1û

′
2 . . . û′

n) =
n

∏

i=1

1

2πσ2
exp (−||û′

i − ûi(C, k1, k2,Rl, tl,Rr,Rr)||2
2σ2

) (4.36)

Then Maximum Likelihood estimate of (MLE) of camera parameters (C,Rl, tl,Rr, tr)

can be obtained by minimizing the following objective function:

E =

n
∑

i

||û′
li − ûli(C, k1, k2,Rl, tl)||2 +

n
∑

i

||û′
ri − ûri(C, k1, k2,Rr, tr)||2 (4.37)

where l and r denote where image points lie, on left or right half of stereo image.

Because of orthogonality, rotation matrix R has only 3 degrees of freedom, which can
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be parameterized as a unit 4-vector quaternion Q = (q0, qx, qy, qz) , that is:

w =
√

1 + rii + rjj + rkk (4.38)

q0 =
rkj − rjk

2w
(4.39)

qx =
w

2
(4.40)

qy =
rij − rji

2w
(4.41)

qz =
rki − rik

2w
(4.42)

where rii is the largest diagonal element of R and ijk is an even permutation of 123

(i.e., 123, 231 or 312).

Up till now, we assumed that the 3D measurement of corner points on the

calibration object is precise, but in practice, such assumption rarely holds due to

limited accuracy of mesurements. It has been demonstrated in [1] and [103] that the

systematic error from measurement has more effect than the random error. To further

improve the accuracy, we can also estimate 3D coordinates Xi in the refinement step.

As measurement errors are within certain range, it is natural to limit the search range

of Xi in the parameter space to improve the speed. Now the new objective function

becomes

E =

n
∑

i

||uli− ûli(C, k1, k2,Ql, tl,Xi)||+
n

∑

i

||uri− ûri(C, k1, k2,Qr, tr,Xi)|| (4.43)

subject to

||Xi −Xi0|| ≤ δ (4.44)
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and

||Ql|| = 1 (4.45)

||Qr|| = 1 (4.46)

where Xi are estimated 3D coordinates of corners and Xi0 are the originally measured

ones.

We use Interior Point algorithm [104] to solve this constrained optimization

problem. Interior Point method starts from a group of initial guesses of estimated

parameters and improves the results step by step by evaluating the Jacobian JE and

Hessian matrix HE of the objective function. Directly computing the large Hessian

matrix could be slow, but its sparse structure can be utilized to speed up the process.

As there is no interaction between different corners, we obtain

∂E

∂Xi

∂E

∂Xj

= 0 (4.47)

which results in a large number of zero entries in the Hessian matrix HE . Its sparse

structure is illustrated in Figure 4.3, where nonzero entries exist only along diagonal,

first few horizontal, and vertical bands. These few nonzero entries can be computed

analytically and the overall computation cost is acceptable.

The initial values of camera parameters (C0, Rl0, tl0, Rr0, and tr0) can be

calculated using the linear method described in Section 4.2.1. (k1, k2) can be roughly

estimated using methods described in Section 4.3.2, and initial values of 3D corners

Xi0 are measured. The optimization converges after a few iterations and generate

reliable results (illustrated in Section 4.4).
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Figure 4.3: Sparse Structure of Hessian Matrix

4.3 Pre-processing

Before applying the above calibration method, we have to detect all the inner

corners in the stereo image. The following part describes the corner detection scheme

and the estimation method for initial distortion coefficients.

4.3.1 Corner Detection

We adopt a Harris corner detector based algorithm [105] to detect inner corner

points on a checkerboard pattern. The first step is to compute the function:

c(u, v) = det(M) − λ(trace(M))2 (4.48)
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with

M =







( ∂I
∂u

)2 ⊗ g(u, v) ( ∂I
∂u

∂I
∂v

) ⊗ g(u, v)

( ∂I
∂u

∂I
∂v

) ⊗ g(u, v) (∂I
∂v

)2 ⊗ g(u, v)






(4.49)

where g(u, v) is a smoothing Gaussian filter, I(u, v) is the intensity of checkerboard

pattern image and λ is a tuning operator.

Function c(u, v) will show prominent positive peaks in correspondence to corners,

including T, X, and L junctions. Thresholding followed by local maximum search

can reveal integer corner positions p(u, v). To exclude the L-junctions, a heuristic

method is adopted. Let In×n be a small n × n block with detected corner p as its

center, and Ine, Ise, Inw, Isw be the intensity of its four vertices. If any of absolute

intensity differences between two orthogonal vertices (e.g., |Ine − Isw|) is larger than

that between adjacent vertices (e.g., |Ine − Inw|, |Ine − Ise|), then this corner will be

marked as L-junction and removed from the detected corner list.

Subpixel refinement can be achieved by quadratic fitting of the intensity space

within a small neighborhood (s, t) ∈ [u−∆u, u +∆u]× [v−∆v, v +∆v]. Minimizing

the following equation can retrieve the quadratic parameters a, b, c, d and e.

E = ||as2 + bst + ct2 + ds + et + f − I(u, v)|| (4.50)

The X-junction is the critical point (saddle point) of this hyperbolic paraboloid, which

is also the intersection of two lines:

2as + bt + d = 0 (4.51)

bs + 2ct + e = 0 (4.52)
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Such quadratic fitting scheme requires a preliminary interpolation to achieve

certain accuracy, which is computationally expensive. Instead, we use a simpler

approximation to compute subpixel saddle point. Assuming the Gaussian smoothed

image around p(u, v) can be exactly fitted by the quadratic equation, the coefficients

a, b, c, d and e will be partial derivatives of intensity I at (u, v):

a =
1

2
Iuu (4.53)

b = Iuv (4.54)

c =
1

2
Ivv (4.55)

d = Iu (4.56)

e = Iv (4.57)

and the subpixel saddle point p(u + s0, v + t0) lies at

s0 =
IvIuv − IuIvv

IuuIvv − I2
uv

(4.58)

t0 =
IvIuu − IuIuv

IuuIvv − I2
uv

(4.59)

The partial derivatives can be computed by Savitzky-Golay filter, and the subpixel

position can be solved directly. In Figure 4.4, all detected inner corners are marked

with a red cross.

4.3.2 Lens Distortion Correction

The multi-parameter space being searched during refinement step (described

in Section 4.2.2) is rarely convex in practice and the iterative process can easily
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Figure 4.4: Pattern Image with Inner Corners Marked

converge to a local minimum. Therefore the accuracy of initial values becomes crucial.

The main limitation of our closed form solution (which served as initial guess for

refinement) is that it models camera as a linear system. To make this assumption

valid, we have to first roughly remove the distortion effect from the stereo image.

As described in Section 4.2.2, radial lens distortion is modeled as a simple

polynomial:

r̂ = r(1 + k1r
2 + k2r

4) (4.60)

where r̂ is distorted normalized radius, and r is ideal normalized radius. Recovering

ideal image position from distorted one requires solving the above quintic equation.

There is no direct analytic method to find the roots, so we use Taylor Expansion to
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derive an approximate solution. We denote

f(r) =r̂ − r = k1r
3 + k2r

5

=f(r̂ + (r − r̂))

=f(r̂) + f ′(r̂)(r − r̂)

(4.61)

Substituting f(r̂) with k1r̂
3 + k2r̂

5 and f ′(r̂) with 3k1r̂
2 + 5k2r̂

4, we obtain

r̂ − r = k1r̂
3 + k2r̂

5 + (3k1r̂
2 + 5k2r̂

4)(r − r̂) (4.62)

We can then easily obtain the inverse lens distortion model:

r =
r̂ + 2k1r̂

3 + 4k2r̂
5

1 + 3k1r̂2 + 5k2r̂4
(4.63)

If expressed in pixel unit, they are:

u = u0 + û
1 + 2k1r̂

2 + 4k2r̂
4

1 + 3k1r̂2 + 5k2r̂4
(4.64)

v = v0 + v̂
1 + 2k1r̂

2 + 4k2r̂
4

1 + 3k1r̂2 + 5k2r̂4
(4.65)

where (u0, v0) is the principle point, (û, v̂) are distorted (actual observed) image

coordinates and (u, v) are the ideal image coordinates.

As perspective projection retains collinearity, lens distortion is the sole factor

making straight lines appear curved. We exploit this characteristic to estimate

distortion coefficients k1 and k2. To exclude errors from optical misalignment, we

detach the stereo adaptor and take an image of a planar object shown in Figure 4.5.
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There are n straight lines in the image, where (ûij, v̂ij) are the jth point lying on the

ith line. They satisfy:

uij = u0 + ûij

1+2k1r̂2
ij+4k2r̂4

ij

1+3k1r̂2
ij+5k2r̂4

ij

(4.66)

vij = v0 + v̂ij

1+2k1r̂2
ij+4k2r̂4

ij

1+3k1r̂2
ij+5k2r̂4

ij

(4.67)

aiuij + bivij + ci = 0 (4.68)

Naturally, we can formulate an objective function:

F =
∑

i,j
||aiuij + bivij + ci|| (4.69)

Minimizing F with regard to (k1, k2, ai, bi, ci) (i = 1, 2, . . . , n) can retrieve the

distortion coefficients. The initial values of ai, bi and ci can be calculated through line

fitting of (ûij, v̂ij), and (k1, k2) can be set to zero. Principle point (u0, v0) is assumed

to coincide with image center, and focal length can be read from EXIF data.

After getting the lens distortion coefficients k1 and k2, we apply inverse model

Eq.(4.64) and Eq.(4.65) to recover ideal corner coordinates (ui, vi) from the detected

ones (ûi, v̂i). Then use (u, v) to compute camera parameters through closed-form

method (described in Section 4.2.1). Because of coupling effects between optical

center and distortion, k1 and k2 estimated from straight line based method has to be

adjusted after getting the new optical center. They serve as initial values in refinement

step (described in Section 4.2.2). Figure 4.5 is an original image and Figure 4.6 shows

the distortion correction result.
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Figure 4.5: Original Image

Figure 4.6: Distortion Corrected Image

4.4 Experimental Results

The calibration algorithm described above is implemented and evaluated on our

stereo camera system. We first detach the stereo adaptor and estimate lens distortion

using straight line based method (described in Section 4.3.2). The distortion corrected

image of figure 4.5 is shown in figure 4.6, where we can easily notice that curved lines

become straight. This also illustrates that this correction step is necessary to make
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valid the linear camera model used in the closed-form method.

Next we attach the stereo adaptor and capture stereo images of a chessboard

pattern (see Figure 4.2). The inner corners’ 3D world coordinates are carefully

measured. Their 2D projections are detected using the method described in Section

4.3.1 and corrected using inverse lens distortion model (Eq. (4.64-4.65)). We obtain

initial estimation of camera parameters C0, Rl0, tl0, Rr0 and tr0 through closed-form

formula. They are then refined together with lens distortion coefficients and 3D corner

positions by minimizing reprojected errors (described in Section 4.2.2).

The calibration pattern is placed on a desk about 1.2 m away from the stereo

camera. We take five images (camera’s resolution set at 3136 × 2352) of the pattern

with slightly different viewing directions. Results of each trial are presented in Table

4.1 and Table 4.2.

Table 4.1: Intrinsic Parameters

Trial fx fy s u0 v0 k1 k2

1 4457.9 4446.5 -8.17 1595.3 1156.1 -0.130 0.101
2 4463.2 4453.1 -8.13 1599.8 1160.5 -0.121 0.011
3 4460.6 4447.9 -7.79 1597.9 1155.0 -0.132 0.112
4 4467.3 4457.6 -7.81 1600.0 1157.4 -0.121 0.018
5 4463.4 4453.4 -7.83 1596.5 1161.6 -0.123 0.033

Mean 4462.49 4451.69 -7.95 1597.92 1158.11 -0.125 0.055
STD 3.51 4.50 0.19 2.07 2.85 0.005 0.048

The rotation and translation vectors obtained from calibration are with respect

to the world coordinate system, but this world coordinate system is fixed on the

calibration object (origin and three axes are fixed on the object). Therefore, this

coordinate system varies with respect to the camera coordinate system from one

experimental trial to another because the object position and orientation are changed.
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We present the extrinsic parameters in a fixed coordinate system [106] with respect to

the camera to evaluate their consistency. The new coordinate system’s origin is the

center of left virtual camera. Its X axis is parallel to baseline, Y axis is orthogonal

to X axis and original left Z axis, and Z axis is orthogonal to XY plane. Within

this new coordinate system, left virtual camera sits at the origin and right virtual

camera is on new X axis at (Baseline, 0, 0), and they are both rotated. Then there

are 7 extrinsic parameters in total, 2×3 parameters to describe left and right rotation

(rotation is parameterized as yaw, pitch, roll) and baseline. Conversion from rotation

matrix to yaw α, pitch β and roll γ can be calculated according to following equations:

α = arctan

(

r21

r11

)

(4.70)

β = arctan

( −r31√
r32

2 + r33
2

)

(4.71)

γ = arctan

(

r32

r33

)

(4.72)

The choice of quadrants for inverse tangent function is decided by the sign of

numerator and denominator of the argument.

Table 4.2: Extrinsic Parameters

Trial αl(
◦) βl(

◦) γl(
◦) αr(

◦) βr(
◦) γr(

◦) Baseline(mm)
1 0.14 12.40 0.03 0.14 -10.59 -0.15 97.56
2 0.08 12.68 0.02 0.06 -10.31 -0.15 97.91
3 0.15 12.54 0.03 0.15 -10.42 -0.15 97.75
4 0.05 12.66 0.01 0.05 -10.31 -0.16 98.01
5 0.07 12.47 0.01 0.05 -10.52 -0.15 97.81

Mean 0.10 12.55 0.02 0.09 -10.43 -0.15 97.81
STD 0.04 0.12 0.01 0.05 0.13 0.00 0.17

Results presented in Table 4.1 and Table 4.2 show that our calibration method
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is very reliable. The standard deviation of all parameters are very small. We also

notice that the designed baseline value of stereo adaptor is about 100 mm, while

the mean value of our result is 97.81mm, showing that the system error is small.

Another way to evaluate the accuracy is to compare the reconstructed 3D positions

of corner points with their actual 3D coordinates. The average RMS error between

corresponding reconstructed point and original point is about 2 mm. The result is

presented in Figure 4.7.
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Figure 4.7: Reconstructed 3D Corners

Besides evaluating the consistency of our algorithm, we also check the

convergence speed of iterative refinement. Figure 4.8 plots the RMS residual during

iteration. We find that the mean error distance quickly decreases to less 1 pixel after

several iterations.
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Figure 4.8: Convergence of Mean Error Distances

4.5 Summary

In this Chapter, we presented a new calibration technique for a novel stereo

camera architecture and demonstrated its effectiveness as a stable, accurate, and

useful technique in practical applications. We proposed a closed-form solution

utilizing the constraint that intrinsic parameters are the same. Then we refined

the initial result by minimizing the reprojected geometric errors incorporating both

lens distortion and 3D corner position estimation. We exploit the sparse structure of

the objective function’s Hessian matrix to improve the speed. We also proposed some

pre-processing techniques including feature corner identification and lens distortion

correction to decrease the system error of initial estimation. Experimental results on

a real camera system show that our method is accurate and reliable.

76



Chapter 5

Stereopsis

In Chapter 2 and 3, we introduced Depth from Defocus and Shape from Shift-

variant Blurring. These techniques require the camera to take images with different

lens settings and recover depth by analyzing the extent of image blur. In this Chapter,

we present our research on another shape recovery technique: Stereopsis. As in the

human visual system which has two eyes, stereopsis involves two cameras placed at

different positions with fixed lens setting (as shown in Figure 5.1). Images of the same

object are taken with two cameras. After identifying corresponding image points p

and p′ in each frame of a common object point P , we can recover the 3D position of

P by intersecting Op and O′p′.

5.1 Epipolar Geometry

Let us consider a stereo rig composed of two pinhole cameras (Figure 5.2). Let

C1 and C2 be the optical centers of the two cameras. Object point W is projected

onto both image planes at M1 and M2. Its epipolar plane is defined by intersecting
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Figure 5.1: Simple Triangulation

rays WC1 and WC2. Epipolar line is the intersection of the epipolar plane and the

image plane, i.e., line M1E1 and M2E2. C1C2 is the baseline connecting two optical

centers. E1 and E2 are intersections of baseline and two image planes termed as

epipoles. Given a point M1 in one image, its corresponding point M2 in the other

image should lie on the epipolar line. All the epipolar lines pass through the epipole.

Figure 5.2: Epipolar Geometry
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5.2 Stereo Camera System

Traditional stereo vision systems consist of two vergence cameras (as illustrated

in Figure 5.2). Even if two cameras of the same type with fixed settings are used, they

still present slight differences in image characteristics such as brightness, contrast, and

noise level. This difference often introduces errors in stereo matching and texture

mapping. To overcome these problems, Olympus Corporation developed a new type

of stereo camera featuring an ordinary digital camera and an attached stereo adapter

(shown in Figure 5.3).

Figure 5.3: Stereo Camera

As shown in Figure 4.1 in Chapter 4, the stereo adapter features a pair of parallel

mirrors which splits the incoming light and forms a stereo image pair on the single

sensor. This new architecture has many advantages over traditional two-camera stereo

system in terms of compactness, cost and accuracy. The stereo adaptor also carries a

small pattern projector which can project a random dot pattern onto the object

surface during image capture. The camera is programmed to shoot two images

consecutively within a short time period, one with pattern projected and another

one an ordinary texture image. The pattern image is used for shape recovery as the
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random dots add more contrast on texture-less surfaces (like human face), and the

texture image is mainly used for photorealistic rendering. Example of pattern image

and texture are shown in Figure 5.4 and Figure 5.5.

Figure 5.4: Stereo Images with Pattern Projection

The brightness of the projected pattern has an effective working range between

1.2 m and 1.8 m. Beyond this range, the pattern fades away and therefore objects

outside the range appear very dark in the image. This feature together with a dark

background setting largely simplifies the object segmentation from the background

in stereo matching.

5.3 Shape Reconstruction

The stereo camera is first calibrated using techniques presented in Chapter 4.

As described before, one set of intrinsic camera parameters and two sets of extrinsic
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Figure 5.5: Normal Textured Stereo Images

parameters are estimated. If X = (X, Y, Z, W )t is 3D object point, ûl = (ûl, v̂l, ŵl)
t

and ûr = (ûr, v̂r, ŵr)
t are corresponding images points in stereo image, then their

relation follows:

ul = C [Rl tl]X (5.1)

ur = C [Rr tr]X (5.2)

where C is camera matrix, Rl and Rr are rotation matrices, tl and tr are translation

vectors, ul and ur are ideal image points.

Because of radial lens distortion effects, the actual observed image coordinates
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are shifted along the radius:

ûj = uj + (uj − u0)
[

k1(xj
2 + yj

2) + k2(xj
2 + yj

2)2
]

(5.3)

v̂j = uj + (vj − v0)
[

k1(xj
2 + yj

2) + k2(xj
2 + yj

2)2
]

(5.4)

where j = l, r denotes left and right half of stereo image, k1 and k2 are distortion

coefficients, (xj , yj) are ideal normalized image coordinates and (u0, v0) is principle

point in pixel unit.

5.3.1 Rectification

In Section 5.1, it is proved that corresponding point in the other image must lie

on the epipolar line. If baseline is parallel to both image planes, then the epipoles

would be at infinity and epipolar lines are a bundle of parallel horizontal lines. With

this special configuration, correspondence search is largely simplified as its location

is constrained on the same horizontal scanline in the other image.

In practice, we usually adopt the vergence setting (two cameras are placed with an

angle, illustrated in Figure 5.2) rather than parallel setting to retain certain length of

baseline as well as large viewing filed. Our stereo camera can be viewed as two virtual

cameras with vergence setting. However, the stereo image pair can be transformed

so that epipolar lines are parallel and horizontal in each image. Such procedure is

termed as image rectification [106].

The idea of rectification is to define two new Perspective Projection Matrices

(PPM) Pln and Prn obtained by rotating the old ones around their optical centers

until the focal planes become coplanar (as illustrated Figure 5.6). This ensures that

82



epipoles are at infinity and therefore the epipolar lines will be parallel. To get

horizontal epipolar lines, the baseline must be parallel to the new X axis of both

cameras. In addition, to have a proper rectification, corresponding points must have

the same vertical coordinate. This is obtained by requiring that the new cameras

have the same intrinsic parameters.

Figure 5.6: Rectified Cameras

The calibrated PPMs for stereo camera are:

Pl = C [Rl tl] (5.5)

Pr = C [Rr tr] (5.6)
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Two virtual cameras’ optical centers in world coordinate system are at

cl = −Rl
−1tl (5.7)

cr = −Rr
−1tr (5.8)

To satisfy the requirements of rectification, both virtual cameras are rotated to

the same pose, which means that they share the same rotation matrix Rn that:

Rn =













r1

r2

r3













(5.9)

The row vectors r1, r2 and r3 specify the new X, Y , and Z axis of the new camera

frame with respect to world coordinate system. They can be constructed in the

following way:

• The new X axis is parallel to the baseline: r1 = (c1 − c2)/‖c1 − c2‖.

• The new Y axis is orthogonal to new X axis and an arbitrary vector k:

r2 = k ∧ r1.

• The new Z axis is orthogonal to new XY plane: r3 = r1 ∧ r2.

Usually, we set arbitrary vector k as old left camera’s Z axis.

Then the new PPMs for both virtual cameras can be written as:

Pln = C
[

Rn − Rnc1

]

(5.10)

Prn = C
[

Rn − Rnc2

]

(5.11)
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The transformation matrices mapping the old image coordinates to rectified

image coordinates are

Tl = CRnR
−1
l C−1 (5.12)

Tr = CRnR
−1
r C−1 (5.13)

5.3.2 Image Warping

If we directly map the old image coordinates to the new ones, usually we get

non-integer result, which would be difficult to construct a new image. Instead, we

map the integer pixel position in the rectified image back to the original image at

sub-pixel position, and obtain the color information through bilinear interpolation.

Radial lens distortion is also present in the original stereo image. Before

proceeding to any other step, lens distortion effects have to be removed from

the original image, which also requires image warping. Actually, lens distortion

removal and rectification can be combined together to speed up the process. We

can formulate an overall transformation equation which projects the distortion free

rectified coordinates to original image coordinates. In this way, bilinear interpolation

only needs to be performed once.

We denote un = (un, vn) as rectified image coordinates and û = (û, v̂) as actual

observed image coordinates. Combining Eq. (5.4) and Eq. (5.13), we can derive that
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the transformation from un to û follows:

w













x

y

1













= RjR
−1
n C−1













un

vn

1













(5.14)

and

x̂ = x
[

1 + k1(x
2 + y2) + k2(x

2 + y2)2
]

(5.15)

ŷ = y
[

1 + k1(x
2 + y2) + k2(x

2 + y2)2
]

(5.16)

and finally












û

v̂

1













= C













x̂

ŷ

1













(5.17)

where k1 and k2 are distortion coefficients computed from calibration.

Figure 5.8 is the distortion free rectified pair of Figure 5.7. We use a planar

checkerboard pattern for easy illustration. After image warping, we can see that the

corresponding points (such as square corners) lie on the same horizontal line in both

images.

5.3.3 Matching

After rectification, the next step is to identify the pair of corresponding points

in two images. From epipolar geometry, we can derive that they lie on the same

horizontal line in rectified images. This constraint largely reduces the computation
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Figure 5.7: Original Stereo Image

complexity. For an arbitrary point (ul, vl) in left rectified image, its corresponding

point (ur, vl) in right rectified image is defined as

ur = arg max
u

∑N

i=−N

∑N

j=−N Il(ul + i, vl + j)Ir(u + i, vl + j)
√

∑N

i=−N

∑N

j=−N Il(ul + i, vl + j)
√

∑N

i=−N

∑N

j=−N Ir(u + i, vl + j)

(5.18)

which means that the centers of two small image patch with largest cross-correlation

are marked as corresponding points.

Exhaustive search for matching image patch along the whole scan-line in high

resolution image is time consuming. To improve the speed, we adopt a multi-

resolution search scheme, where we form a group of images with different resolution

from original image and the search is conducted from coarse level to fine level. Figure

5.9 shows an example of Gaussian pyramid, where the original image I is sub-sampled
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Figure 5.8: Distortion-free Rectified Image Pairs

to half resolution several times. Each level in Gaussian pyramid is calculated as

g0(i, j) = I(i, j) (5.19)

gk(i, j) =
2

∑

m=−2

2
∑

n=−2

w(m, n)g(k−1)(2i + m, 2j + n) (5.20)

where w(m, n) is a 5 × 5 size Gaussian kernel.

In our application, we adopt a three level gaussian pyramid spanning from g0

to g2. For any point ul0(ul0, vl0) in original left rectified image gl0, its corresponding

point search is conducted in the following way:

1. Identify ul0’s projections in gl1 and gl2 using Eq. (5.20)

2. For ul2(ul2, vl2), search along the scan-line vl2 in gr2 within range [us, ub] for
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Figure 5.9: Example of Gaussian Pyramid

optimal match ur2(ur2, vr2)

3. ul1(ul1, vl1)’s correspondence ur1(ur1, vr1) is searched within [2ur2 − 1, 2ur2 + 1]

on horizontal line vr1 in g1r

4. The final search is performed between [2ur1−1, 2ur1+1] in original right rectified

image g2r to identify ur0(ur0, vr0)

In practice, we also search along the vertical direction from vr−1 to vr +1 as rectified

images may not be perfectly aligned due to errors from calibration.
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5.3.4 Triangulation

After identifying corresponding points ul(ul, vl) and ur(ur, vr), we can recover the

object point’s position in 3D space. Its 3D coordinates with respect to left rectified

camera frame is denoted as X̃ = (X̃, Ỹ , Z̃). From perspective projection geometry,

we have

wl













ul

vl

1













= CX̃ (5.21)

Since right rectified camera frame is translated along X axis to (B, 0, 0)t (B is the

length of baseline), the perspective projection for right image is:

wr













ur

vr

1













= C(X̃ + t) (5.22)

where t = (−B, 0, 0)t.

Ideally, vl, vr should be the same and ul, ur and X̃ should form a perfect triangle.

In practice, such assumption usually does not hold that two rays ulcl and urcr do

not intersect in 3D space. To calculate X̃, we can rearrange Eq.(5.21) and Eq. (5.22)

to form a group of linear equations:



















fu s u0 − ul

0 fv v0 − vl

fu s u0 − ur

0 fv v0 − vr































X̃

Ỹ

Z̃













=



















0

0

fuB

0



















(5.23)
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where fu and fv are focal length in pixel unit, s is skew factor, (u0, v0) is principle

point and B is length of baseline. They are all obtained through calibration described

in Chapter 4. The above over-constrained equation can be solved through pseudo-

inverse method.

5.4 Experimental Results

Our experiment is carried out on the novel stereo camera system. The camera is

connected through USB cable to a host computer, which controls the image capturing

and transferring process. Figure 5.4 and Figure 5.5 are sampled stereo pattern and

texture images of resolution 3136 × 2352. They are corrected from lens distortion

and rectified using methods described in Section 5.3.1 and Section 5.3.2. Then we

generate a three level Gaussian pyramid to perform multi-level search to identify all

corresponding point pairs. For background pixels, matching process is time consuming

and meaningless. As pattern projector’s working range is within certain range and

we use a dark background, usually object is much brighter than background (as

shown in Figure 5.4) so that it can be segmented through simple thresholding and

morphological operations. A binary image can be generated using:

M(u, v) =















1 I(u, v) ≥ T

0 I(u, v) < T

(5.24)

Simple thresholding may filter out some object parts with dark colors (like human

beard). The initial binary mask M can first be dilated to fill the holes inside and

then eroded to remove unreliable boundary pixels. Figure 5.10 shows the left rectified
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pattern image of Figure 5.4and the segmentation result.

Figure 5.10: Left Rectified Image and Segmentation Result

Then the correspondence search algorithm is only performed on object pixels. We

can limit the search range in coarsest level of Gaussian pyramid to further improve

the speed. From Eq. (5.21) and Eq. (5.22), we have

ul =
fuX̃ + sỸ + u0Z̃

Z̃
(5.25)

ur =
fu(X̃ − B) + sỸ + u0Z̃

Z̃
(5.26)

which means

ur = ul −
fuB

Z̃
(5.27)

In our experiment setting, the object is of limited size (usually human face model)

and placed in the working range of pattern projector (from 1.2 m to 1.8 m), then Z̃
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should be between [Z̃s, Z̃b] (where in implementation, we can set Z̃s as 1.2 and Z̃b

as 1.8). So for point (ul, vl), the search window [us, ub] in the second level Gaussian

pyramid g2r can be set as

us =
ul

4
− fuB

4Z̃b

(5.28)

ub =
ul

4
− fuB

4Z̃s

(5.29)

The point cloud generated from stereo image Figure 5.4 is shown in Figure 5.11

Figure 5.11: Point Cloud of Sample Object

5.5 Summary

In this Chapter, we introduced the basic theory of stereo vision and presented our

novel stereo camera system. We combine lens distortion correction and rectification

in a single process so that image warping has to be conducted only once. We
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adopt a multi-level resolution search scheme and limit the search range derived from

practical system design to improve the speed. We first segment the object from

background and then perform our fast correspondence search algorithm to recover its

depth information. The generated point cloud illustrates that our method is fast and

reliable.
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Chapter 6

Registration

In Chapter 5, we presented our novel stereo camera. Due to limited viewing field,

a single stereo camera can reconstruct only a partial shape of an object. To recover

the object’s full shape, we have built a multi-stereo camera system. It consists of

three stereo cameras with one placed in front of the object and two at the sides about

450 apart from the center one (as shown in Figure 6.1).

The partial shape reconstructed by each stereo camera is expressed in camera’s

own coordinate system. To combine three partial shapes together, the first step is to

bring them into a common coordinate system, which is termed as Registration. For

convenience, we choose the center camera’s frame as the reference coordinate system.
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Figure 6.1: Multi Stereo Camera System

6.1 Initial Registration

The transformation between different camera coordinate systems can be

described by a rotation matrix and a translation vector:

Xr = RXo + t (6.1)

where Xo = (Xo, Yo, Zo) is object point’s 3D coordinates in its original camera frame,

R is a 3 × 3 rotation matrix, t is a 3 × 1 translation vector, and Xr = (Xr, Yr, Zr)

is the new coordinate in the common reference coordinate system. They can also be
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written in homogeneous coordinates form:
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(6.2)

where Wr and Wo are homogeneous scalars, and 0 is a row vector that is 0 = [0, 0, 0]t.

If the calibration object is placed facing two cameras so that both cameras can

get good views (as shown in Fig. ), then the transformation between two cameras

and the common world coordinate system (set according to calibration object) can

be retrieved using methods described in Chapter 4.

Figure 6.2: Images of Calibration Object taken by Left and Center Cameras
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If we take left camera and center camera as example, we have
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and
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(6.4)

We can easily derive the transformation between left camera and center camera as:
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(6.5)

which can also be written as

Xc = RlcXl + tlc (6.6)

where

Rlc = RcRl
−1 (6.7)

and

tlc = −RcRl
−1tl + tc (6.8)
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Figure 6.3: Left Rectified Texture Images taken by Three Cameras

Similar procedures can be applied to right stereo camera and center camera, so

that we can also obtain the transformation matrix Rrc and trc. Applying Eq. (6.3)

to left point cloud and right point cloud, we can roughly align three partial shapes in

one coordinate system. Figure 6.3 shows the left rectified texture image captured by

different cameras, and Figure 6.4 shows the initial registration result.

Figure 6.4: 3 Point Clouds after Initial Registration
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6.2 Registration Refinement

In Figure 6.4, we can easily observe that point clouds do not align with each

other perfectly. The transformation matrices Rlc, tlc, Rrc and trc calculated from

calibration result need to be further refined to minimize the alignment errors.

6.2.1 Corresponding Point Registration

Assume that the point set Xoi in left (or right) point cloud correspond to point

set Xri in center view, then the optimal transformation matrices R and t are the ones

that minimize the following objective function:

F (R, t) =
1

N

N
∑

i=1

||Xri − RXoi − t||2 (6.9)

The closed form solution of R and t that minimizes F can be derived as follows. Let

Ur and Uo be center of mass for each point set:

Uo =
1

N

N
∑

i=1

Uoi (6.10)

Ur =
1

N

N
∑

i=1

Uri (6.11)

The cross-covariance matrix Σor of point set Xoi and Xri is defined as

Σor =
1

N

N
∑

i=1

(Xoi − Uo)(Xri −Ur)
t

=
1

N

N
∑

i=1

XoiX
t
ri − UoU

t
r

(6.12)
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An anti-symmetric matrix A is defined as

A = Σor − Σt
or (6.13)

then a symmetric 4 × 4 matrix Q can be formed

Q =


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

trace(Σor) ∆t

∆ Σor + Σt
or − trace(Σor)I3






(6.14)

where ∆t = (A23, A31, A
t
12) and I3 is a 3 × 3 identity matrix. The unit eigenvector

q = (q0, q1, q2, q3) corresponding to the maximum eigenvalue of matrix Q is selected

as the quaternion to generate optimal rotation matrix R, where

R =
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0 + q2

3 − q2
1 − q2

2













(6.15)

and the optimal translation vector t is given by

t = Ur − RUo (6.16)

The detailed proof of the optimality of the above closed form solution can be found

in [76].
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6.2.2 Iterative Closest Point Algorithm

Based on the closed-form solution of optimal transformation matrices derived in

Section 6.2.1 (see Eq. (6.15) and Eq. (6.16)), the Iterative Closest Point Algorithm

(ICP) registration refinement is stated as the following:

1. Bring left (or right) point cloud Xo to center camera’s frame using the initial

transformation matrices Ror0 and tor0 calculated from calibration result. The

new coordinates of Xo is denoted as Xoj, where j = 0 in this initialization step.

2. For each point in Xoj, find its closest point in center point cloud where Euler

distance dj is used for error measure. Then we establish the correspondence

between two point sets Xoj and Xr.

3. Compute the optimal registration matrices Rorj and torj between Xoj and Xr

using methods described in Section 6.2.1.

4. Apply the registration: Xo(j+1) = RorjXoj + torj.

5. Terminate the iteration if the change of mean error distance between two point

sets Xo(j+1) and Xr falls below a preset threshold τ (i.e., dj − dj+1 < τ ),

otherwise go back to step 2 to continue.

The convergence of the above algorithm is elaborately proved in [69].

6.2.3 Iterative Closest Surface Patch Approach

The ICP algorithm described above has obvious disadvantages when applied to

our camera system. With the wide angle system setting, two point clouds to be
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registered do not completely overlap with each other and therefore correspondences

only exist among a part of them. Exhaustive search for correspondence for every

point is not feasible and extremely expensive. Instead, we propose an Iterative Closest

Surface Patch (ICSP) approach to accelerate the process.

Instead of establishing correspondences between every pair of points, we try to

find the matching surface patches in overlapping parts. From epipolar geometry, we

know that approximately the left half of right point cloud overlaps with the center

one (similar derivation applies to left point cloud). The surface patches are selected

in equal spacing from the overlapping area on depth map. Figure 6.5 illustrates

the surface patches to be registered in right point cloud. As point cloud can also
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Figure 6.5: Surface Patches in Right Point Cloud

be viewed as the depth map of a down-sampled image, each surface patch can be

indexed by its corresponding 2D coordinates. SPu,v denotes the surface patch whose

center is projected onto (u, v) in 2D image and Xu,v denotes the 3D coordinate of

object point projected onto (u, v). For a surface patch SPur ,vr
in right point cloud,
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its corresponding patch in center point cloud is defined as

SPuc,vc
= arg min

(u,v)∈[u0−W,u0+W ]×[v0−W,v0+W ]

d(u, v) (6.17)

where

d(u, v) =
1

(2N + 1)2

N
∑

i=−N

N
∑

j=−N

||Xul+i,vl+i −Xu+i,v+i|| (6.18)

where (2N+1)×(2N+1) is the patch size, [u0−W, u0+W ]×[v0−W, v0+W ] is a preset

search range, and the center of search window (u0, v0) can be calculated through the

spatial geometrical relationship. Assume that the current estimated transformation

matrices between two cameras are R and t, then projection of Xur,vr
in center image

is at:

u0 = Cc[Rt]Xur,vr
(6.19)

where Cc is the intrinsic matrix of center camera, u0 = (u0w, v0w, w) is homogeneous

image coordinates, and

u0 = u0w/w (6.20)

v0 = v0w/w (6.21)

Though we have preset the overlapping areas to select surface patches, the ones around

borders may fail to find its correct correspondences. Such mismatch would prevent

the iterative process from converging to the correct solution. An outlier removal

procedure is needed when establishing corresponding point sets. If the mean error

distance d between two surface patches are larger than certain threshold τd, both of

them have to be removed from the list. The rest of our approach remains the same
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with ICP algorithm.

Our surface patch matching strategy is similar to the image patch matching in

stereopsis. The inherent ordering constraint within the small patch helps to capture

more local geometrical features, which is more reliable than measuring error distance

between pair of points.

6.3 Experimental Results

We apply our ICSP approach on the left and right point clouds generated by

stereo camera to align them into the center camera’s frame. The coarse registration

result is shown in Figure 6.4. The refined result is shown in Figure 6.6. A close-up

Figure 6.6: Registration Refinement Result

view of right point cloud and center point cloud is shown in Figure 6.7. From Figure

6.6 and Figure 6.7, we can clearly see that the point clouds are almost perfectly

aligned together after the refinement step.

Another way to check the accuracy is to project the center of matched surface
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Figure 6.7: Alignment of Right and Center Point Clouds before and after Refinement

patches (which we term as control points) to their corresponding texture images.

If perfectly registered, corresponding control points should lie on the same texture

feature points. Figure 6.8 shows the positions of these control points in rectified

texture images.

Figure 6.8: Corresponding Control Points in Texture Images

The convergence speed of ICSP is displayed in Figure 6.9 and Figure 6.10, where
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the mean error distance quickly drops after several iterations.

Figure 6.9: Convergence of Mean Error Distance between Left and Center Point
Clouds

Figure 6.10: Convergence of Mean Error Distance between Right and Center Point
Clouds

Experimental results on other data sets are displayed in Figure 6.11 - Figure

6.22.
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6.4 Summary

In this Chapter, we introduced our multi-camera system which consists of three

stereo cameras. Each camera can reconstruct partial shape of the object from different

viewing directions. We also presented our registration method that aligns three point

clouds into one common coordinate system. For convenience, we take the center

rectified camera frame as reference. The initial coarse registration is performed based

on the calibration results. Then we refine the transformation matrices through our

Iterative Closest Surface Patch (ICSP) approach, where small surface patches are

selected in left (and right) point clouds and their correspondences in center cloud

are identified. The optimal transformation matrices are calculated from two point

sets by minimizing a least squares error measure. Such procedures are carried out

iteratively until the error measure converges. The experimental results illustrate that

our method is fast and robust.
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Figure 6.11: Pattern Images from Left and Center Camera

Figure 6.12: Point Clouds Alignment Before and After Registration Refinement

Figure 6.13: Convergence of Mean Error Distance between Two Point Clouds
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Figure 6.14: Pattern Images from Left and Center Camera

Figure 6.15: Point Clouds Alignment Before and After Registration Refinement

Figure 6.16: Convergence of Mean Error Distance between Two Point Clouds

110



Figure 6.17: Pattern Images from Left and Center Camera

Figure 6.18: Point Clouds Alignment Before and After Registration Refinement

Figure 6.19: Convergence of Mean Error Distance between Two Point Clouds
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Figure 6.20: Pattern Images from Left and Center Camera

Figure 6.21: Point Clouds Alignment Before and After Registration Refinement

Figure 6.22: Convergence of Mean Error Distance between Two Point Clouds
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Chapter 7

3D Modeling

In Chapter 6, we presented an Iterative Closest Surface Patch (ICSP) approach

to register three partial shapes of the object into one common coordinate system.

The next step is to build a single 3D model from point clouds. To properly render

a 3D object on a computer screen, we need a suitable mathematical representation

of its surface information. Usually the geometrical shape is parameterized as a set

of triangles (termed as triangle mesh) and then the textured appearance is projected

onto the wire-frame. 3D modeling task mainly involves iso-surface extraction, mesh

generation and texture mapping.

7.1 Surface Extraction

Though registration step minimizes the error distance between overlapping parts

of point clouds, there will still be slight misalignment. We adopt a volumetric method

to extract the object surface from overlapped point clouds [79].

First, we triangulate each point cloud to obtain a surface mesh. As described in
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Chapter 6, a point cloud can be indexed by its corresponding image coordinates. For

any pixel p(u, v) on a 2D grid, it either corresponds to a 3D point Xu,v or is marked as

an invalid background pixel. The tessellation starts from the upper left corner of the

image. Each time we look at four points (u, v), (u, v +1), (u+1, v) and (u+1, v +1).

If two or more points are marked as invalid, then no triangulation will be performed.

There exist 6 possible ways of tessellation for the remaining cases (see Figure 7.1). If

all four points are valid, the configuration with the shorter diagonal (distance between

Xu,vXu+1,v+1 or Xu,v+1Xu+1,v in 3D space) gets selected. The tessellation result of

Figure 7.1: Possible Ways of Triangulation

center point cloud is shown in Figure 7.2.

Figure 7.2: Range Surface from Single Point Cloud

Next, we generate a voxel grid covering the whole range of all three range surfaces.
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We can calculate a signed distance di from every voxel P to each range surface Si (i

= 0, 1, 2, denoting the left, center and right range surface). As illustrated in Figure

7.3, we can cast a ray from a camera center Vi to any voxel P, which would intersect

with triangle Ps1Ps2Ps3 at Ps, and di is defined as

di = ‖PVi‖ − ‖PsVi‖ (7.1)

In this way, all voxels inside the object have positive distances, and those outside

have negative distance values. The triangle Ps1Ps2Ps3 at Ps that ||PVi|| intersects

is decided as follows:

First, we project voxel P to range surface Si’s corresponding texture image:

λp = CiRi(P + ti) (7.2)

where Ri and ti are rotation matrix and translation vector from reference coordinate

system and original camera frame, Ci is intrinsic camera matrix, λ is an arbitrary

scalar and p = (u, v, 1) is P’s projection. The integer pixels surrounding p are

(⌊u⌋, ⌊v⌋), (⌊u⌋, ⌈v⌉), (⌈u⌉, ⌊v⌋) and (⌈u⌉, ⌈v⌉), which can be used to index the

corresponding 3D points X⌊u⌋,⌊v⌋, X⌊u⌋,⌈v⌉, X⌈u⌉,⌊v⌋ and X⌈u⌉,⌈v⌉. From the tessellation

configuration and p’s relative position to the square, we can easily identify the triangle

that ray PVi intersects.

After computing all the signed distance di from voxel P to range surface Si, we

can compute the weighted average:

d =

∑2
i=0 widi

∑2
i=0 wi

(7.3)
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Figure 7.3: Signed Distance Computation

the weight wi is the angle between viewing direction and surface normal at Ps:

wi = |PVi · n̂| (7.4)

Naturally, the object surface is generated at the location where the signed distance d

is 0.

7.2 Mesh Generation

The Marching Cube algorithm is adopted to generate a surface mesh at zero

signed distance. For any cube in the voxel grid (as shown in Figure 7.4), its vertices
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are either outside of object surface (with negative signed distance) or inside of object

surface (with positive signed distance), and the true object surface should intersect

the cube edges whose vertices have opposite distance signs.

Figure 7.4: Cube of Voxels

Since there are eight vertices in each cube and two states (inside and outside

of object surface), there are only 28 = 256 ways a surface can intersect the cube.

By enumerating these 256 cases, we can create a table to look up surface-edge

intersections given the labeling of cube vertices.

However, enumerating the 256 cases is tedious and error prone. Two different

symmetries of the cube reduce the problem from 256 cases to 15 patterns. The first

symmetry comes from the vertex sign symmetry, i.e., if the state of all vertices are

reversed (from inside the surface to outside or vice versa), the surface intersection

remains unchanged. The second symmetry is from cube rotation. Figure 7.5 shows

the triangulation of these 15 cases. The simplest pattern, 0, occurs if all vertices are

inside (or outside) the surface such that it produces no triangles. Pattern 1 separates

one vertex from the other seven and one triangle is generated. Other patterns generate
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multiple triangles. Permutation of these 14 basic patterns using complementary and

rotational symmetry produces the 256 cases.

Figure 7.5: Surface Intersection of Voxel Cube

We use a 8 bit char data to index these 256 cases, where each bit indicates the

state of one specific vertex (0 if it is outside and 1 if inside). This index serves as a

pointer to the edge table and a triangle table. Each entry in the edge table is a 12

bit integer indicating which edge is to be intersected (as shown in Figure 7.6). The

triangle table is a 256 × 16 array, where each row vector is the triangle list. Every
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three entries from the left represent the edge indices of one triangle. The remaining

entries are filled with -1. After identifying which edges are to be intersected, we can

Figure 7.6: Cube Numbering

use interpolation to calculate the position of intersection. If the edge ei connecting

voxels vm and vn is to be intersected, and vm and vn have signed distances of dm and

di, then the interpolated vertex v of surface mesh should be:

v =
vm|dn| + vn|dm|

|dm| + |dn|
(7.5)

Such surface-intersection algorithm is carried-out in the whole voxel grid from

one cube to another cube to generate a single surface mesh. In our application, we

only perform the algorithm in those cubes whose signed distances are below certain

threshold value. This would not only improve the speed, but also avoid generating a

psuedo-surface at the back of object as our model is not closed. Figure 7.8 shows the

surface mesh generated from multiple point clouds (shown in Figure 6.6).
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Figure 7.7: Surface Mesh

7.3 Texture Mapping

7.3.1 View Selection

Texture mapping is the last step of 3D modeling. To render a photo-realistic

3D model on computer screen, we wrap the texture images taken by stereo camera

(shown in Figure) onto the triangle mesh like gift-wrap paper onto a white box. For

Figure 7.8: Left Rectified Texture Images
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every triangle on the mesh, we have to choose one source image among three for

texture mapping. Due to occlusion, some triangles on the surface only have one or

two valid texture correspondences. To exclude the invalid candidate, we can simply

project the vertices back to images and check whether they are within the object

area (the segmentation process is described in Chapter 5). Among the valid texture

images, we choose the one with best viewing angle.

Suppose △PaPbPc is a triangle on the surface mesh (shown in Figure), the

viewing angle αi between each texture image and triangle is calculated as:

αi =
−−→
PVi · n̂ (7.6)

where n̂ is the normal vector of triangle △PaPbPc:

n̂ =
−−−→
PcPa ·

−−−→
PcPb (7.7)

and Vi is camera center, P is the center of triangle △PaPbPc:

P =
Pa + Pb + Pc

3
(7.8)

and the image patch ti with maximal αi is chosen to wrap onto △PaPbPc in texture

mapping.

With OpenGL, texture mapping can be easily implemented. It automatically

stretches and rotates the 2D image to fit the 3D shape. With hardware support,

this expensive computation can be completed in a short time. However, due to

the inherent differences between cameras (such as noise level, color tone, brightness),
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Figure 7.9: Direct Texture Mapping

directly stitching different images onto single 3D model would present serious blocking

artifacts (as shown in Figure 7.9).

7.3.2 Texture Blending

To generate a photo-realistic 3D model, it is necessary to normalize the color of

different images before texture mapping. Assume P1, P2, P3, ..., Pn are vertices on

a surface mesh that lie between different texture sources. As shown in Figure 7.10,

the triangles on the left use image Ia for texture mapping and the ones on the right

use image Ib. Ideally, the corresponding points of Pi in two images pai and pbi should

have same colors, while in practice, they often present different RGB values. To

normalize the color tone between them, we have to first establish the correspondence

between two color spaces.

First, we construct three 256 × 256 lookup tables for three color channels

respectively. The x-direction entries indicate color values in Image Ia and y-direction
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Figure 7.10: Texture Stitching

entries represent those in Image Ib. Each color pair (Rai, Rbi), (Gai, Gbi) and (Bai, Bbi)

has one vote at the corresponding entry. By selecting the entries getting the

most votes along vertical direction, we can establish a one-to-one mapping between

[Ra, Ga, Ba] → [Rb, Gb, Bb]. Due to limited color distribution of the adjacent vertices

Pi and noise disturbance, the mapping does not cover the whole color range from

0 to 255, and it is not smooth either. To establish a full smooth mapping, we can

approximate it using a quadratic function:

Rb = k1rRa
2 + k2rRa (7.9)

Gb = k1gGa
2 + k2gGa (7.10)

Bb = k1bBa
2 + k2bBa (7.11)

We omit the constant in quadratic equation because zero value from one color space

should be mapped to zero in another space. If some entries are mapped to values

larger than 255, they should be cropped to 255. Usually, the valid texture area in
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one image do not appear to be extremely bright or extremely dark, so the above crop

usually do not cause problems in practice. The coefficients of quadratic equation

k1r and k2rcan be estimated through polynomial fitting of the selected color pairs

(Rai, Rbi). The same procedures are applied to (Gai, Gbi) and (Bai, Bbi) to obtain k1g,

k2g, k1b and k2b. Figure 7.11 illustrates the quadratic fitting results.

Figure 7.11: Mapping between Color Space (R, G, B Channel) of Two Images

We can then apply the mapping to image Ia to correct its color tone. After

calculating the new value for each pixel using equations (7.9-7.11), we can obtain a

color-normalized new image. For our system, we correct the color tone of left and

right texture image with respect to center image respectively. Figure 7.12 shows the
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normalized color images.

Figure 7.12: Normalized Texture Images

The global color normalization scheme targets at correcting the overall color tone

of the whole image. Its underlying assumption is that the difference comes from each

camera’s unique internal parameters. In practice, viewing angles, reflectance and

lighting condition also play important roles in the appearance of object in texture

images. After global normalization, there still presents some discontinuities along the

edges between different texture sources. We can smoothen the discontinuities through

blurring techniques in the local neighborhood.

As described before, pai and pbi (i = 1, 2, · · · , n) are two groups of image points

corresponding to the same vertices on object surface. The discontinuities on the 3D

textured model is mainly due to the color differences along two linked edge groups:

paipa(i+1) and pbipb(i+1). Using linear interpolation, we can replace the color of all the

pixels on paipa(i+1) with their counterparts on pbipb(i+1) (i = 1, 2, · · · , n). We then

dilate the single pixel edge to a k pixel width transition band. For every pixel inside

the transition band, we blend its original pixel values and the new values through a
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distance weighted function:

Cj =
(k − dji)Coj + djiCnj

k
(7.12)

where Cj is the blended color of pixel pj, dji is the horizontal distance from pixel pj

to edge pixel i, Cnj is the new color dilated from edge, and Coj is pj ’s original RGB

value.

Such blending scheme can blur the edge discontinuities on the surface and also

keep certain texture details from the original image. Similar to global normalization,

we process the left and right texture image with respect to the center image. Figure

7.13 shows an close-up view of the local edge smoothing effects.

Figure 7.13: Texture Mapping Result Before and After Local Edge Smoothing

The final result of 3D photo-realistic modeling is shown in Figure 7.14. From

three pattern stereo images and texture stereo images, we build a 3D model of the

object through stereo matching, registration, integration and texture mapping. The

multi-stereo camera is calibrated and fixed before image capturing. There is much

room for further improvement, but overall, the result is satisfactory.
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Figure 7.14: Final Textured 3D Model

7.4 Summary

In this Chapter, we focused on the 3D modeling techniques in Computer Graphics

literature. We first introduced a volumetric method to extract the iso-surface from

several layered point clouds. It computes a signed distance from every voxel to each

range surface generated from different point clouds. Then a weighted average of these

distances is computed where the weights depend on the viewing angle. We then use

Marching Cube algorithm to generate a triangle mesh at voxels with zero signed

distances. To render a photo-realistic 3D model on computer screen, we have to wrap

the texture image onto the wire-frame model. From among three different texture

images, we choose the one with the best viewing direction for texture mapping. To

avoid the blocking artifacts in texture stitching, global color normalization followed

by local edge smoothing is performed. The final rendered result is satisfactory.
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Chapter 8

Conclusions

8.1 Summary

In this dissertation, we presented some novel techniques for image-based 3D

sensing and modeling.

First we presented a Depth-from-Defocus (DFD) technique used in camera

autofocusing and 3D shape recovery. The camera captures two images of the object

with different preset lens positions. From different levels of blur, we retrieve the

depth information of object and thus obtain the suitable lens setting for autofocusing.

We extended this method to cameras operating in macro-mode, where image

magnification can not be neglected. We developed a magnification normalization

method to establish the correct correspondence between different images. We also

capture one more image to improve the autofocusing accuracy if the object is placed in

a certain sensitive distance range. Experimental results on a real SLR camera system

are presented to demonstrate the effectiveness and robustness of our technique. In
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Chapter 3, we extended our DFD technique to shift-variant cases. The convolution

model we adopt in DFD assumes the camera to be a linear shift-invariant system,

which is only valid when the object is planar and parallel to focal plane. Our new

Shape from Shift-variant Blurring technique relaxes the previous assumption. It

models the actual imaging process through a local integral equation and inverts the

process to recover the shape parameters, not only the depth but also the slopes in

horizontal and vertical directions. We carried-out the experiments on both simulation

data and real camera system. Preliminary results on objects with simple shape

indicate that our novel approach is useful in practical applications.

We presented another approach to 3D sensing techniques- stereopsis. Compared

with single-viewing setting (such as DFD), stereopsis retrieves the depth information

from two views. We introduced a novel stereo camera designed recently by some

researchers which is able to capture a pair of stereo images using a single lens and

a single sensor. With two sets of parallel mirrors in the stereo adaptor attached

in front of the lens, the camera splits the incoming lights as if they were captured

by different cameras. It is also programmed to shoot two images consecutively in

a short time. During the first shooting, a pattern projector is turned on to project

a random dot pattern onto the object surface; and the second image is an ordinary

textured image. Chapter 4 presents a new camera calibration algorithm tailored

for this special architecture. We utilize the physical constraint that the stereo

pair has the same intrinsic parameters and derive a closed-form solution. We then

refine the initial solution by minimizing the reprojected errors iteratively. Corner

detection and pre-lens distortion techniques are also included to improve the accuracy.

After estimating all camera parameters, the depth map of object can be calculated
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through triangulation. In Chapter 5, we presented a fast stereo matching technique

based on Gaussian pyramid structure. The correspondence search is carried out in

multi-resolution levels to decrease the number of comparisons. We also limit the

search window size based on practical system setting. Simple image warping and

segmentation techniques are applied to further improve the speed.

Finally, we describe our multi-stereo camera system, where three stereo cameras

are placed about 1.3 m away from the object and 45 degrees apart from each other.

Each camera can reconstruct partial shape of the object. In Chapter 6, we present a

new registration technique to bring different point clouds into a common coordinate

system. Similar to traditional Iterative Closest Point (ICP) algorithm, our method

also computes the optimal transformation matrices between two corresponding point

sets in a least square sense. When identifying the correspondence, we propose a

new Iterative Closest Surface Patch (ICSP) approach which tries to find a pair of

matched surface patches instead of points. Such a scheme is found to be more

robust and faster than the standard technique. After registration, we have to build

a single 3D model from the layered point clouds. In Chapter 7, we first introduce

a volumetric method to extract the iso-surface of object at voxels with zero signed

distances. The Marching Cube algorithm is implemented to generate a triangle mesh.

The final texture mapping step includes view selection and texture blending. Among

three texture images, the one with best viewing direction is chosen as the ”wrap

paper”. Direct stitching of different images onto a single model would produce serious

blocking artifacts. We use a global color normalization method followed by local edge

smoothing to generate a photo-realistic model.
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8.2 Future Work

This research can be extended and improved further in the future. Some possible

topics are listed below:

Image Restoration

Image restoration (or soft focusing) is the process to deblur the image through

post-processing techniques. In autofocusing, we can acquire a new focused image

with lens system being set at correct positions. If the camera system is not under

full control or the image is blurred because of object movement, hard focusing is not

applicable. From our theoretical framework, the focused image can be computed from

blurred images through deconvolution techniques. More elaborate implementation

methods need to be developed to improve the restoration results.

For shift-variant cases, image restoration is even more important. For imaging

systems with limited depth of field, such as microscope or bar-code scanner, there

usually exists serious shift-variant blurring across the whole image. Moving lens may

just focus at another part of the object. Our new theory on inverting the shift-variant

blurring can be applied to image restoration and the experimental results are very

promising. With advanced post-processing techniques, low-end lens systems like cell

phone camera or webcam can replace the high-end imaging equipments to acquired

high quality images.

Depth Recovery

In this dissertation, we recover the depth map through a single approach, such as

Depth from Defocus (DFD) or stereopsis. In some applications, different techniques
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can be combined together to achieve better results. In endoscopy, a video sequence

is acquired where the images are seriously blurred and distorted. Applying DFD

or Structure from Motion (SFM) only may not achieve accurate results, as SFM

usually requires accurate feature matching and DFD assumes images are perfectly

aligned. We can apply SFM first to obtain an initial estimation and then apply

shift-variant image restoration techniques to improve image sharpness. They can be

applied alternatively or together in some iterative process to improve the accuracy of

depth map.

Auto-registration

Our current registration approach requires the calibration pattern being placed

facing both cameras to calculate the initial transformation matrices. Though it is

performed only once in the beginning, such manual procedure is tedious. Instead

of using a specific calibration pattern, coarse registration can be done by observing

images of the object acquired by two cameras. We can first detect common features

(such as corners of eyes and lips) in different images and recover relative camera

positions through epipolar geometry. In refinement step, both 2D texture features

and 3D surface features can be employed to identify correspondences. This should

improve the accuracy of both geometric and photometric alignment.

Texture Blending

The appearance of our textured 3D model is satisfactory but the color

discontinuities are still visible. To further improve the result, several approaches

can be explored. In global color normalization, we can establish the mapping in other
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kinds of color space (such as Lab) instead of RGB space. RGB color model is device

dependent and does not depict the natural color perception process. Correcting each

channel separately may introduce some color distortion due to its non-orthogonality.

The current view-selection scheme can also be improved. As it selects texture patch

based on viewing direction, it may split texture images at specular highlighted or

fine detailed areas. This makes seamless texture mapping very difficult. Instead, We

can split the image at texture-less areas where enforced color transition looks more

natural.
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