Basic relations :
Neighbors
jth Column
0 1 2……………………..…N-1
0
1
ith 2
row .
.
.
. f (i,j)
.
.
N-1
j
j
j-1 j j+1
i-1
8 - neighbors
4 - neighbors
i 4 -connected
i
i+1
N8 , N4
j-1 j j+1
b c p a d
i-1
i
i+1
4-neighbors
( i , j-1 ) ( i , j+1 )
( i-1, j ) ( i+1 , j )
8-neighbors +
( i-1,j-1 ) ( i-1,j+1 )
( i+1,j-1) ( i+1,j+1 )
1 1 0
4-adjacency
8-adjacency
0 1 0
m-adjacency
1 0 0
Digital path
p1 p2……pn
connected
ò ( x1, y1 ) , ( x2, y2 ) , ………( xn , yn)
* path length
* closed path
* connected components
* region boundary
DISTANCE MEASURES
1) Euclidian
1) p(x,y) d >= 0
q(s,t) D( p,q) = D(q,p)
D( p,r) = D(p,s) + D(s,r)
De
= Ö ( x-s )2 + (
y-t )2
D4 : city block
D4(p,q) = ïx-s ï + ïy-tï
2
2 1 2
2 1 0 1 2
2 1 2
2
D8(p,q) = max( ïx-s ï, ïy-tï )
2 2 2 2 2
2 1 1 1 2
2 1 0 1 2
2 1 1 1 2
2 2 2 2 2
Image Operations :
Point Operations
Local Operations
Global Operations
Linear Operations :
H( a f + b g) = a H(f) + b H(g)
1= dr . pr(r)
ds
ds = pr(r).dr
r
S(r) = ò pr(w)dw
0
Cumulative Distribution Fn. :
S= T(r)
r
T(r) = ò pr(w)dw
0
pr(r) = -2r +2 0 £ r £ 1
r r r
T(r) = ò (-2w + 2) dw = -2 w2 / 2 ï+ 2w ï
0 0 0
S = T(r) = - r2 + 2r
r = T-1 (s)
s = -r2 + 2r
-r2 + 2r –s = 0
r = [ -2 + Ö (2)2 – {4(-1) * (-s)} ] / 2(-1)