Digital Image Processing

 

 

Introduction

 

Image Processing :

 

 

 

     Processing

 
       Input                                                                                      Output

       Image                                                                                    Image

 

 

Examples

 

 

Contrast       Stretching

 
1.

Low Contrast                                                                                Output

      Image                                                                                     Image

 

 

 

 

  Noise  Filtering

 
2.

      Noisy                                                                                      Noise-free

      Image                                                                                     Image

 

 

 

3.

 De-blurring/           Deconvolution

 
  Defocused or                                                                                Focused /

  Blurred and                                                                                  Sharp

  Noisy Image                                                                                Image

 

 

 

        Image

   Compression

 
4.

 Image with                                                                                    Compressed

  redundant                                                                                       Image

    data

 

 

 

etc.

 

 

Applications

 

1.Editing Digital photos

 

Image Enhancements

Contrast Stretching

Color Correction

White-Balancing

Red-Eye Reduction/ Removal

Shrinking/Zooming

 

  Software :

 

Adobe Photoshop

ImageMagick

GIMP

 

2. Medical Image Processing

 

Chest X-rays

Computed Tomography

UltraSound Imaging

MRI, PET, etc.

 

3. Machine Vision

 

Inspection

Measurement

Robotic Vision

 

4. Remote Sensing

 

Land use

Crops

Weather Forecasting

 

5.Defense

 

Target recognition

Thermal Imaging

 

6. Image Storage & Transmission

 

JPEG,MPEG, etc.

 

7. OCR, Document Image Processing

 

 

Contents

 

Introduction

Image  Fundamentals

Enhancements-Spatial Domain

Enhancements-Freq. Domain

Image Restoration

Color Image Processing

Wavelets &  Multi-resolution processing

Image Compression

Image Reconstruction

Binary Image Processing

 

 

Image Sensors/Input Devices

 

Film Cameras

Digital Cameras (CCD/CMOS)

Video Cameras

Scanners

 

Image Output Devices

 

Printers

TV/Computer Monitors

 

Image Storage :

 

CD-ROM

Hard disk

 

Processing Hardware :

 

PCs, Microprocessors, boards, workstations, etc.

 

Processing Software :

 

Many commercial and non-commercial

 

 

 

 

 

Chapter 2

 

Digital Image Fundamentals

 

Image Acquisition by a Digital Camera

 

 

                                                                                  Light

                                                                                  Illumination

                                                                                   Source

 


                                                                                                                       LCD Array

 

 

 

 


                                             Scene

                                            Radiance

 

 

 

 

 


3D

Scene

Radiance

 

                                                     Lens

 

 

                                                                                                          Digital Camera

 

Photometric Relation :

 

Image Irradiance      a      Scene Radiance

 

Geometric Relation :

 

Perspective Projection   

 

x = (X / Z) * f    

y = (Y / Z) * f

 

 

 

FUNDAMENTALS                                                          Pixel gray level 

 

  Rows                          Columns

                        0             1              2              3

 


        1

                                                                                                    

        2                                                              

                                                                               

        3

     

        4

    

        5     

    

        6

    

        7

      

     

 

 

                                       CCD Array

 

 

 

 

Photon

   

    A/D

 Quantizer

 

 
 

 


      

 


                                                            Voltage                                                                      Digital Output

 


Charge

 

 

 

                        Voltage   a    Image Brightness

 

 

A black / white Digital Image is a 2D array of pixels with gray values.

 

8 bits / pixel – typical

 

N rows * M columns  * 8 bits / pixel bits

 

Colour Digital Camera

 

Simple Model

 

 

 

 


                                                                    Blue CCD

 

 

                                                                                          Green

                                                                                            CCD

 

 

 

 

 


 

                                                       Red                                                             

                                                      CCD   

 

 

 


                                                                                         Beam Splitter

                                                                                             Prism

 

                                                      Blue

 

                                           Green

 

 


                                Red band

                                  Image                                                                                                                      

                                 M  * N 

                                                                                                 3 digital images

                                                                                        

 

Color Cube

 

 


                                                           Colour

                                                           (R,G,B) = (40,70,90)

G

                              B

 O          R

 

Human Visual System (HVS)

 

HVS is often the end consumer of the output of image processing algorithms.

 

 

Therefore, a knowledge of the HVS characteristics is useful in optimizing the digital image processing algorithms to yield better looking images.

 

E.g. Image compression algorithms discard high frequency information for which the HVS has lower sensitivity.

 

 

                                                           3-types

 

 

 

 

                                                               C2               

                                                                                    C3

 


                                        

                                          C1

 

 

 


                                400 nm                 Green                        700 nm

                                Violet                                                     Red

 

                                                                   

                                                          Perceive

 

 

                                                            f (x , y)

 

 

 


                                                   Discrete Sampling

 

 

 


                                                        Quantization

 

 

 


                                                      Digital Image

Zoom in/out

 

 

 


       0              1               2 …………………M-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  0

                                0            1           2…..  N-1

                                                                                      

  1                 0                                                                                                                                              

                                                        

                     1

  2                                    

  .

                      2

  .                    .

                    N-1      

  M-1                 

 

 


 

 

 

 

X/ (M-1) = x / (N-1)

 

X = (M-1) / (N-1) x

 

 

f(x,y)

 

for (x=0 ; x< N ; x++)

{

   for (y=0 ; y < N; y++)

    {

      X= (M-1)\ (N-1) x

      Y= (M-1)\ (N-1) y

 

Z = bilinear interpolation

 

f’(x,y) =Z

}

}