Semiconductor laser design goals

Semiconductor Lasers: 2D vs. 3D confinement

double-heterostructure laser

Interband and Intersubband lasing

Interband and Intersubband Lasing

δ-like joint DOS provides for higher gain

 $G(h\nu) \propto \rho(h\nu) \left[f_2(K) - f_1(K) \right]$

• In intersubband lasers δ -like joint density of states provides for higher optical gain

• Transparency current is negligible in intersubband lasers due to small electron population in the lower lasing states

Intersubband Kinetics

Quantum Cascade Laser

quantum cascade laser

quantum well laser

Advantages of the cascaded scheme:

- quantum efficiency in excess of 1 allows high-power RT operation;
- electric field tunability due to Stark effect;
- multy-wavelength operation;
- electrically uniform active region;
- large confinement factor.

Laser design elements: Active Region

Laser design elements: Superlattice Injector

Laser design elements: Superlattice Injector

Monopolar transport offers electron recycling

Advantages of the cascaded scheme:

- quantum efficiency in excess of 100%
- •electrically uniform active region
- large confinement factor
- multy-wavelength operation

Intersubband-based QC-laser $\lambda \sim 7.5 \ \mu m$

Courtesy of Claire Gmachl - Princeton University

F. Capasso et al. Physics Today 55, 34 (May 2002)

R. Kohler et al. APL 76, 1092 (Feb. 2000)

Related problem: Active Region Heating

Double-phonon depopulation scheme

CW-RT Operation:

- buried stripe geometry
- epilayer-down mounting

M. Beck et al. Science 295, 301 (2002)

Ultra-broadband QCL

M.Kisin and S Luryi. Appl. Phys. Lett. 82, 847 (2002)

Applications Example: Environmental Monitoring

F. Capasso et al. Physics Today 55, 34 (May 2002)

Mid IR spectrum is called molecular fingerprint region.

Two atmospheric transparency windows 3-5 μm and 8-13 μm lack water-vapor absorption and are particularly important for chemical-sensing applications.

Advantages of laser-based optical methods in trace-gas analysis include:

- noninvasive character,
- high sensitivity and selectivity,
- real-time detection.

Other exemplary applications:

- combustion diagnostics in the power and automobile industries, medical diagnostics,
- detection of explosives and drugs, chemical and biological weapons of mass destruction,
- military countermeasures as blinding the IR sensor of a heat-seeking missile,
- optical wireless communications in the eye-safe atmospheric transmission windows.

Recommended Literature

- J. Faist *et al.* Science (Apr. 1994), v.264, p.553.
- J. Faist *et al*. Nature (June 1997), v.387, p.777.
- C. Gmachl *et al*. Nature (Feb. 2002), v.415, p.883.
- M. Beck *et al*. Science (Jan. 2002), v.295, p.301.
- F. Capasso *et al.* IEEE Journal on Selected Topics in Quantum Electronics (Nov. 2000), v.6, p.931.
- J. Faist et al. IEEE Journal on Quantum Electronics (June 2002), v.38, p.533.
- F. Capasso et al. Physics Today (May 2002), v.55, p.34.