
Examples of more complicate equivalent circuits involving quantum capacitance can be found in the 
paper by Y. Katayama and D. C. Tsui, “Lumped circuit model of two-dimensional to two-dimensional 
tunneling transistors”, Appl. Phys. Lett. 62, pp. 2563-2565 (1993). 
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Geometric capacitances C1 and C2 enter symmetrically as they should.  

Letting V2 = VQ = GND we recover the equivalent circuit of my 1988 paper. 

It is, perhaps, instructive to ponder the physical meaning of the two capacitor plates of CQ in 
the above equivalent circuit. The left “Fermi-level” plate is connected to the voltage terminal 
and represents the chemical potential level.  The right “electrostatic” plate represents the 
electrostatic potential at the quantum well so that the voltage drop across CQ equals the 
Fermi level of carriers in the QW. 
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In my 1988 derivation, I had cut corners in Eqs. (3 a,b). Indeed, these equations assumed that the charge 
on the first electrode is the biggest of the three, so that the other two can be parameterized by a single 
angle 𝜑𝜑.  Obviously, this is not the case in a general three-terminal structure. But this is a minor point. 

The more important point is that the three voltages, 𝑉𝑉1, 𝑉𝑉2, and 𝑉𝑉𝑄𝑄,  are fixed as “boundary conditions” 
and the quantities to be determined are the three charge densities 𝜎𝜎1, 𝜎𝜎2, and 𝜎𝜎𝑄𝑄, as well as the 
electrostatic potential Φ𝑄𝑄 of the quantum well. 

The electric fields 𝐹𝐹1 and 𝐹𝐹2, are given in terms of the charge densities as  𝐹𝐹𝑖𝑖 = (4𝜋𝜋/𝜖𝜖𝑖𝑖) 𝜎𝜎𝑖𝑖 , and in terms 

of the potential Φ𝑄𝑄 as follows:  𝐹𝐹𝑖𝑖𝑑𝑑𝑖𝑖 = �4𝜋𝜋
𝜖𝜖𝑖𝑖
� 𝑑𝑑𝑖𝑖𝜎𝜎𝑖𝑖 = 𝑉𝑉𝑖𝑖 − Φ𝑄𝑄 . Whence we have two “electrostatic” 

equations, 

𝜎𝜎𝑖𝑖 =
𝜖𝜖𝑖𝑖

4𝜋𝜋𝑑𝑑𝑖𝑖
�𝑉𝑉𝑖𝑖 − Φ𝑄𝑄�        (𝑖𝑖 = 1,2),                                          (1) 

 

and a third, “chemical” relation, 

𝜎𝜎𝑄𝑄 =
𝑚𝑚𝑒𝑒2

𝜋𝜋ℏ2 �
𝑉𝑉𝑄𝑄 −Φ𝑄𝑄�                                                                   (2) 

 

Equations (1) and (2) express all unknown quantities in terms of the electrostatic potential Φ𝑄𝑄 of the 
quantum well, which is then found from the neutrality condition, 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎𝑄𝑄 = 0 , and expressed in 
terms of the three voltages, 𝑉𝑉1, 𝑉𝑉2, and 𝑉𝑉𝑄𝑄. The three equations (1) and (2) are embodied in the 
equivalent circuit above. 

The problem is solved, no need for minimization of the total energy! We have gotten away so cheaply, 
because now we assumed known the “chemical” relation (2) that defines the quantum capacitance.  

If we wanted to follow in the footsteps of Luryi (88), we could derive Eq. (2) by minimization of the total 

energy, 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸1 + 𝐸𝐸2 + 𝐸𝐸𝑄𝑄 , where 𝐸𝐸𝑖𝑖 = �2𝜋𝜋𝑑𝑑𝑖𝑖
𝜖𝜖𝑖𝑖
� 𝜎𝜎𝑖𝑖2  (𝑖𝑖 = 1,2)  represent the field energies and 𝐸𝐸𝑄𝑄 is 

the chemical energy of 2D electrons, 𝐸𝐸𝑄𝑄 = � 𝜋𝜋ℏ2

2𝑚𝑚𝑒𝑒2
� 𝜎𝜎𝑄𝑄2 . Of course, the minimization is subject to the 

neutrality condition, 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎𝑄𝑄 = 0 . If you minimize 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 with respect to a single parameter, say 
𝜎𝜎𝑄𝑄 , then Eq. (2) will emerge! The calculation is somewhat cumbersome and quite unnecessary, given 
the fact that the quantum capacitance (2) had been already established in a simpler model. 


