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NOTES/DOS/note.#
Volume particle density in a 2D electron gas

Consider a free 2-dim electron gas confined to a quantum well of arbitrary shape and
thickness. The eigenstates are labeled by the 2D wavenumber k, the subband index n and the
spin s:

Wns k(R) = Xs @y (2) €167, (1.1

where R =(z, r). The wave functions @, are determined by the actual shape of the potential
well. These functions will be assumed normalized,

JR#@) (@) dz =1. (1.2)
The electron energy in the state W, ¢ \ is given by

h?k?

En,s,k = En + om E En + Ekv (1-3)

assuming no magnetic field, so that the spin degeneracy is not lifted.

At a finite temperature T, the electron density per unit volume is given by

occ. states

p(R) = Z l'I')H,s,k(R) l'I')n,s,k(R)

n,s, k
= zj WWHS.((R) W5,k (R) f (Ens,k—Ef) (1.4)
where Er is the Fermi level, and f (E) is the Fermi function,
0 EO
_ 1 do _ kT
= = - = + D .
f (E) T T 9 d=kT In L +e (1.5)

Performing the angular integration and the summation over s in Eq. (1.4), we have

P(R) = 3 Oy (2) 2 2 [ dEy f (Ex+En—Ep)
n mth 0
= 3 Co (z) 2 T[_”;T ®(E, —Ep) . (1.6)

Let us specialize to the case of one subband only. This means that subbands corresponding to
n=1,2, --- are not occupied, E, —Er > KT . The electron density is given by:

P(R) = po(z,1) = D<Po(Z)DZ P ®(Eo-Ep) . .7

The z dependence in (1.7) is sharp, while the r dependence is (strictly speaking) absent.
However, we can assume that p depends "adiabatically" on the position within the plane of
2DEG — through the dependence on r of the difference Er—Eq = h?kZ2m , where kg is the
Fermi wavenumber of the lowest subband. The adiabatic assumption means that the
characteristic length (OInkg)™ of in-plane variations in kg is much larger than the localization
length in the z direction.

In a variety of problems we are not really interested in an accurate determination of p(z),
only in the smooth variation of p(r). In this case, we are free to assume a narrow quantum
well of thickness d and unspecified shape, and take Cg(z)[? =1d inside the well and 0
outside.
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Einstein relation

Equation (1.6) can be viewed as describing several 2D electron gases p, in parallel. Regarding
these gases as independent (i.e., neglecting the intersubband scattering), we can endow each of
the subbands n with its own mobility p, and diffusivity D,. The drift-diffusion flux in each
subband is of the form:

ePn Un Fn + e D, Opy (2.2)

where 0O = d0r is the 2D gradient and F, is the effective in-plane field,
eF, = OE, (2.2)
acting in the subband n (these fields do not have to be the same for each subband, in general).

The coefficients u, and D, must be connected by an Einstein relation in order for the flux (2.1)
to vanish in equilibrium. Let us write down this relation explicitly, dropping the subband
indices for brevity.

dinp

eD = puEp , Epl= ———. 2.3
HEDp D dE; (2.3)
Proof: In equilibrium OEE=0, and the variation of p is due to that of Eq only. Therefore,
0P (Ex-Ep) 0P (Ex-Ep)
= - - 7 =-— " [Eg. 2.4
3E; 0 3E; 0 (2.4)

Letting (2.1) to be zero and using Egs. (2.2) and (2.4), we obtain (2.3). Substituting the explicit expression
(1.5) for @, we have:

_ ®(Eo-Ep)
Ep= o’ 7
f (Eo—Ef)

In the truly degenerate case Ef—Eo > KT , the "diffusion energy" Ep HEF—E,. In the nondegenerate
case, Ef—Eo < kT, one has Ep BKT .

0 “E.- o 0 - 0
=kT ql+e EemENT oln 1+ o5 TET 0. (2.5)

3D from 2D

Using Eq. (1.6) and any complete set of states ¢,, we can derive the familiar formulae for 3D
statistics. Take, for example, plane waves — corresponding to free motion in z direction and
therefore uniform p = n. Then equation (1.6) reads

T i E 15 _h?k?BD
m ¥KToF® 2m O
n = In 0L +e = NcF : 26
W—_w 27T O O (3 ]Q(n) ( )
Er 1 Domkr B
where =, =en, Nc = a 2.7
T ; °TT o D @7
and the Fermi integral Fy, (n) is of the form
(o) (o]
2 O . 2 O e O
= n-x - X
Fi VFIO InL+e dx VFIO In 1 +&e™ gdx . (2.8)

Equation (2.8) is equivalent (check integrating by parts) to the more familiar

2 ¢ x%dx
FJ/Z(”): WT_J; W (29)
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Fermi integrals

In general, the Fermi integrals are defined by:

_ 1 T xS dx _ 1 0 _ O
Fe(n) = F(s+1)-|; e r(1+]/k)J;lngl+Ee qdx (3.1)
g Y O O n vt
r(n)=(n-1)! Fh+20= "1 @2n-1)! rol-no=(n 2T
o 2 2" 02 0 @n-1)n
The following recurrence relation is valid for arbitrary s :
dF
COE 42

The zeroth order Fermi integral is evaluated explicitly (as in Eq. 2.5)
Fo =1In Be” +1 E (3.3)

and hence F; can be expressed through elemenatry functions for all integer s < 0; for example,
F_,=[exp(-n)+1]°t. For large (OnO> 1) negative n, all Fermi integrals equal exp(n),
independent of the index s . For large positive n, the asymptotic form is

_ ntt O ers+2) | U
Fs(n) = ) g +m_+ B (3.4)

Sometimes, the logarithmic form may be more convenient. For example, expanding the
logarithm (for & <1) in Eq. (2.8) and integrating, we find

00

n

Nc - (_)k+l rz;[ - 2_2—3’222_4_3—3'223_ (35)
k=1

The series (3.5) converges for £ <1, i.e,, for n <0; on the other hand, the concentration, of
course, is well defined by Eq. (2.8) for any Fermi level value. The integral (2.8) is easy to
evaluate by the Gauss’ procedure. The simplest way of doing this is to change the variables
x =by with b2>1,say b =5. Then

1
n _ 2b O _by2 O
N_C_VEIO In 1 +&e™ ™Y gdy (3.6)

Evaluating (3.6) by a 25-point gaussian quadrature we obtain essentially exact result: the error
in the range 0.1 <& <25 is less than 10™#%. Even a 5pt gaussian quadrature gives less than
2% error in this range. This is much better than the Joyce-Dixon procedure,

n=InF+ 3 A FX, where F=Fy,=nNc, (3.7)
k=1

and A;=353553x10"! A, =-495009x10"% A;=148386x10"% A, =4.42563x107°,

which gives about 16 % error at BEx 10 (where Fy, H24).

Joyce-Dixon is better than Gauss only at F,, <1 where the result is known with a good
accuracy anyway: n/Nc =exp(n). The usefulness of Joyce-Dixon asymptotic series (which
actually diverges for & > 1 but with a few terms is reasonably accurate for n g 10) is only near
§¢=1,say OnOgl. Its convenience seems to be only in the fact that it gives n(F) rather
than F (n).
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Statistics at low temperatures

Joyce-Dixon may be convenient for the evaluation of band concentration at low temperatures,
where this evaluation reduces to an expression of F in terms of n(F). Consider the case
Np > Na = K Np. Compensation K <1.

We have n + np = Np — N a, where np is the electron concentration on donors,

Np
Np = —BE-E) - (41)
Yoe'tt T+l
Here Ep <0 is the donor energy, relative to the conduction band edge. Determination of F
reduces to the following nonlinear equation:

1

T PE
1+%e o

Np O
F=—_—— 0Ol-K - (4.2)
Nec g

ooo

Taking n (F) in the form (3.7), we can obtain the solution to (4.2) in a few iterations.

Degenerate Grading

In Shockley’s drift diode (and later Moll’s drift transistor) a nondegenerate base is
inhomogeneously doped with an exponentially varying concentration of impurities. This
results in a linear slope of the bands, i.e. constant field. The constant field is achieved if n
varies linearly with distance. Consider a degenerately doped base as in modern HBT’s. In the
limit of large n > 1 we have from Eq. (3.4) Fy, H4n*%3Vm and the condition of constant field
F requires the carrier (hole) concentration to vary as

p(X) = P (1-xa)% , L = Efmec” Ermn @3

a L EFmax

where Ermax, Ermin are the Fermi levels at the position of highest doping (x =0, P = Pmax)
and lowest doping (x =L, p =pmin). The electric field in the graded section of thickness L of
the base is F = (Ermax — ErminYeL . The table below compares the approximation (4.3) against
exact values. Assumed Ny = 7-10%.

n = BEr Fio Ny Fup Eq. (4.3)
0.5 1.11733 7.82132E+18 1.88492E+18
1.0 1.57564 1.10295E+19 5.33137E+18
1.5 2.14486 1.50140E+19 9.79435E+18
2.0 2.82372 1.97660E+19 1.50794E+19
25 3.60698 2.52488E+19 2.10741E+19
3.0 4.48755 3.14128E+19 2.77026E+19
35 5.45804 3.82063E+19 3.49093E+19
4.0 6.51157 4.55810E+19 4,26509E+19
45 7.64203 5.34942E+19 5.08929E+19
5.0 8.84421 6.19095E+19 5.96065E+19
55 10.1137 7.07956E+19 6.87674E+19
6.0 11.4466 8.01262E+19 7.83548E+19
6.5 12.8398 8.98787E+19 8.83504E+19
7.0 14.2005 1.00034E+20 0.87383E+19
75 15.7963 1.10574E+20 1.09504E+20
8.0 17.3550 1.21485E+20 1.20635E+20
8.5 18.9648 1.32754E+20 1.32119E+20
9.0 20.6240 1.44368E+20 1.43947E+20
95 22.3311 1.56318E+20 1.56108E+20
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10.0 24.0847

1.68593E+20

S. Luryi, 1992

1.68593E+20
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Confinement in polySi grains

Zero temperature: Let kr and k_ be the semi-axes of the Si conduction-band Fermi surface
(which is an ellipsoid of revolution). Since Eg = h’k#2m; = h’k,%2m, , the relation between the
carier concentration and the Fermi level at T =0 in the bulk is determined by

2N¢ 4m K2 BST@n e

—_kki=n, 0 Eg=0_ 0> "0 , 5.1
o 3 T F=2ams o Ne g 1)

where <m> = (m_ m#)¥® and N =6 is the number of equivalent valleys in the Si conduction
band.

On the other hand, in a confining grain (assumed a cube of side a) the Fermi level is the
highest filled energy in the sequence of levels

TC h?

En,.n,.n, = Tl [(m/mr)(nf +ng)+nf] B376[meV] x[5(n{ +nf)+nf] , (52)

where we have assumed m_ =my=5my and a = 100,&.

The first few levels and their degeneracies (including the spin and the valley degeneracy,
Ns XN =2x6) are:

Energy (meV) 5(n{ +n#)+ni Degeneracy
41.36 11 1x12=12
52.65 14 1x12=12
71.45 19 1x12=12
97.77 26 3% 12 =36
109.1 29 2x12=24
127.9 34 2x12=24
131.6 35 1x12=12
154.2 41 3x12=36
165.5 44 1x12=12
173.0 46 1x12=12
184.3 49 1x12=12
188.0 50 2x12=24
191.8 51 2x12=24
203.1 54 2x12=24
210.6 56 1x12=12
221.9 59 3x12 =36
229.4 61 2x12=24
244.4 65 1x12=12
248.2 66 4 x 12 = 48
259.5 69 2x12=24
278.3 74 5x12 =60

At a finite temperature T # 0 the relation between n and Eg in a confined geometry can be
calculated according to the basic relation:

1

n= 5 NsNcf(Ennn-Ef), where fE)=— —____ . (5.3)
n,n,.n, Motz s 1+ exp (EAT)
For the quasi-continuum, on the other hand we have
Og O . a P2
Er NcNs =omkT
n=NcFp,O0 __0, where N¢= O o . 5.4
crw OKT O C ) O o (5.4)

The calculated Fermi levels as functions of the carrier concnetration for confined and uncofined
geometries and zero and finite temperatures are plotted on the next page.
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Fig. 1. Fermi levels as functions of the carrier concentration (number of carriers in a 100 A cube) for
carriers confined or unconfined to the cube volume.
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Fig. 2. Superimposed graphs la and 1b
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