Transmission and Reflection Coeficients at a Model Grain Boundary

In general, we shall regard a grain boundary (GB) as a two-dimensional surface separating regions of
different crystal orientations. If the local curvature of this surface is much larger than the electron de
Broglie wavelength, then for the purpose of calculating the transmission of such an electron we can
regard the GB as a plane separating two crystals — left (L) and right (R) — rotated in a different way
with respect to a coordinate frame, fixed with respect to GB.

Our discussion will be confined to semiconductors like Si and Ge, in which isoenergetic surfaces in the
conduction band are ellipsoids of reyolution. Consider an electron moving within one such ellipsoid.
The electron kinetic energy operator H and the velocity operator V are given by
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where 0% = d/dr, and M is the normalized effective mass tensor, which has the form
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with respect to the principal axes of a chosen ellipsoid, m is the reduced effective mass,
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and m and m; are the longitudinal and the transverse effective masses, respectively. With respect to an
arbitrary fixed frame, the rotated tensor M~ is given by
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where

a=My=1+A(3sin’8cos?p—-1); (A.5a)
b=M,=1+A(3cos?0 - 1) ; (A.5b)
Cc =My =M,, = (3A/2) sin26cosq ; (A.5c)
d = My, = My = (3A/2) sin?Bcos2 ; (A.5d)

and the quantities @ and T are obtained by the substitution @ — @ = T/2-¢@ in the expressions for a and
c, respectively. The angles 8 and @, specifying the transformation, represent the polar angles of the
ellipsoid’'s axis of rotation relative to the fixed frame and the parameter A describes the ellipsoid's



excentricity:
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In what follows, the fixed frame will be defined in such a way that its z axis is norma to the GB plane

and the zx plane is the plane of electron motion. For an electron moving with a wave vector
= (g, 9,) , the kinetic energy H (g) and the normal velocity component V, (q) are given by
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Consider an electron moving within an elipsoid (centered at k(")) whose orientation is characterized by
the polar angles 8-) and ¢{") of its axis of revolution n-). The electron is incident on the GB with a
wave vector q =k - k{), where k is the electron crystal momentum. In principle, neither the
transmitted nor the reflected waves will correspond to a definite ellipsoid. We shall calculate the GB
transmission probability under a simplifying assumption that the reflected wave belongs to the same
ellipsoid as the incident wave.

The overal transmission coefficient can be written in the following approximate form:

T (q) = % EkV, kPt (q; n®, nR) (A.9)
j=1

where N is the number of equivalent elipsoids in the Brillouin zone. In the above expression, the
coefficients t;; describe the transmission amplitudes calculated in the **plane-wave approximation’, i.e.
ignoring the difference in the locations of equivalent minima on both sides of the boundary, while taking
account the different orientations n{® not related by symmetry to n{-). Without a detailed calculation of
the band-structure in the presence of a GB it is impossible to estimate the coupling between different
valleys, expressed by the coefficients €. It is probably a good approximation to assume as we did in
(A.9) that & #&(q), i.e. that the entire dependence on the electron wave vector is contained in the
coefficients t;; which we shall now proceed to calculate.

Consider first the reflected wave. It is clear that since in genera the GB is not a plane of reflection
symmetry for the hamiltonian (A.1), plane waves with g, = (g, 9,) and with q, = (g, —q,) correspond
to different energies. Because of the translational invariance of GB in the x direction, the wave vector of
the reflected wave is of the form q® = (qy, q¥), where q¥) is determined by the conservation of

energy, H (ay, ) = H (a,a%?), giving
q¥) = -q, - 2[cV /b g, . (A.10)

Elastic reflection occurs at an angle 3 which does not coincide with the incident angle a (cf. Fig. 1).
From egs. (A.10) and (A.5) one easily finds that
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The wave vector of a transmitted wave q® = (g, q%) is again determined by the conservation of
energy:

HO (g, a) = H® (g, o) , (A.12)
which reduces to a quadratic equation of the form
[aP]? +2Pgd) +Q =0, (A.13)
determining q = -P = VP?=Q , where
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The discriminant P?-Q may become negative for certain range of wave-vectors; this implies an
exponential decay of the wave across the boundary. This phenomenon is quite analogous to the
complete internal reflection of light at the boundary of two media with different refractive index.

With the knowledge of the transmitted and reflected wave vectors, q® and g, we can determine the
transmission (t) and the reflection (r) coefficients for the channel corresponding to the passage of
electron from the i-th valley on the L side of the GB to the j-th valley on the R side — assuming no
other channels present. This is done by matching the wavefunction and the normal component of the
velocity across the boundary; the latter condition expresses the conservation of flux (note that in the
present problem Ct? + Or 0% # 1). Since the particle is assumed incident from the left, we take

W () =exp(iqr) +rexp(iq”r),
(A.15)
WR (r) =texp(iq®er) .

From the condition [WUM =w®7],_, one has the usua t=1+r. The velocity matching,
[V, WH) = v, w®1,_ resultsin an equation of the form

At-Br=C, (A.16)
where
A(g: n, n}R)) =p®gd +c®q, (A.179)
B (q, nI(L)) - b(L) qg) + C(L) qx (Al?b)
C (q : nI(L)) = b(L) 0, + C(L) Ox (A17C)

Using eg. (A.10), it is easy to show that, in genera, B =-C. Consequently, the transmission
coefficient t;; (q) is given by
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Consider a specific example of a 23 twin boundary, which is the lowest energy and therefore the most
commonly occuring GB in polycristalline Si. In this structure the two crystals L and R are mirror
images of one another in the GB plane which is a [111] crystalographic plane. Consider transitions
between the two elipsoids, illustrated in Fig. 2. The polar angles of the initial elipsoid’'s axis of
revolution are 8, ) where cos6™) = +(1/3)*? and ¢ is arbitrary (determined by the plane of
electron motion). Then the possible orientations of n{® are

8 =81 and ¢V =g +m (j=1);

oY =m-0" and ¢ =" (j=2);

ofY =6 and ¥ = ¢V £2W3 (j=3,4);
6fY =m-0) and ¢ =¢f” +2W3 (j=56);

It turns out that for j =1, 2 the transmission coefficient equals unity. From egs. (A.5) one finds

a® =a® =1-A + 2Acos? ¢V ;
bR =pb =1;
c® =-cb) =v2 AcosglV) =c .

Equation (A.10) then gives
af) =-q, + 2cqy (A.19)

and from egs (A.14) we find P2-Q =(q,—cq)?, whence, in light of the fact that
a.—cq = -q¥) >0, we find

q¥) =q, - 2cq, = —ar . (A.20)
Substituting these expression into eg. (A.18) for the transmission coefficient we find

The situation is different for the transmission into the valleys j = 3-6.



