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spaceHilbertseparableaConsider Ω orthogonal)not(thoughnormalizedcomplete,aand
setdiscrete α{ >} theimpliessettheofcompletenessthethathopemayoneNaively,it.in

measureaofexistence Iα form:theinoperatorunitytheofexpansionanallowwouldthat

Î =
α
Σ α > Iα < α . (1)

havewouldwethencasethewerethatifthat,seetoeasyisIt

Iα =
β
ΣS αβ (2),

whereS = Q −1 matrixthetoinversetheis Q αβ = < βα > 2:

µ
Σ S αµ  < βµ > 2 δ= αβ .

is(1)formtheofexpansiontheUnfortunately,symmetric).ismatrixsymmetricato(inverse
ofrepresentationthenotablypossible,isitwhereexamplesareTheregeneral.inpossible,not

Î (1integralanas /π) ∫ α <> α d 2α howeverstates;coherentofplanecomplextheover
settheandknowIexampleonlytheisthis α{ >} andovercomplete(a)iscasethisin

continuous.(b)

setconjugateadefineusLet α{ ˜>} conditiontheby

<α̃ β > δ= αβ = <β̃ α > .

stateanyforobviously,Since, ψ > Ω∈ writecanwe

ψ > =
α
Σ α <> α̃ ψ > ,

setbi-orthogonalthethatfollowsit does unity:theofexpansionsallow

Î =
α
Σ α <> α̃ =

α
Σ α ˜ <> α .

follows:assetoriginaltheoftermsinexpressedaresetconjugatetheofmembersThe

α ˜> =
β
Σ β <> β̃ α ˜> ,

matrixtheand Φ̃αβ = <α̃ β ˜> toinverseis Φαβ = < βα >:

µ
Σ <α̃ µ ˜ <> βµ > δ= αβ .

we(1)assumingIndeed,contradiction.atoleadsexists,(1)expansionthatassumptionThe
writetoablebeshould

β > =
α
Σ α > Iα < βα > ,

whence

<µ̃ β > δ= µβ =
α
Σ <µ̃ α > Iα < βα > = Iµ < βµ > δ≠ µβ .



statesnon-orthogonalonNotes 1983Luryi,S.-2-

whoseoperatorsofeigenvaluesthefindingofproblemsinconvenientissetbi-orthogonalThe
theingivenarematrices α{ >} Letrepresentation. H inoperatorhermiteanabe Ω thewith

eigenvaluesEm : H  m> = Em  m> thetoreduceseigenvaluestheseofDetermination.
theofdiagonalization "ugly" matrix

H αβ ≡ <α̃  H β > ,

matrixhermiteantheofnotand

H̃ αβ = < α H β > =
µ
Σ < µα > H µβ .

eigenstateanyIndeed,think.naivelycouldoneas  E> inexpandedbecan α{ >} as
follows:

 E> =
β
Σ β <> β̃ E> ,

coefficientstheofdeterminationand <β̃ E> ≡ C β formtheofequationsecularatoleads

β
Σ 

 H αβ − E δαβ

 C β = 0 .

matrixthethoughEven H αβ inare,elementsdiagonalits(e.g.,matrixhermiteananotis
toequalandrealareeigenvaluesitscomplex),general, Em followingtheprovetoeasyisIt.

property:useful
α
ΣH αα = tr H Indeed,.

<α̃  H α > =
m
Σ <α̃  m> Em <m α > =

m
Σ <m α <> α̃  m> Em ,

oversummingbyobtainedistracethewhence α operator.unitytheofexpansionusingand

matricesBoth H αβ andH̃ αβ operatortheofrepresentationunambiguousangive H:

H =
αβ
Σ α <> α̃  H β <> β̃ ≡

αβ
Σ α > H αβ <β̃ ;

H =
αβ
Σ α ˜ <> α H β <> β̃ ≡

αβ
Σ α ˜> H̃ αβ <β̃ ,

incompleteisthateigenstatesofsetaandeigenvaluesrealofsetapossessbothand Ω but,
matrixnon-hermiteantheofeigenvaluesthewhereas H αβ operatortheofthosewithcoincide

H hermiteantheofeigenvaluesthe, H̃ αβ operatordifferentaofthoseare

H mod =
αβ
Σ α <> α H β <> β̃ ≠ H ,

withcoincideswhich H whenonly α{ >} diagonalizeweIfset.orthonormalanis
< α H β > ofeigenstatesthefindisthat, H mod ofaveragetheevaluatethenand, H thesein

ofeigenvaluesthetoboundsupperofsetafindgenerally,will,westates, H αβ – followsas
ofeigenvaluesthefindToprinciple.variationalthefrom H calculatefirstmustwe <α̃ β ˜>

thenand H αβ =
µ
Σ<α̃ µ ˜> H̃ µβ.
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Example problem.wellcoupled:

Let φi (i = Definewell).othertheofpresencethe(neglectingfunctionssingle-wellthebe2)1,
Φ ji = <φi φ j> or

=Φ


 t*

1

1

t 



.

matrixThe Φ̃ bydefined Φ̃αβ = <φ̃i φ ˜
j> formtheofis

Φ̃ Φ= −1 =
1 − t  2

1_________


 −t*

1

1

−t 



.

matrixThe S ji toinverseiswhich Q ji = <φi φ j> 2 bygivenis

S =
1 − t  4

1_________


 − t  2

1

1
− t  2 




,

theand "measures"Ii by

Ii =
1 + t  2

1_________ (, i = 2)1, .

thatexplicitlyseeWe
i
Σ  i> Ii <i ≠ Î set:conjugatetheconstructusLet.

φ̃1 φ= 1 <φ̃1 φ ˜
1> φ+ 2 <φ̃2 φ ˜

1> =
1 − t  2

φ1 − t* φ2_________ ;

φ̃2 φ= 1 <φ̃1 φ ˜
2> φ+ 2 <φ̃2 φ ˜

2> =
1 − t  2

φ2 − t φ1_________ ;

operatoranofelementsmatrixtheknowweSuppose H basisthein φi :

<φi  H φ j> ≡ H̃ ji =





V*

ε1

ε2

V 




,

assumewegeneralityinlossawithoutwhere, ε1 + ε2 = and0 ε2 − ε1 ∆≡ ofeigenvaluesThe. H̃ ji

are λ̃ ±= √  V  2 ∆+ 2 / constructnowusLet.4 H ji :

H ji ≡ <φ̃i  H φ j> =
1 − t  2

1_________





V* − t*ε1

ε1 − tV*

ε2 − t*V

V − tε2





,

eigenvaluesitsdetermineand

(1 − t  2) −=λ (Re tV*) ± √ ([Re tV*)]2 + (  V  2 ∆+ 2 / (14) − t  2) .

thenmagnitude,ascendingofordertheinarrangedareeigenvaluestheifthatshownbecanIt λi < λ̃i .
takingthis,demonstrateexplicitlyusLet V = t andbarrier)uniformunitawithintegraloverlap(energy

∆ <<  V  findweexample,thisInresonance).the(near

λ1
∼∼

1 − t 
− t ________ −

8  t 
∆2

______ ∼∼ λ̃1 −
1 − t 

 t  2
________ ;

λ2
∼∼

1 + t 
 t ________ +

8  t 
∆2

______ ∼∼ λ̃2 −
1 + t 

 t  2
________ .
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Nonorthogonal states and sensorics 
 
A common problem in sensorics is to determine the contribution of each of several known 
functions into an experimentally measured quantity, 

∑=
i

ii fcF , 

where F  is an experimentally measured function of some variable or group of variables x and 
{ }if  is a set of distinguishable functions of same variables x. 

Typical examples of the set { }if  are distinguishable fluorescent spectra { })(λif  or 
distinguishable temporal signals { })(tfi . In either case, the problem is to determine the weights 
{ }ic from an experimental measurement F.  In this case, the word distinguishable has a simple 
mathematical meaning: the functions { }if  must be linearly independent. This means they form a 
basis in the vector space  

{ }ifspan =Η . 

Evidently, the basis needs not be (and usually is not) orthogonal with respect to a scalar product 
defined in H,  

jiij ffM =  

The matrix ijM  in general is not a diagonal matrix. Of course, without any loss in generality, we 
can consider the basis functions normalized to unity, 1=iiM , for all i. 

The general solution to the problem can be written in terms of the conjugate basis { }if~ , defined 

by ijji ff δ=~  , i.e., 

[ ]∑ −=
j

jiji fMf 1~ . 

Whence we have 

Ffc ii
~

=  . 

The scalar product in H can be defined in a variety of ways and in practice it should be defined to 
suit the problem at hand. For bell-shaped distributions the most common definition is probably in 
terms of an integral over the appropriate set of variables: 

∫ ∗≡ dxxfxfff jiji )()( , 

The asterisk has been placed on the first function merely to emphasize that the procedure works 
equally well for complex functions and their linear combinations with complex coefficients ic , 
i.e. in a Hilbert space H. The dimensionality of this space, i.e. the number of basis states { }if in 
principle does not have to be finite, but the procedure of inverting the matrix of scalar products 
may be tricky in the case of infinite dimensionality. 

In what follows I assume a finite-dimensional set { }if  comprising n functions. It is worth noting 
that, besides the useful functions we are seeking (representing the fluorescent markers { })(λif  or 
fiducial signals { })(tfi ), the set may include parasitic or noise functions (e.g. represented by their 
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spectral decomposition). The procedure will automatically filter out all such functions so long as 
we have included them in the set. 

As an example consider the problem of least-square fit, which is a common procedure to 
minimize an integrated deviation of the assumed curve from the actual data points. I will show 
that the least square fit is a particular example of the described above procedure. 

To be specific, suppose we are dealing with an experimentally measured waveform )(tF that we 
wish to fit to a linear combination of  n  known functions { })(tfi , 

)()(
1

tfctF
n

i
ii∑

=

= . 

We assume that )(tF  was measured at m successive points in time αt  ( m...,3,2,1=α ), and 
denote the measured values as αα utF =)( . The least square procedure corresponds to finding the 
minimum with respect to the coefficients { }ic  of the deviation function { }icD : 

{ }
2

1 1
)(∑ ∑

= =









−=

m n

i
iii utfccD

α
αα . 

As is well known, the necessary condition for the minimum is that it is at least a local minimum, 
i.e. the coefficients ic  must satisfy the set of n equations 0/ =∂∂ icD . This yields a matrix 
equation of the form bAc = , where 

∑

∑

=

=

=

=

m

jj

j

m

iij

utfb

tftfA

1

1

)(

)()(

α
αα

αα
α  

Exactly the same result is obtained in the procedure described above if the scalar product is 
defined by an integral over t  approximated as a sum over α  of functions evaluated at αt , viz. 

∑∫
=

≈≡
m

ji

T

jiji tftfdttftf
T
mff

10

)()()()(
α

αα  

In this case, evidently, ijij AM =  and we have  

αα
α

αα
α

utfMutfFfc j

m n

j
ij

m

iii )()(~~
1 1

1

1
∑∑∑
= =

−

=

===  

which is the same as bMc 1−= . 

Clearly, if points αt  are given, e.g. uniformly distributed over the interval of time variation, the 
least square fit is probably the best procedure and it is gratifying that our procedure produces the 
least square fir automatically. However, we have an insight as to how to choose points αt better! 
Indeed, we can follow the Gauss integration procedure. For any desired basis set { }if  we can 
choose the points αt  (and the corresponding weights αw ) so as to make exact the evaluation of 
all 2n  integrals as a “Gaussian” sum, 

)()()()( αα
α

α tftfwdttftf jiji ∑∫ = . 


