Notes on non-orthogonal states -1- S. Luryi, 1983

Considera separableHilbert spaceQ and a complete, normalized (though not orthogonal)
discreteset{ o>} in it. Naively, one may hopethat the completenessf the setimplies the
existenceof a measurd , thatwould allow an expansiorof the unity operatorin the form:

fzzDa>|a<aD. Q)

a

It is easyto seethat, if that werethe casethenwe would have

IG:ZSGB , (2)
B

whereS = Q7! is theinverseto the matrix Qqg = O<aOB>0*:

> Seu O<HOB>0° = 8 -

1}
(inverseto a symmetricmatrix is symmetric). Unfortunately,the expansionof the form (1) is
not possible,in general. Thereare exampleswhereit is possible,notably the representatiomf
| as an integral (1/m) I Ooa><a[] d?a over the complex plane of coherentstates;however

this is the only example!l know and the set { Ja>} in this caseis (a) overcompleteand
(b) continuous.

Let us definea conjugateset{ Ja>} by the condition
<app> = dop = <[~35a> .
Since,obviously,for any stateJy> O Q we canwrite

Og> =3 do><any>,
a

it follows that the bi-orthogonalsetdoes allow expansion®f the unity:

=Y Da><dp =Y Da><a .
a a

The membersof the conjugatesetare expressedn termsof the original setasfollows:

na> =3 Op> <Bd>,
B

andthe matrix &30([3 = <Q D[~3> is inverseto ®q,g = <o B>

> <aOp><puOp> = 8gp -
u

The assumptionthat expansion(1l) exists, leadsto a contradiction. Indeed,assuming(l) we
shouldbe ableto write

DB>=Z ga> 14 <agp>,
a

whence

<POP> =8y = 3 <pOO> g <apP> =1, <pOp> # dyp -
a
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The bi-orthogonalsetis convenientin problemsof finding the eigenvaluesf operatorswhose
matricesare given in the { Ja>} representation.Let H be a hermiteanoperatorin Q with the
eigenvaluesk,: H Om> =E,, Om>. Determination of these eigenvaluesreducesto the
diagonalizatiorof the "ugly" matrix

Hep = <apHOR>,

and not of the hermiteanmatrix

~

Hopg =<aOHOB>= 3 <agp>Hg .
u

as one could naively think. Indeed, any eigenstate JE> can be expandedin {Jda>} as
follows:

OE>=3% DB><EDE> ,
B

anddeterminatiorof the coefficients <(NBDE> = Cp leadsto a secularequationof the form

0 O -
% “Hap ~E8;3 Cp =0.

Even though the matrix Hqg is not a hermiteanmatrix (e.g., its diagonal elementsare, in
general,complex),its eigenvaluesare real and equalto E,,. It is easyto prove the following
usefulproperty: 3 Hyo =trH. Indeed,

a

<aOHpo> = ¥ <aOm>E,<mpa> = ¥ <mga><agm>Ep, ,
m m

whencethe traceis obtainedby summingover a andusing expansiorof the unity operator.
Both matricesH 4z and H ap give anunambiguousepresentationf the operatorH:

H =3 Do><agHOBR><BO = Y Oo>Hgs <BO ;

ap ap
H =y pa><apHOR><BO = Y 00>Hqe <BO,
af ap

and both possessa set of real eigenvaluesand a set of eigenstateshat is completein Q, but
whereasthe eigenvaluesf the non-hermitearmatrix Hqg coincidewith thoseof the operator
H, the eigenvalue®f the hermiteanH ;g arethoseof a differentoperator

Hmog = > 00><aOH DB><[~3D ZH,
ap
which coincides with H only when {Jo>} is an orthonormal set. If we diagonalize
<o OH Op>, thatis find the eigenstate®f H,,,4, andthen evaluatethe averageof H in these
states,we will, generally,find a setof upperboundsto the eigenvaluesof H,g — as follows

from the variational principle. To find the eigenvaluesof H we mustfirst calculate <a[p>
andthen Hyg = 3 <aOQu>H .
u
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Example: coupledwell problem.

Let @ (i=1,2) be the single-well functions (neglecting the presenceof the other well). Define
®; = <@ O@> or
01 t0O
d=0 d.
ot 1p
The matrix ® definedby &)GB = <(~g D(~ﬁ> is of the form
oo 1 01 -t

= 0
1-otp? gt 1

O
0.
0
The matrix §; which is inverseto Q;; = 0<@ D(pJ>DZ is given by
1 E 1 -Otg? O
C1-oipf g-oti? 1
andthe "measures!; by

1

li=——— (i=1,2).
1 1+[|t[|2 ( )

We seeexplicitly that > Oi>1;<ig # | . Let us constructthe conjugateset:
i

~ ~ ~ o -t@
O =@ <@ Op>+ @ <@Oe> = mr;
~ ~ ~ o~ gt
=0 <O P>+ @ <G> = T2
Supposeawve know the matrix elementsof an operatorH in the basis@:
B vE
<@OHO@>=H; = O g, O
O O

where, without a loss in generalitywe assume€; + €, =0 and &, — €, =A. The eigenvaluesof I:Iij
are\ = +VOV? + A%/4. Let us now constructH;;:

O¢ _ _ O
1 O &-tv Vg o

H.: E<~ H > = ,
i = <A DR 0% 1- Ot2 gv*—t*&:1 sz—t*vg

anddetermineits eigenvalues
(1- Oto?) A = —Re(tV*) = V[Re(tV*)]? + (OV D% +A%/4)(1- 0t .

It canbe shownthat if the eigenvaluesare arrangedn the order of ascendingnagnitude then A; < )~\i .
Let us explicitly demonstratehis, taking V =t (energyoverlapintegralwith a unit uniform barrier)and
A < V[ (neartheresonance).In this example we find

-0to n? ~ Ot 02
)\_‘]_E - 1= 3
1-0Otg 8otn 1-0Oto
2 ~ 2
A, B oo, A - oto

1+gtg 0 8oto 1+0tg
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Nonorthogonal states and sensorics

A common problem in sensorics is to determine the contribution of each of several known
functions into an experimentally measured quantity,

F:zcifi >

where F is an experimentally measured function of some variable or group of variables x and
{f} is a set of distinguishable functions of same variables x.

Typical examples of the set { f,} are distinguishable fluorescent spectra { /i (ﬂ)} or
distinguishable temporal signals { /i (t)}. In either case, the problem is to determine the weights
{ci}from an experimental measurement F. In this case, the word distinguishable has a simple

mathematical meaning: the functions { f,} must be linearly independent. This means they form a

basis in the vector space
H =span {f,}.

Evidently, the basis needs not be (and usually is not) orthogonal with respect to a scalar product
defined in H,

,={sl7)

The matrix M, in general is not a diagonal matrix. Of course, without any loss in generality, we

can consider the basis functions normalized to unity, M, =1, for all i.

The general solution to the problem can be written in terms of the conjugate basis {Z }, defined

by <Z. f].> =5, ,ie,

Z‘ :Z[M_l]zf -
J
Whence we have
o =(F|F).

The scalar product in H can be defined in a variety of ways and in practice it should be defined to
suit the problem at hand. For bell-shaped distributions the most common definition is probably in
terms of an integral over the appropriate set of variables:

(£ 1) =[ £ @ f, ) ax,
The asterisk has been placed on the first function merely to emphasize that the procedure works
equally well for complex functions and their linear combinations with complex coefficients c,,

i.e. in a Hilbert space H. The dimensionality of this space, i.e. the number of basis states { fi}in

principle does not have to be finite, but the procedure of inverting the matrix of scalar products
may be tricky in the case of infinite dimensionality.

In what follows I assume a finite-dimensional set { fl} comprising » functions. It is worth noting
that, besides the useful functions we are seeking (representing the fluorescent markers { /i (/1)} or

fiducial signals { f (t)} ), the set may include parasitic or noise functions (e.g. represented by their



-0
spectral decomposition). The procedure will automatically filter out all such functions so long as
we have included them in the set.

As an example consider the problem of least-square fit, which is a common procedure to
minimize an integrated deviation of the assumed curve from the actual data points. I will show
that the least square fit is a particular example of the described above procedure.

To be specific, suppose we are dealing with an experimentally measured waveform F(¢) that we
wish to fit to a linear combination of # known functions { f (t)} ,

F)=Y /(o).

We assume that F'(f) was measured at m successive points in time ¢, (a=1273...,m), and
denote the measured values as F'(¢,) =u, . The least square procedure corresponds to finding the

minimum with respect to the coefficients {c,} of the deviation function Dic,}:

(ic[fi(ta)—uaj .

i=1

D{ci}zz

1

m
a=

As is well known, the necessary condition for the minimum is that it is at least a local minimum,
1.e. the coefficients ¢, must satisfy the set of n equations 0D/0dc, =0. This yields a matrix

equation of the form Ac=b, where
Ai]' = Zﬁ(ta)f‘](ta)
a=1

bj = _l.f}(ta)ua

Exactly the same result is obtained in the procedure described above if the scalar product is
defined by an integral over ¢ approximated as a sum over « of functions evaluated at ¢, , viz.

()= rwsod ~ Y fe)se)

In this case, evidently, M, = 4, and we have

o= (7| F) =2 T, =X Y M5 160w,

a=1 j=1
which is the same as ¢=M ' b .

Clearly, if points ¢, are given, e.g. uniformly distributed over the interval of time variation, the

least square fit is probably the best procedure and it is gratifying that our procedure produces the
least square fir automatically. However, we have an insight as to how to choose points ¢, better!

Indeed, we can follow the Gauss integration procedure. For any desired basis set { f,} we can
choose the points ¢, (and the corresponding weights w_ ) so as to make exact the evaluation of

all n* integrals as a “Gaussian” sum,

[ 1@ f,@di=3w, f@)f@,).



