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Induced and Spontaneous Emission.

The transition probability per unit time between 2D subbands 2 and 3, induced by a
monochromatic radiation E = eq cos(q-r — Qt) polarized in the direction e, at an angle a to the
z axis (assume z perpendicular to the 2D plane), is given by
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where z3, =<3|z|2> is the dipolar transition matrix element.t If the subband states have
finite lifetimes (13 and 1,) due to collisions with impurities, phonons, etc., then we replace the
o function in Eq. (1) by a normalized lineshape function,
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where 2y, = 131 + 15 is the full width at half maximum.

Expressing the energy density of radiation p, in the mode g in terms of the number of quanta
N in the volume V
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we can re-write Eq. (1) in the form
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Equation (4) describes the total induced transition rate per electron (either absorption or
stimulated emission), due to the interaction with the single mode g. The total spontaneous
emission rate into the same mode is given by the Einstein relation, wg, = Wi,¢'N ¢,

Wind = N q 6(9_932) . (4)
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To calculate the total spontaneous emission rate, we must sum Eq. (5) over all modes of the
resonator. For a slab waveguide only TM modes contribute, since for all TE waves a =0.

Wgp = 5(9‘932) . (5)

Let us ignore for simplicity the waveguide nature of the QCL structure, and take the dispersion
relation in the simplest form Q =tq, where T =cAT with m being the refractive index of the
medium. For any g we can choose one mode in the direction qx z; this mode has a =0 and
contributes nothing. For the other (orthogonal) mode we have a=90" -0, where 0 is the
angle between g and the z-axis. The summation gives:
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where R, =cuy = (cgp) ™! = 376.73Q is the impedance of free space and a =e%hc is the fine
structure constant, a~! H137. Equation (6) agrees with the standard expression for Enstein’s
A-coefficient for the case of dipolar electric transitions in a homogeneous medium, see, e.g.,
"Optical Electronics" by Yariv (4th Ed, p. 150).

t In this expression we have neglected the dependence of w on the electron wave vector k, which arises from the
conservation of energy and 2D quasimomentum during intersubband transitions. This dependence would be
expressed by replacing 6(Q—-Qj,) by 8[Q—-Q;, —h(k-gq)/m]. Inclusion of this dependence for an electron gas having
a distribution of k (e.g., Fermi of Boltzmann) is entirely equivalent to the Doppler broadening of the atomic
transitions in gases.
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Gain.

Replacing the &-function in Eq. (4) by the lineshape function (2) and expressing |z3, |? in terms

of W' = 15, with the help of Eq. (6), we can put wi,g in the following form:
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where A =cA is the wavelength in vacuum and P [W/m?] is the wave intensity. In the
second equation in (7) we have used the relations

P=tpy =hv(NyV)T Qy(Q) =vy(v) n = 3cos?a (8)

"Classical" derivation of the result (7) goes as follows:
Interpret (6) as the Einstein A coefficient. Then the corresponding B coefficient is of the form
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For a white spectrum with the energy density p(v) per unit frequency, the rate of induced transitions
per electron is given by Bp(v), as shown by Einstein. However, we are interested in the interaction
with a single mode, where the correct result is undoubtedly (7). The only way to reconcile these two
results is to say (waving hands like a windmill) that the appropriate density in this case is

P(W) = pgny(v) why? (10)
Using w;,q = B p(v) with B given by (9) and p(v) given by (10) produces (7) "as the doctor prescribed".

O It should be clearly understood that the use of the Einstein coefficients essentially fixes the mode
for which the absorption is to be calculated. Indeed, the method deals with the probabilities, not
amplitudes, and hence does not take into account the interference between different modes (e.g., in an
isotropic medium, modes degenerate with respect to polarization). Inadequacy of the approach which
uses Einstein’s relation while interpreting A as the total spontaneous radiation rate into all modes, is
carefully discussed by V. L. Ginzburg, Theor. Physics and Astrophysics, Chap. 10.

The total induced transition probability per unit volume is wi,q - (n3 —n, Yd, where d is the
superlattice period and n; and n, are the 2D densities in wells (levels) 3 and 2. Hence the
power generated or absorbed per unit volume is given by

Ng =Ny _ dP
4 dx
where we have assumed that the power flows in the x direction (along with q). From the

defining relation, dP/dx =g P , for the material gain g [cm™] and using Egs. (7) and (11), we
obtain a microscopic expression for g in the form:

hv - Wing - (11)
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Let us define the differential gain g;, by g = g, (n3—n,yd. Taking n B3 the differential gain
at the peak frequency is given by
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Taking m =34, z3 =15A, hQ =295meV, and hy, = 11.3meV (Faist’s zero-temperature value),
we find g/ (0) H1.6:10"%cm?. At finite temperatures, y, increases and therefore g,

decreases. By luminescence measurements in the range 0 /T f300K, Faist found the
following behavior:

(13)

hy, [meV]; T [K]: hy, = 11.3 + 1941072 T + 1111074 T2 (14)
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Rate equations.

Equations governing the carrier and photon dynamics in the QCL are of the form:

dn, Ny nj

electrons, well 3; _ =) - - -TQgS; (15a)
dt T32 Tesc
dn, N, nz—nge_%’/Te

electrons, well 2; _ = _—+T9S - —~— (15b)
dt Tap Tyg

lect I dng _ N5, nz-nge ) (15¢)

electrons, gr. alloy: = -J; c
dt Tesc Tyg

photons, [cm™]: gas rec( - o) S - S ; (15d)
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where ng denotes the free carrier concentration (per cm?) in the graded alloy, and n{?) the
total doping per period. Note, that these equations are not independent: if ngo) is constant,
then Eq. (15c¢) follows from Eqgs. (15a), (15b), and (16).

Consider the steady state situation. Note first that a necessary (though, of course, insufficient)
condition for generation is T3, > T,5. Indeed, at the threshold the ratio T5/T,y =nyh, > 1.
Equation (15d) gives the amplitude condition for generation:
9o = (TT Tph) ™! + it - (18)
Using expression (12) for the gain, we can write
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Note the effective temperature dependence in Eq. (19). In general, one can expect y, to be
dependent both on the state of the lattice (T) and on the electron kinetic energy (T.). We shall
assume that the empirical dependence Eq. (14) results from two contributions, both permitting
us to consider y, a function of T, only. One contribution arises from the nonparabolicity of
the conduction band, which implies that the emitted photon energy hQ depends on the kinetic
energy of an electron making the transition. The other, more important, contribution arise
from the interaction with optical phonons. We shall assume that the population of optical
phonons is governed by an effective temperature which is equal to the T, of the carriers. This
situation is commonly referred to as the optical phonon bottleneck. Calculations show that the
bottleneck assumption is a good approximation in InGaAs for mobile electron concentrations
of order 10*" cm™ and higher.

This may be surprising to some people, because dealing with a bipolar plasma, one normally
does not expect a bottleneck at carrier concentrations below 10® cm™. However, because of
the lower electron mass, optical phonons that are "on speaking terms" with electrons occupy a
much smaller volume in the Brillouin zone than it would be the case for holes of the same
average energy. Consequently, the heat capacity of relevant optical phonons is lower and the
bottleneck arises at substantially lower carrier concentrations.
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Steady state characteristics.

Faist et al. have estimated the energy difference between the bottom level of the active layers
and the graded-alloy level as A,y = 79meV. Accordingly, for not too high temperatures we
have exp(—A4,4/T.) <1 and the backflow can be neglected. The steady-state system of
equations is then reduced to the following two equations:

o 1,0 f(T
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where we have denoted
T = Ts2 (Tesc + T2g) (21&)
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For a given J [cm™2-sec™!] Egs. (20) yield both the temperature T, and the photon density S. At
the threshold S = 0 the equation for T, = Ty, is obtained by eliminating J from Egs. (20):

hyo (Tth) _ ATt Tese (Taz = Tog) hQ néo) 1232 |2
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Having determined Ty, from Eq. (22),f we find Jy, from
n® (Ty, - T
_ g ( th ) (23)

= (hQ + Dyg)
Above the threshold, the equation determining T, (J) is of the form
IN$/1e] 8T — (hQ/13) f = [Dyg + (Tog/T5) HQ] & (24)

where we have denoted 8T, =T, -Ty,, O =J-Jy, and of =f(T,) - f(Ty,). Having
determined T, from Eq. (24), the light-current relation is found from (20a).

An approximate close-form expression for the slope efficiency can be obtained by taking
of By (Ty) 8T, Where
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We see that when 1. is sufficiently small, the efficiency may deviate from ideal even if f; = 0.

t Equation (22) makes sense for any form of the dependence vy, (T.). If y,(T,) =const, then there always is a
solution. If v, (T.) is a linear increasing function, then there may not be a solution when the value of the right-
hand side of Eq. (22) is small. For a concave function, like in Eq. (14) there may be either no solutions at all or — if
the value of the right-hand side R is sufficiently large — two solutions, T and T{, cf. Fig. 1. The corresponding
currents J{)) and J® may be termed the lower and the upper thresholds. Lasing is only possible for J§) <J < @,
For this effect to be real, however, the concavity of y, (T.) should be physically motivated, which is hardly true in
the case of Eq. (14).
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Threshold.

Keeping in mind the footnote on p. 4, the threshold carrier temperature is determined by the
first intersection of a line (T, = T)-R, where R is the right-hand side of Eq. (22), with the
concave curve hy,(T.). For a given R the highest lattice temperature T =T, at which
threshold is possible, is determined by the condition that the line is tangent to the curve.

Hence Yo (Tih) =R Yo (Tth) = R (T = Tmax) (@7)

Let us re-write the emirical relation (14) in a form where both y;, and T, are measured in
meV:

Yo(Te)=aTi +bTe +c , (28)
where a=1510"?2 mev!; h =0.23; ¢ =113 meV.

From Egs. (27) we then find T{, = (R — by2a and the maximum lattice temperature is:

_(R=-Db)®* ¢
Tmax - —W ﬁ . (29)
From the inequality T,,.x > 0 we find the following criterion
R > b + Vdac H1.05 (30)

for the threshold to be achievable at any temperature. The fact that the right-hand side of (30) is
so close to unity is curious. We see that the necessary condition for lasing is that the
dimensionless parameter R is greater than unity.

yO: aTé +bTe+cC

Fig. 1. For a concave function vy, (T,),
Eg. (22) may have either no solutions at all
or — if the value of R is sufficiently large —
two solutions. For a fixed value of R there
is a maximum value T, of the lattice
temperature T for which lasing is possible.
Finally, there is a minimum value of R such
that T, >0. If R is less than this
minimum value [which is about unity in
the example of Eg. (28)] then there can be
no lasing at any temperature.
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