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Degenerate electron gas

It appears obvious that most of the properties of a degenerate 2D electron gas would not be
significantly different if the gas were confined to the surface of a sphere of radius R rather
than a planar quantum well — provided that R > Ai, where A, is the inelastic mean free path
of electrons.

The kinematic behavior of a 2DEG of surface density n is determined by electrons in a narrow
band 6E near the Fermi level E, where
mth?n
Er= 11
Fe— (L1)

(two-fold spin degeneracy included). The density of kinematically active electrons is
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We shall assume that 3E <« Eg and therefore dn < n.

Kinematically active electrons are forbidden to scatter into the subspace of the Hilbert space
below Er. On a sphere, the forbidden subspace corresponds to a number of shells filled up to
an angular momentum h(Lg-1), defined byt
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The energy separation between the kinematically active (partially filled) Lg-th shell and the
highest completely filled [(Lg-1)-st] shell
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and the density of states in the Lg-th shell is
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It is reasonable to set &n H%dng to ensure the consistency of definitions (with this
identification the Lg-th shell is approximately half filled). Thus, if we start from a given pair

(n, dn) [equivalently, (Eg, dE)], then both the sphere radius R and the Fermi shell number L¢
are fixed by Egs. (4) and (6):
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t Alternatively, we can define L g by requiring that the Fermi level resides within partially filled L -th level:
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The two definitions are equivalent to within terms of order
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Magnetic analogy. Suppression of Lg—1 shells can be achieved by placing at the center of the
sphere a magnetic monopole of charge g
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It is well known (Tamm) that the electronic motion on a sphere with a monopole (2.1) at the
center is identical to that on a sphere without the monopole, except that the allowed values of
the angular momentum start from L rather from 0. The magnetic charge, if exists, is quantized
(Dirac) so that the combination (2.1) is integer or half integer.

Substituting into (2.1) the definition of magnetic charge g =B R?, where B is the normal
magnetic field at the surface of the sphere, we find
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where 12 = :_;. Using Egs. (1.7), we can express | iin terms of the assumed 6n :
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The separation (1.5) between adjacent shells becomes identical to a cyclotron energy spacing:
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Electron gas on a torus

It appears obvious that most of the properties of a degenerate 2D electron gas would not be
significantly different if the gas were confined to the surface of a large enough torus — rather
than a planar quantum well — provided that L() 3 Ain Where A, is the inelastic mean free
path of electrons and L") (i =1,2) are the principal periods of the torus..

Magnetic analogy. In the large "straigt"torus limit (L(!) > L(?) > | ), the eigenstates of a 2DEG in
a magnetic field must coincide with those on a torus with a magnetically charge wire loop in
the middle.

Periodic_boundary conditions. Considering the general problem of finding a complete set of
localized states on a "straight” torus, we can view the magnetic field B as an artificial object,
that helps us define the operators 4,4, b, bT, etc., but does not enter into the Hamiltonian of
the electronic system.

The wave functions defined on the torus must be periodic; otherwise quantum mechanics
would make no sense.
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