Degenerate electron gas

It appears obvious that most of the properties of a degenerate 2D electron gas would not be significantly different if the gas were confined to the surface of a sphere of radius R rather than a planar quantum well – provided that $R \gtrsim \lambda_{in}$ where λ_{in} is the inelastic mean free path of electrons.

The kinematic behavior of a 2DEG of surface density n is determined by electrons in a narrow band δE near the Fermi level $E_{\rm F}$, where

$$E_{\rm F} = \frac{\pi h^2 n}{m} \tag{1.1}$$

(two-fold spin degeneracy included). The density of kinematically active electrons is

$$\delta n = \frac{m \, \delta E}{\pi h^2} \tag{1.2}$$

By the order of magnitude $\delta E \sim kT \sim \hbar \tau_{\rm in}$, where

$$\tau_{\rm in} \equiv \frac{\lambda_{\rm in}}{v_{\rm F}} = \frac{\lambda_{\rm in} m}{\hbar \sqrt{2\pi n}} \tag{1.3}$$

We shall assume that $\delta E \ll E_{\rm F}$ and therefore $\delta n \ll n$.

Kinematically active electrons are forbidden to scatter into the subspace of the Hilbert space below $E_{\rm F}$. On a sphere, the forbidden subspace corresponds to a number of shells filled up to an angular momentum $\hbar (L_{\rm F}-1)$, defined by †

$$4\pi R^2 n = 2\sum_{l=0}^{L_F-1} (2l+1) = 2L_F^2$$
 (1.4)

The energy separation between the kinematically active (partially filled) L_F -th shell and the highest completely filled [(L_F-1) -st] shell

$$\Delta_{\rm F} = E_{\rm F} - E_{L_{\rm F}-1} = \frac{h^2 L_{\rm F}}{m R^2} = \frac{h^2}{m R} \sqrt{2\pi n}$$
 (1.5)

and the density of states in the L_F -th shell is

$$\delta n_{\rm F} = \frac{2 \left(2 L_{\rm F} + 1\right)}{4 \pi R^2} = \frac{\left(2 L_{\rm F} + 1\right) n}{L_{\rm F}^2} \approx \frac{2 n}{L_{\rm F}}$$
 (1.6)

It is reasonable to set $\delta n \approx \frac{1}{2} \delta n_F$ to ensure the consistency of definitions (with this identification the L_F -th shell is approximately half filled). Thus, if we start from a given pair $(n, \delta n)$ [equivalently, $(E_F, \delta E)$], then both the sphere radius R and the Fermi shell number L_F are fixed by Eqs. (4) and (6):

$$L_{\rm F} = \frac{n}{\delta n} \; ; \qquad 2\pi R^2 = \frac{n}{(\delta n)^2} \tag{1.7}$$

 \dagger Alternatively, we can define L_{F} by requiring that the Fermi level resides within partially filled L_{F} -th level:

$$\frac{\hbar^2 L_F (L_F + 1)}{2m R^2} = E_F \quad \text{which gives} \quad 4\pi R^2 n = 2 L_F^2 \left[1 + \frac{1}{L_F} \right]$$
 (1.8)

The two definitions are equivalent to within terms of order

$$\frac{1}{L_{\rm F}} \sim \frac{1}{R^{\sqrt{2\pi} n}} \leq (\lambda_{\rm in} k_{\rm F}) \sim \frac{1}{2} \frac{\hbar \tau_{\rm in}}{E_{\rm F}} \ll 1$$
 (1.9)

<u>Magnetic analogy.</u> Suppression of $L_{\rm F}-1$ shells can be achieved by placing at the center of the sphere a magnetic monopole of charge g

$$\frac{eg}{hc} = L_{\rm F} \tag{2.1}$$

It is well known (Tamm) that the electronic motion on a sphere with a monopole (2.1) at the center is identical to that on a sphere without the monopole, except that the allowed values of the angular momentum start from L_F rather from 0. The magnetic charge, if exists, is quantized (Dirac) so that the combination (2.1) is integer or half integer.

Substituting into (2.1) the definition of magnetic charge $g \equiv B R^2$, where B is the normal magnetic field at the surface of the sphere, we find

$$L_{\rm F} = \frac{R^2}{l^2} \ , \tag{2.2}$$

where $l^2 = \frac{hc}{eB}$. Using Eqs. (1.7), we can express l iin terms of the assumed δn :

$$I^2 = \frac{1}{2\pi \,\delta n} \tag{2.3}$$

The separation (1.5) between adjacent shells becomes identical to a cyclotron energy spacing:

$$\Delta_{\rm F} = \frac{\hbar^2 L_{\rm F}}{m R^2} = \frac{\hbar^2}{m l^2} \equiv \hbar \omega_{\rm c} \tag{2.4}$$

Electron gas on a torus

It appears obvious that most of the properties of a degenerate 2D electron gas would not be significantly different if the gas were confined to the surface of a large enough torus – rather than a planar quantum well – provided that $L^{(i)} \geq \lambda_{in}$ where λ_{in} is the inelastic mean free path of electrons and $L^{(i)}$ (i=1,2) are the principal periods of the torus..

<u>Magnetic analogy.</u> In the large "straigt"torus limit $(L^{(1)} \gg L^{(2)} \gg I)$, the eigenstates of a 2DEG in a magnetic field must coincide with those on a torus with a magnetically charge wire loop in the middle.

<u>Periodic boundary conditions.</u> Considering the general problem of finding a complete set of localized states on a "straight" torus, we can view the magnetic field B as an artificial object, that helps us define the operators \hat{a} , \hat{a}^{\dagger} , \hat{b} , \hat{b}^{\dagger} , etc., but does not enter into the Hamiltonian of the electronic system.

The wave functions defined on the torus *must* be periodic; otherwise quantum mechanics would make no sense.

$$\psi(x+L^{(1)}, y+L^{(2)}) = \psi(x, y)$$
. (A2.1)