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Let a and b be the classical turning points for a particle moving with the energy E
across a potential barrier U (x). In other words, in the region a <x <b, one has
U (x) > E. The WKB wave function is of the form:
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v (x) =p/m. The incident wave is normalized to unit flux density and so D coincides
with the transmission coefficient. It is given by:
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Inside the barrier the wave function is of the formt
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Example: Parabolic barrier U (x) = —%K x2. Take E = —%K a?. Equation (3) gives:
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The parabolic potential barrier admits of an exact solution (see L&L, 850, not a quasi-
classical approximation), valid for arbitrary values of E, including E >0 (above-
barrier transmission):

t Following Landau and Lifshitz, | placed the absolute value bars outside the integral in Eq. (4), rather
than inside as in (3). This is perhaps to emphasize that ti|1]e inside bhe barrier there may be regions

where p is real and regions where p is imaginary, so that o Di.[ U--- 0. I am not sure if
that is what L&L had in mind; but in ordinaEP/ barrierﬁ the phase of p is not varying (always 172) and
one would not make a distinction between DI © pand I o--- 0.
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1 E
D—m, where 8=m. (6)
Obviously, the exact solution agrees with (5) for a large negative E. Equation (6) can
be used when considering tunneling near the top of any smooth barrier. Thus,
consider a band-bending curve between the source and the drain of a short-channel
(length L) field-effect transistor. Suppose, we know only the height of the barrier g,
relative to the source and the source-drain bias V. Assuming

() =~ 3K (X = %)?, (7)

we can express k and x, in the form:
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Lateral tunneling current between two 2-dimensional gases. Let 6 be the angle
between the incident k and the direction normal to the barrier. If E is the total energy
of incident particle then the transmission coefficient equals D (E cos?6), where D (E) is
given by Eq. (3). The current ] per unit width of the source is given by
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where E is the Fermi energy. In equilibrium, an equal and opposite current flows
from the drain electrode. If 3V is an infinitesimal drain voltage, then J =G 3V and the
conductance G per unit source width in equilibrium is
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Analogous formulae for tunneling between two 3D electron gases. Current J per unit area
of the diode:
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Equilibrium conductance per unit area:
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Derivation of Egs. (9) and (10):
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The linear current density is _[ en (k)v (k) D (k):
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Differentiating this equation in the form (*) with respect to Eg, we arrive at Eq. (10).

Derivation of Eq. (11)t is quite similar:
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Transition between two last lines is obtained via integration by parts.
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In 1D case, n [cm™] = (22m) [ dk, and
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in agreement with the Landauer formula (for two spin channels).

*)

t The result agrees with that quoted by A. A. Grinberg and S. Luryi, "Fine structure in the energy dependence of
current density and oscillations in the current-voltage characteristics of tunnel jucntions”, Phys. Rev. B 42, 1705-1712
(1990)
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Example: parabolic barrier: peak at x,, peak energy relative to energy at x =0 is @,. Therefore,
energy E ranges from 0 to Ef and € = (E - @,Yhw. Assuming that [2m€:J > 1, we can use
Eqg. (5) rather than (6):

D = e2T((E - (pp)/h(.o (13)

Substitute (13) in Eqg. (9) and integrate (neglecting Er compared to @,):
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Finite temperature: In a 3D case (and, of course, 1D case too) it is possible to reduce
the current density to one quadrature also at finite temperatures. Equation (11) is
replaced by
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Derivation: Note that the function (15) is an indefinite integral of the Fermi function:
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Rewrite formula (**) on p. 3 in the form
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and integrate by parts, noting that ®(E) vanishes as E - o . At low temperatures, Eq. (14)
goes over into (11) since
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where © (x) is the step function (©=0 for x <0 and ©=1 otherwise).

Tunneling into a quantum well: In this case the transmission coefficient can be
written in the form:

D (E) = 2rhv (E) 3(E -Ey) (16)

where v(E) has the dimensionality sec™ and describes the tunneling rate into a
discrete level in a 1D problem (see the example on next page). Substituting (16) into
(14), we have

J= e_T;‘T ®(Eo, ErT) V(Eg) O(Ey) . (17)
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Paynet has calculated the current into (or out of) a 1D quantum well of size a bounded by
rectangular barriers of thickness b and height U. His result is of the form:

J1.qw =2eV(Eo) [f1(Eo) ~ fow(Ed], (18)

where
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(I have included the spin degeneracy factor of 2, omitted by Payne). Defining D (E) as in
Eg. (16), and calculating the 1D current by

v(E) = (19)
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we arrive at Payne’s formula (provided E;>0). Since our derivation of Eq. (14) was
unrestricted to any particular form of the transmission coefficient, we can use
D (E) =2mhv(E) O(E —Eg) in Eq. (14). This leads to the following result (In Eg. 17, we had
omitted the reverse flux) for the net current density:
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Similarly, for the tunneling current out of the well:
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where the functions O, , are the step functions relative to the conduction-band edge E{M2 in
the respective electrode, ©; (E) = ©(E -E{")), and v,(E) and v,(E) are the tunneling rates
through the emitter and the collector barriers, respectively. A reasonable approximation for
the tunneling rates v; is to take them in the form (19) with both U and E defined relative to
the conduction band edge in the respective electrode. The magnitude of U should be replaced
by the average barrier heights U, and U, see the Figure.

To include transitions through the second level in the QW, we add to Eg. (20) another term
which has Eg replaced by E;. No harm will be done if we add a similar term to Eq. (21), but
this term is small because in our model the level E; is not appreciably populated.
The sheet charge density inside the quantum well ¢ satisfies
do
— =] - : 22
gt 1. QwW QW 2 (22)
(the current continuity equation); also from Gauss’ law we have

%:Fz_pl (23)

where F, and F, are the electric fields in the barriers 1 and 2, respectively.

t M. C. Payne, "Transfer Hamiltonian description of resonant tunneling", J. Phys. C 19, 1145-1155 (1986)
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Energy levels in the potential well of width a bounded by the barriers of height U; and U, are
given by, approximately:

2 2
Eq :%Tmﬁ(l—ﬁhz/mazul—ﬁhz/mazuz), n=01 - . (24)
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This formula is valid for low-lying levels in the limit ma®?U; yh?> > 1. Corrections due to a
non-flat potential 3V (x) inside the well, calculated quasi-classically, are the same for all levels:
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where the last expression is obtained assuming all the QW charge placed in the middle of the
well. Note that if 8V is expanded in the Taylor series about the midpoint of the well, then
only even powers of x will contribute a correction. This would be also true in a rigorous
(non-quasiclassical) perturbation calculation: the unperturbed wave functions have a definite
parity with respect to reflections in the midplane and hence the expectation values of odd
powers of x vanish.

Distribution inside QW. Expression (20) above is written on the assumption that the density

of electrons in the QW is given by the equilibrium statistics, characterized by a Fermi level
EQW):

do em em
gE- gz fw®) - 0= OELEY.T). (26)

This is undoubtedly a good approximation near equilibrium, when E{) - E{QW) <kT, and,
generally, when the inelastic scattering time t;, inside QW is short, Tjvy2(Eg) <1 (e.g., for
thick and high barriers). In this case, Eq. (22) becomes an equation for E QW) (t):

do _ em EQW ow) QW)
W—WfQW(EO) Ot =1 ow(ELY) = Jow .2 (ELM) . (27)

In the opposite limit, Tjhvy2(Eg) > 1, a better approximation is to assume a "friable"
distribution in the QW, that replicates the distribution in the emitter — multiplied by a filling
factor £<1:

D=ZenE - o= o ENT). (28)

In this case, Egs. (20) and (22) will be replaced by

Iiqu = S (V1 (E0) O(E) ®(EeEX.T) 1-8) 1, (29)
Jow .2 = S (92(E0) ©(E0) [§ ®(Ee EF, T) - ®(Ea B, T

Equation (22) thus becomes an equation for & (t).
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Procedure:

Setting do/dt = 0 in Eq. (22) determines the unknown parameter EéQW). All quantities of interest can
be expressed in terms of E{°W).

em [ 0
0= 25 DO(EELY.T) + O (ELELY T) .

1. Calculate the potential distribution in the absense of tunneling (only thermionic leakage). Express F4
and F, in terms of EZQW),

2. Determine the effective emitter barrier height and the energy levels relative to the conduction band
edge in the emitter:
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3. Calculate the tunneling rates v, (Eo) and v, (E ;) from Eq. (19), substituting U, for U.

4. Calculate J; , qw, taking into account tunneling into both levels Eg and E:

lqw= oo (1(E0) OE) [P(EaEN, T) - BEELW T + vi(E) O [®ELED.T) - OELELY, T)

5. Determine the effective collector barrier height and the energy levels relative to the conduction band
edge in the collector:
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6. Calculate the tunneling rates v, (E() and v, (E ;) from Eq. (19), substituting U, for U.

7. Calculate Jqy 2, taking into account tunneling from both levels Eq and E :

‘]QW—'Z = % EVZ(EO) e(EO) [q)(EOvE[gQW)vT) - CD(EOIE!Q)!T)] + VZ(El) e(El) [CD(El!EéQW)lT) - CD(E]_,EéZ),T)] g



