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Abstract—Data harvesting using mobile data ferries has re-
cently emerged as a promising alternative to the traditional
multi-hop transmission paradigm. The use of data ferries can
significantly reduce energy consumption at sensor nodes and
increase network lifetime. However, it usually incurs longer data
delivery latency as the data ferry needs to travel through the
network to collect data, during which some delay-sensitive data
may become obsolete. Therefore, optimizing the trajectory of the
data ferry with data delivery latency bound is important for this
approach to be effective in practice. To address this problem,
we formally define the time-constrained data harvesting problem,
which seeks an optimal data harvesting path in a network to
collect as much data as possible within a time duration. We
first characterise the performance bound given by the optimal
data harvesting algorithm and show that the optimal algorithm
significantly outperforms the random algorithm, especially when
network scales. Motivated by the theoretical analysis and proving
the NP-completeness of the time-constrained data harvesting
problem, we then devise polynomial-time approximation schemes
(PTAS) and mathematically prove the output being a constant-
factor approximation of the optimal solution.

I. INTRODUCTION

In wireless sensor networks with limited energy supply,

a critical concern is how the sensing data from individual

sensors can be collected to the sink with minimum energy

consumption. The traditional multi-hop forwarding paradigm

suffers from high energy consumption of forwarding nodes,

especially those near the sink. As an efficient alternative, data

harvesting using mobile devices, also termed as data mules [1]

or data ferries [2], has been proposed and implemented in

several applications such as underwater environmental moni-

toring [3]. The core idea can be summarised as follows: a data

ferry (e.g., robot, vehicle) travels across the sensor field and

harvests data from sensor nodes while they are within each

other’s communication range, and later transfers the harvested

data to the sink.

The use of data ferries in data harvesting can significantly

reduce energy consumption at sensor nodes and thus increase

network lifetime. However, as the data ferry can harvest

data only when it travels close to the target node, it usually

incurs longer data delivery latency, during which some delay-

sensitive data may become obsolete. Therefore, optimizing the

trajectory of the data ferry to limit or minimise data delivery

latency is a primary concern for this approach to be effective

in practice.

In this paper, we consider the trajectory optimisation prob-

lem in data collection applications for wireless sensor net-

works. This problem seeks an optimal data harvesting path

to collect as much data as possible within a time duration.

We call the problem time-constrained data harvesting prob-

lem. Specifically, our problem formulates the situation when

delay-sensitive data are reported to the sink within certain

amount of time before they become obsolete. We conducted

theoretical analysis and designed efficient algorithm for the

time-constrained data harvesting problem. We have proved that

the time-constrained data harvesting problem is NP-complete.

To address this problem, we have designed a polynomial-

time approximation schemes (PTAS). That is, our devised data

harvesting algorithm gives a constant-factor approximation of

the optimal solution of the time-constrained data harvesting

problem in polynomial time.

The contributions presented in this paper are naturally

articulated as follows:

• We formulate the time-constrained data harvesting prob-

lem. We analytically characterise the performance bound

of the optimal data harvesting algorithm. Our analysis

demonstrates that in a network where nodes are randomly

deployed with fixed density and the data ferry moves

at constant speed, the quantity of harvested data does

not scale with the number of nodes in the network

under the random data harvesting algorithm, while this

quantity scales logarithmically for the optimal algorithm

design, indicating a significant performance gain when

the network scales. Even though the trend is logarithmic,

the gap can still be significant in large networks. In other

words, a data harvesting algorithm not carefully chosen,

such as randomly choosing a data harvesting path, can

be very inefficient.

• Motivated by the theoretical analysis, we focus on the

design of PTAS finding a constant-factor approximation

of the optimal solution. We first give a formal proof on the

NP-completeness of the time-constrained data harvesting

problem by relating it to the well-known travel salesman

problem (TSP) [4], for which there is no polynomial-

time algorithm with an approximation factor better than
220
219 [5].

• Given the complexity of the problem, we first study a

specific scenario with non-overlapping neighborhoods,

i.e., the network is sufficiently sparse such that the data

ferry cannot harvest data from multiple sensors without

changing its location. We then extend the analysis to the
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generic case with overlapping neighborhoods, i.e., the

network is sufficiently dense such that the data ferry can

harvesting data from multiple sensors without changing

location. For both cases, we develop a methodology that

relates the performance of topological paths to geomet-

rical paths to design PTAS and mathematically prove

the output being a constant-factor approximation of the

optimal solution.

Despite our focus on the data harvesting problem, the

generic problem formulation of our work makes the analysis

methodology and obtained results broadly applicable to several

engineering domains ranging from mobile charger schedul-

ing, target monitoring to security patrolling, with a common

generic objective of designing an optimal path such that a

time-constraint utility function depending on the number of

encountered targets is maximised.

The rest of the paper is organized as follows. We formulate

the time-constraint data harvesting problem in Sec. III. In

Sec. IV, we derive performance of the optimal data harvesting

algorithm and the random algorithm, laying the theoretical

foundation of the problem. In Sec. V, we first establish the NP-

completeness of the time-constraint data harvesting problem,

and then design PTAS for the problem. Sec. VI presents

simulation analysis of the proposed PTAS. Sec. VII the paper.

II. RELATED WORK

The problem we address and the methodology we employ

are related to the following research fields.

A. Data ferry Assisted Data Harvesting

There is a large body of existing work on data ferry

assisted data harvesting [6], [7], [8], [9], [10] (cf. [11] for

a comprehensive survey). The problem we address is the

optimisation of data harvesting trajectory of the data ferry,

which is a hard problem in general, since we are constrained in

both space (communication range between the data ferry and

sensors) and time domain (limiting data harvesting latency).

Existing solutions contour this difficulty by either using simple

mobility and communication models [6], [7], [8], [9], [10] or

assuming that the trajectory is already given [6].

The authors in [12], [2] address a similar problem of

designing data harvesting path for data ferries to minimise the

data harvesting latency under the constraint that all sensors are

visited. The algorithms they propose are based on the well-

known travel salesman problem (TSP) [4] and its variant TSP

with neighbors (TSPN) [13]. However, our problem is different

because TSP requires the path to pass all sensors while we

seek the most profitable path to harvest maximum data given

the time constraint. Our problem formulation complements

the TSP formulation and is particularly pertinent when the

network is large and it is impossible to the data ferry to traverse

every node. Technically, as detailed in the main part of the

paper, our problem requires an original study that cannot draw

from existing results.

B. Mobile Charger Scheduling

Another similar problem is the mobile agent scheduling

problem where a mobile charger needs to travel within the

charging range of each sensor node to recharge them under the

constraint of the battery life of sensor nodes, which is similar

to the time constraint in our data harvesting problem. However,

they rely on additional assumptions or simplifications to make

the problem tractable. For example, the authors of [14] find

out a near-optimum traveling path to recharge all sensor nodes

using linear programming, assuming the traveling speed being

infinite, and then remove this assumption and derive a bound of

performance degradation. However, their algorithm implicitly

assumes the travelling is fast enough. In our work, we remove

these assumptions and analytically establish the performance

properties of the proposed data harvesting algorithm.

III. TIME-CONSTRAINED DATA HARVESTING PROBLEM

We consider a sensor network composed of n nodes, de-

noted by the set V = {v1, v2, · · · , vn}, randomly distributed

in an Euclidean square [0, D]2. We are interested in the

asymptotic scenario where both n and D are large with the

node density λ = n
D2 being a constant. In this case, the

considered network converges in distribution to an infinite

random geometric graph induced by a homogeneous Poisson

point process with density λ [15]. Each node vi has unit data

message1 to be harvested by a data ferry, denoted by s, moving

at a constant speed. To harvest data generated by vi, s should

move into the communication range of vi, which is modeled

as a disk Di centered at vi with radius r. We call Di the

neighborhood of node vi. By slightly abusing notations, we

also use Di to denote the border of the disk. For a path P ∈ P
where P denotes the possible path set, we denote d(P ) the

Euclidean length of P . We say that a path P covers a point M

if there exists a point on P within distance r to M . In other

words, if s moves along P , it can harvest the data generated

by all the nodes that it covers. Denote Λ(P ) the number of

nodes P covers.

We consider the data harvesting problem faced by s in

which it seeks an optimal data harvesting path to harvest as

much data as possible within a time duration T . The problem

we address models the situation where delay-sensitive data

should be reported to the sink within certain time in order to

be further analysed. To make the notation concise, we let s

move at unit speed and thus T is the maximum path length

s can traverse before deposing the harvested data. The results

obtained can be easily scaled to arbitrary speed by scaling the

time duration T . Throughout our analysis, we are interested

in the non-trivial case where r ≪ T and 2Tr ≪ D2, i.e., the

maximum path length is much larger than the communication

range, while the area covered by a path of length T is much

smaller than the network area. The time-constrained data

harvesting problem is formalized as follows.

Problem 1 (Time-constrained Data Harvesting Problem). The

time-constrained data harvesting problem is as follows:

1The case where nodes generate multiple data messages can be tackled by
devising the node generating m unit data messages to m virtual nodes at the
same position, each generating unit data message.

2015 IEEE Conference on Computer Communications (INFOCOM)

1000



3

maximize Λ(P ),
subject to d(P ) ≤ T .

That is, s seeks the optimal path P ∗ ∈ P of Euclidean

length d(P ∗) ≤ T , along which it can harvest the maximum

quantity of data. When there are more than one maximum, the

optimal path P ∗ is the one with minimum Euclidean length.

We conclude this section by stating the following properties

of P ∗ that will be useful in subsequent proofs and analysis.

Lemma 1 (Properties of P ∗). Let P ∗(τ) denote the optimal

solution of Problem 1 with parameter T = τ , the following

properties hold:

• Monotonicity: Λ(P ∗(τ1)) ≤ Λ(P ∗(τ2)), ∀τ1 ≤ τ2;

• Scalability: Λ(P ∗(κτ)) ≥ κΛ(P ∗(τ))

1 + κ
, ∀τ, ∀κ ∈ (0, 1).

Proof: The monotonicity follows straightforwardly from the

definition of P ∗. We now prove the scalability of P ∗. Let

m denote the integer such that m < 1
κ

≤ m + 1. Divide

P ∗(τ) into m+1 non-overlapping parts of length τ
m+1 each,

it follows from the pigeonhole principle that there exists at

least one part, denoted as p, which covers at least
Λ(P∗(τ))

m+1

nodes. It follows from m < 1
k
≤ m+ 1 and the monotonicity

property that

Λ(P ∗(κτ)) ≥ Λ

(

P ∗

(

τ

m+ 1

))

≥ Λ(p)

≥ Λ(P ∗(τ))

m+ 1
≥ κΛ(P ∗(τ))

1 + κ
,

which completes the proof.

The time-constrained data harvesting problem has a number

of important variants. In some applications, we require that the

data harvesting path to be a cycle or have predefined starting

and end points; it is sometimes required to differentiate sensor

nodes by giving weights to them (e.g., giving higher weights

to sensors at key positions) and seek the path maximising the

weighted sum of harvested data; furthermore, we may dispose

multiple data ferries to for data harvesting. Many of these

variants can be addressed using the framework established in

this paper to design and optimise data harvesting path.

IV. ANALYSIS OF OPTIMAL AND RANDOM DATA

HARVESTING ALGORITHMS

Aiming at laying theoretical foundation of the time-

constrained data harvesting problem, this section studies the

performance of the optimal data harvesting algorithm and a

natural algorithm where the data harvesting path is randomly

chosen.

A. Random Data Harvesting Algorithm

A simple data harvesting algorithm is to randomly choose

a data harvesting path of length T . We call this algorithm

random data harvesting algorithm, termed concisely as ran-

dom algorithm. Our motivation of starting with the random

algorithm is two-fold:

• It is a natural strategy and very easy to implement;

• It provides a reference for performance comparison for

more sophisticated algorithms as well as the optimal one.

In our study, we are particularly interested in the following

questions:

• What is the performance of the random algorithm?

• What is the performance of the optimal data harvesting

algorithm?

• What is the performance degradation between the random

and the optimal algorithms?

To answer the above questions, we consider a sensor net-

work as a random geometric graph depicted in Sec. III where n

nodes are placed uniformly at random in the area [0, D]2. Note

that this is a natural modeling choice as in sensor networks,

especially large ones, we usually do not have control over

the position of nodes. Theorem 1 establishes the performance

of the random algorithm in terms of the average quantity of

harvested data and its sharpness2.

Theorem 1 (Performance of Random Data Harvesting Algo-

rithm). Consider the random data harvesting algorithm where

s randomly chooses a path P of length T , it holds that

• E[Λ(P )] ≤ O(λrT );

• Pr {Λ(P ) ≥ nǫ
E[Λ(P )]} → 0, when n → ∞, ∀ǫ > 0,

that is, Pr {Λ(P ) = Θ(nǫ)} → 0.

Proof: Recall the notation that a point M is covered by a

path P if the minimum distance between any point on P and

M is at most r, it is straightforward to see that the maximum

Euclidean area covered by a path of length T is A = 2rT +
πr2. Recall that r ≪ T , it then holds that

E[Λ(P )] ≤ λA = λ(2rT + πr2) =⇒ E[Λ(P )] ≤ O(λrT ).

To prove the second part of the theorem, we use the

following Markov’s inequality [16].

Lemma 2 (Markov’s Inequality). For any non-negative ran-

dom variable X and any a > 0, it holds that

Pr{X ≥ a} ≤ E[X ]

a
.

Regarding Λ(P ) as a random variable and letting a =
nǫ
E[Λ(P )], by applying Markov’s inequality, we have

Pr {Λ(P ) ≥ nǫ
E[Λ(P )]} ≤ 1

nǫ
→ 0, when n → ∞,

which quantifies the sharpness of Λ(P ).

With Theorem 1, we are able to answer the first question

posed in the beginning of this subsection:

• In average, the expected harvested data for the random

algorithm does not scale with respect to either the popu-

lation size n of the network or its geometrical size D;

• With high probability, we cannot expect better outcome

than Θ(λrT ).

2Throughout the paper, we use the following asymptotic notations:

• g1(x) = O(g2(x)) ⇔ ∃c > 0, ∃x0, ∀x > x0, |g1(x)| ≤ c|g2(x)|;
• g1(x) = Ω(g2(x)) ⇔ ∃c > 0, ∃x0, ∀x > x0, |g2(x)| ≤ c|g1(x)|;
• g1(x) = Θ(g2(x)) ⇔ ∃0 < c1 ≤ c2, ∃x0, ∀x > x0, c1g2(x) ≤

g1(x) ≤ c2g2(x).
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B. Optimal Data Harvesting Algorithm

Having derived the performance of the random algorithm,

we proceed to investigate the performance of the optimal data

harvesting algorithm, as stated in Theorem 2.

Theorem 2 (Performance of Optimum Algorithm). Let P ∗

denote the path of the optimal data harvesting algorithm, it

holds that

• E[Λ(P ∗)] = Θ

(

log n

log logn

)

;

• Pr

{

Λ(P ∗) = Θ

(

logn

log logn

)}

→ 1, when n → ∞.

Proof: We prove the theorem in two steps.

Step 1: lower-bound of Λ(P ∗): we show that

Pr

{

Λ(P ∗) = Ω

(

log n

log logn

)}

≥ 1− 1

n
→ 1, when n → ∞.

Our proof uses the well-known results in the bins and balls

problem stated in the following lemma for completeness.

Lemma 3 (Maximum Load in Bins and Balls Problem [17]).

When throwing m balls into Θ(m) bins, the max-loaded bin

has Θ
(

logm

log logm

)

balls with probability at least 1− 1
m

when

m → ∞.

We first construct “bins” in the following claim.

Claim 1. A path of length T can cover all nodes in a square

having sides of length
√
2rT .

Proof: We prove the claim by constructing a zigzag path P

covering all nodes in a square [0, b]2:

• Start from (0, r) and move straightly towards (b, r);
• Move straightly from (b, r) to (b, 3r);
• Move straightly from (b, 3r) to (0, 3r);
• Repeat the above process until covering all nodes in

[0, b]2.

The total length of the zigzag path P can be computed after

some elementary geometrical operations as

d(P ) = b ·
⌈

b

2r

⌉

+ 2r ·
⌊

b

2r

⌋

.

When T ≫ r, it can be calculated that with d(P ) = T , P can

cover all nodes in a square with sides of length b =
√
2rT .

Armed with Claim 1, we now divide the network area

[0, D]2 into D2

2rT non-overlapping bins, each corresponding to a

square of sides of length
√
2rT . Apply Lemma 3 by regarding

nodes as balls, the path covering all nodes in the max-loaded

bin covers at least Θ
(

logn

log log n

)

nodes with probability 1− 1
n

.

Hence for the optimal path P ∗, it holds that

Pr

{

Λ(P ∗) = Ω

(

log n

log logn

)}

≥ 1− 1

n
→ 1, when n → ∞,

which complete Step 1 of the proof.

Step 2: upper-bound of Λ(P ∗): we show that

Pr

{

Λ(P ∗) = O

(

logn

log logn

)}

→ 1, when n → ∞. We first

prove the following claim.

Claim 2. Divide the area of [0, D]2 into B = D2

4r2 non-

overlapping small squares3 of sides of length 2r. It holds that

3To make the analysis concise and clear, we treat D

2r
as integer. The analysis

can be easily extended to cover the case where D

2r
is not integer.

a path of length T covers at most Θ
(

T
2r

)

small squares.

Proof: The proof is straightforward by noticing that any

curve of length 2r covers at most 4 small squares.

Let k denote the number of non-overlapping small squares

covered by the optimal data harvesting path P ∗, it follows

from Claim 2 that k = O
(

T
2r

)

. Let b denote the number of

nodes in a small square, it follows from Lemma 3 that

Pr

{

b = O

(

logn

log logn

)}

≥

Pr

{

b = Θ

(

logn

log logn

)}

≥ 1− 1

n
.

When n → ∞, we have k ≪ n; the necessary and sufficient

condition of Λ(P ∗) = O
(

logn

log log n

)

is that all small squares

covered by P ∗ contains O
(

logn

log logn

)

nodes; hence we have

Pr

{

Λ(P ∗) = O

(

logn

log logn

)}

=

(

Pr

{

b = O

(

logn

log logn

)})k

≥
(

1− 1

n

)Θ( T
2r )

→ 1,

following T ≪ n. This completes the second step of the proof.

Combining the two steps proves the sharpness result:

Pr

{

Λ(P ∗) = Θ

(

logn

log logn

)}

→ 1, when n → ∞.

To prove E[Λ(P ∗)] = Θ

(

log n

log logn

)

, we proceed as

follows:

• Apply the result of Step 1 and notice the fact that

Λ(P ∗) ≥ 0, we have E[Λ(P ∗)] = Ω
(

logn

log logn

)

;

• Apply the result of Step 2 and notice the fact that

Λ(P ∗) ≤ n, we have

E[Λ(P ∗)] ≤ Θ

(

logn

log logn

)(

1− 1

n

)Θ( T
2r )

+

n

[

1−
(

1− 1

n

)Θ( T
2r )

]

≤ Θ

(

logn

log logn

)

, n → ∞.

Combining above analysis leads to E[Λ(P ∗)] =

Θ

(

logn

log logn

)

.

C. Discussion

Comparing the performance of optimal and random data

harvesting algorithms, we can observe that when the network

scales, especially when n → ∞, the optimal algorithm signif-

icantly outperforms the random one. Even though the trend is

logarithmic not polynomial or exponential, the gap can still be

significant in large networks. In other words, a data harvesting

algorithm not carefully chosen, such as randomly choosing a

harvesting path, can be very inefficient. The motivates our

second part of work on the following fundamental question:

• How to design efficient data harvesting algorithms that

approaches the performance of the optimal algorithm

(i.e., efficient algorithms solving Problem 1)? Mathemat-

ically, by efficient algorithms we mean polynomial-time

approximation schemes (PTAS).
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Remark. Theorem 2 establishes the performance of the opti-

mal algorithm. However, it does not specify how the optimal

path can be constructed given a network instance. Choosing

the path as indicated in the first step in the proof of Theorem 2

only performs well in the average sense when a large number

of instances are executed, but it cannot give the optimal path

for a given network instance. In fact, as we will show in the

next section by Theorem 3, the problem of constructing the

optimal path as formulated in Problem 1 is NP-complete.

V. POLYNOMIAL-TIME APPROXIMATION SCHEME DESIGN

FOR TIME-CONSTRAINED DATA HARVESTING PROBLEM

In this section, we design polynomial-time approximation

data harvesting algorithms that approaches the performance of

the optimal algorithm. To start, we first show that Problem 1

is NP-complete.

A. NP-completeness of Problem 1

Theorem 3 (NP-completeness of Time-constrained Data Har-

vesting Problem). Problem 1 is NP-complete.

Proof: To prove the NP-completeness of Problem 1, we

relate Problem 1 to the well-known travel salesman problem

(TSP) for which there is no PTAS with an approximation factor

better than 220
219 , unless P = NP [5]. Specifically, we show

that if Problem 1 can be solved in polynomial time, then we

can construct a PTAS with an approximation factor better than
220
219 for the TSP.

To that end, given any graph Gt , (Vt, Et) on which we

need to solve the TSP, we instantiate Problem 1 by choosing r

such that r < mine∈Et
d(e), for example, r → 0. We consider

the non-trivial case where |Vt| ≥ 2. In the following we show

that if Problem 1 can be solved in polynomial time, we can

develop an algorithm that solves TSP in polynomial time with

an approximation factor better than 220
219 .

Before developing our algorithm, we prove the following

property of Problem 1.

Claim 3. Denote P ∗(τ) the solution of Problem 1 on Gt with

parameter T = τ and r < mine∈Et
d(e); let tmin , min

e∈Et

d(e)

and tmax ,
∑

e∈Et

d(e), it holds that

Λ(P ∗(tmin)) = 2 and Λ(P ∗(1.5tmax)) = |Vt|.

Proof: For the first part, it is easy to see that Λ(P ∗(tmin)) =
2 when r < mine∈Et

d(e). To show Λ(P ∗(tmax)) ≥ |Vt|, it

suffices to notice that a spanning tree of Gt can be converted

into a path using the famous 1.5-approximation algorithm for

the TSP in [18]. Since the length of any spanning tree of Gt

is upper bounded by tmax, we are sure to be able to find a

path passing all nodes with the maximum length 1.5tmax. In

other words, Λ(P ∗(1.5tmax)) = |Vt|.
Now we construct the following algorithm. We iterate on

a variable t from t = tmin + ǫ to 1.5tmax by increasing

t by ǫ from one iteration to the next, where ǫ is a small

constant chosen such that ǫ ≤ tmin

220 . In each iteration, we

solve Problem 1 with the constraint d(P ) ≤ t. It follows

from Claim 3 and Lemma 1 (Monotonicity) that there exists

t0 ∈ [tmin, 1.5tmax] such that Λ(P1) ≤ |Vt| − 1 and

Λ(P2) = |Vt|, where P1 and P2 are the solutions of Problem 1

with the constraints d(P ) ≤ t0−ǫ and d(P ) ≤ t0, respectively.

It can be noted that

• the above algorithm runs in polynomial time;

• P2 is a solution of the TSP on G with an approxi-

mation factor t0
t0−ǫ

which is upper bounded by 220
219 as

t0 ≥ tmin + ǫ and ǫ ≤ tmin

220 .

This result contradicts the fact that there is no PTAS solving

the TSP with an approximation factor better than 220
219 and

proves the NP-completeness of Problem 1.

B. Polynomial-time Approximation Algorithm Design: Non-

overlapping Neighborhood Case

Given the complexity of the time-constrained data harvest-

ing problem, we first investigate a specific scenario where

the neighborhoods of any two nodes are non-overlapped (i.e.,

Di

⋂

Dj = ∅, ∀vi, vj ∈ V) and develop a PTAS for Problem 1.

We start by the following definition of topological path.

Definition 1 (Topological path). A path Pt is called a topo-

logical path in a graph if Pt is composed of uniquely the edges

in the graph.

Generically, we call a path geometrical path, denoted as Pg

for presentation clarity, to emphasize that Pg is not necessarily

a topological path as Pg may contain curves and may start

and end at any point. Of course, a topological path is also

a geometrical one, i.e., let Pg and Pt denote the sets of

geometrical and topological paths, it holds that Pc ⊂ Pg .

The key element towards designing a PTAS for Problem 1 is

to establish the relationship between geometrical and topologi-

cal paths in terms of path length and number of covered nodes,

the two metrics on which we are focused. This relationship is

established in two steps:

• Step 1: We show that any geometrical path Pg can be

approximated by a topological path Pt such that

d(Pt) = O(d(Pg)), and Λ(Pt) = Λ(Pg).

• Step 2: We show that any topological path Pt can be ap-

proximated by a geometrical path Pg via a geometrisation

procedure that we develop such that

d(Pg) = O(d(Pt)), and Λ(Pg) ≥ Λ(Pt).

We start by the first step to approximate a geometrical path

Pg by a topological path Pt. By slightly abusing the notation,

for a given path P , we reuse Λ(P ) to denote an ordered set

of nodes covered by P 4. Using this notation, a topological

path Pt can be uniquely noted by Λ(Pt). Given an ordered

set of nodes Vg = {v1, v2, · · · , v|Vg|}, for any geometrical

path Pg with Λ(Pg) = Vg , we construct a topological path

Pt = Vg. It holds that d(Pt) = O(d(Pg)) and Pt covers

all nodes in Vg . Let the geometrical path P ∗
g denote the

geometrical path of minimum length among those covering

Vg, it holds that d(Pt) = Θ(d(P ∗
g )). This approximation result

is mathematically formalised in Lemma 4, whose proof is

detailed in the technical report [19].

4We denote the end node with the smaller ID as the source node.
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Lemma 4. Given an ordered set of nodes Vg, ∀Pg , Λ(Pg) =
Vg, let Pt = Vg, it holds that d(Pt) = O(d(Pg)). Particularly,

let P ∗
g = argmin

Λ(Pg)=Vg

d(Pg), it holds that d(Pt) = Θ(d(P ∗
g )).

We then proceed to the second step to approximate a

topological path Pt by a geometrical path Pg by introducing

geometrisation, formally defined in the following.

Definition 2 (Geometrisation). Given a topological path Pt,

the geometrisation procedure finds a geometrical path Pg that

approximates Pt. By approximation we require that

d(Pt) = Θ(d(Pc)), and Λ(Pt) ≥ Λ(Pc).

Algo. 1 details the proposed geometrisation procedure,

whose core part is further illustrated in Fig. 1. It is straight-

forward to see that d(Pg) < d(Pt). One technical point

worth commenting is how to find Mi on Di such that

|Mi−1Mi| + |Mivi+1| is minimised (line 6). Mi can be

efficiently found by using the following technique: consider

the outside border of Di as a mirror; let a light beam be

emitted from Mi−1 and then be reflected by Di to reach vi+1;

it follows from the theory of optics that light always travels

using the shortest path; hence Mi corresponds to the reflection

point of the light beam on Di and can be found geometrically

by equalising the angle of incident and the angle of reflection.

Algorithm 1 Geometrisation

Input: Topological path Pt passing nodes in Vt

Output: Geometrised path Pg

1: Denote the intersection point of v1v2 and D1 by M1;

2: for i = 2 to |Vt| − 1 do

3: if Mi−1vi+1 covers Di then

4: Denote the first intersection point between Mi−1vi+1

and Di by Mi; // See Fig. 1 (left);

5: else

6: Find a point Mi on Di such that |Mi−1Mi| +
|Mivi+1| is minimised; // See Fig. 1 (right);

7: end if

8: end for

9: Denote the intersection point of M|Vt|−1v|Vt| and D|Vt|

by M|Vt|;

10: Return Pg = {M1M2, · · · ,M|Vt|−1M|Vt|};

vi−1

vi

vi+1Mi−1 Mi
vi−1

vi

vi+1Mi−1

Mi

Fig. 1. Illustration of the core part of Algo. 1.

It is worth mentioning that the for loop in Algo. 1 can

be repeated so as to further improve geometrisation effec-

tiveness (i.e., decrease d(Pg)). To make this clearer, let

P j−1
g = {M j−1

1 M
j−1
2 , · · · ,M j−1

|Vt|−1M
j−1
|Vt|

} denote the output

of Algo. 1 at iteration j − 1, for iteration j, it suffices to

set Pt = P j−1
g by letting vk = M

j−1
k (2 ≤ k ≤ |Vt| − 1)

in the algorithm. We observe via simulation that that the

improvement is not significant or even negligible when Algo. 1

is executed more than a handful of times.

After establishing the relationship between geometrical and

topological paths, we are now ready to present the global

PTAS for Problem 1, as detailed in Algo. 2.

Algorithm 2 PTAS solving Problem 1: non-overlapping neigh-

borhood case
Input: Coordinates of nodes in V
Output: Π∗: a constant factor approximation of P ∗

1: Construct a complete graph G with node set V ; set the

length of the edge between vi and vj to be vivj ;

2: For each node pair (vi, vj), find the topological path

Πt(i, j) passing the maximum number of nodes in V
whose geometrised path Πg(i, j) satisfies d(Πg(i, j)) ≤ T

using Algo. 1 and the algorithm of max-prize path in [20]

by setting the prize for each node to be 1;

3: Return Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j));

The core idea of Algo. 2 is as follows: for each

node pair, we find the topological path Πt(i, j) passing

the maximum number of nodes in V whose geometrised

path Πg(i, j) satisfies d(Πg(i, j)) ≤ T ; we then return

Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j)). The two building blocks

in Algo. 2 is the geometrisation algorithm (Algo. 1) and

the algorithm of max-prize path in [20]. Given a graph in

which each node has a certain amount of prize, the max-

prize algorithm finds in polynomial time a path collecting the

maximum quantity of prize whose length is bounded by a

constant, given as an input parameter. The following theorem

formally establishes the performance of Algo. 2.

Theorem 4 (Performance of Algo. 2). Algo. 2 returns Π∗

within polynomial time. It holds that Λ(Π∗) = Θ(Λ(P ∗)),
where P ∗ denotes the optimal data harvesting path under time

constraint T .

Proof: The polynomial-time complexity of Algo. 2 follows

from the polynomial-time complexity of Algo. 1 and the

algorithm of max-prize path.

The second part of the theorem Λ(Π∗) = Θ(Λ(P ∗)) can be

proved using Lemma 4 and Lemma 1. Specifically, it follows

from Lemma 4 that for any τ ≤ T , there exists a topological

path Pt such that

Λ(Pt) = Λ(P ∗(τ)), d(Pt) ≤ cτ,

where c ≥ 1 is a constant factor. Now let τ = T
c

, apply

Lemma 1 by setting κ = 1
c
, we have d(Pt) ≤ T and

Λ(Pt) = Λ(P ∗(τ)) ≥ Λ(P ∗(T ))

c+ 1
.

On the other hand, it follows from the geometrisation

procedure and Algo. 2 that

Λ(Π∗) = max
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j)) ≥ Λ(Pt) ≥
Λ(P ∗(T ))

c+ 1
.

The theorem is thus proved.
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C. Polynomial-time Approximation Algorithm Design: Over-

lapping Neighborhood Case

In this subsection, we extend our efforts to study the generic

case with overlapping neighborhoods.

We first construct a graph G′ whose node set is V and

there is an edge between vi and vj if vivj ≤ 2r. We then

construct a maximal independent set (MIS)5 of G′ using a

coloring algorithm similar as presented in [21], [12], detailed

in Algo. 3 for completeness.

Algorithm 3 MIS Construction of G′

Input: Graph G′

Output: MIS set U
1: Initialisation: Set U = ∅; Color all Di (vi ∈ V) white;

2: repeat

3: Color a white disk Di black and add vi into U ;

4: Color every white disk Dj gray if vj is vi’s neighbor;

5: until there is no white disk

6: Return U ;

We then define backbone topological paths, which can be

regarded as topological paths using nodes in the MIS U .

Definition 3 (Backbone Topological path). A path Pb is called

a backbone topological path, or backbone path for short,

in a graph if Pb is composed of uniquely the edges whose

endpoints are in the MIS of the graph except the source and

the destination nodes.

As in the case of non-overlapping neighborhood, we call a

path geometrical path, denoted as Pg , to emphasize that Pg

is not necessarily a backbone path. Of course, a backbone

path is also a topological path, and a geometrical one: i.e., let

Pg, Pt and Pb denote the sets of geometrical, topological and

backbone paths, it holds that Pb ⊂ Pt ⊂ Pg .

We apply the same analysis and design methodology in

the non-overlapping neighborhood case and adapt it in the

overlapping neighborhood case. A point M is said to be

touched by path P if the minimum distance between any point

of P and M is larger than r but smaller or equal to 2r. The key

element of designing a PTAS for Problem 1 with overlapping

neighborhoods is to establish the relationship among geomet-

rical, backbone, and geometrised backbone paths in terms

of path length and number of touched and covered nodes.

Specifically, we establish the relationship two steps:

• Step 1: We show that any geometrical path Pg can be

approximated by a backbone path Pb such that d(Pb) =
O(d(Pg)) and ∀vi covered by Pg , vi is either covered or

covered by Pb;

• Step 2: We show that any geometrical path Pg can be ap-

proximated by another geometrical path P ′
g geometrised

from a backbone path Pb via a backbone geometrisation

procedure such that

d(P ′
g) = O(d(Pg)), and Λ(P ′

g) ≥ Λ(Pg).

5An independent set (IS) of an undirected graph is a subset U of nodes
such that no two nodes in U are neighbors. An IS is maximal if no node can
be added to U without violating IS. A maximal IS, or MIS, can be found in
polynomial-time. Note that a related concept, a maximum IS (called MaxIS),
is one IS of maximum cardinality. Finding MaxIS, however, is NP-complete.

We start with the first step by showing the following lemma.

The proof uses similar reasoning technique as the proof of

Lemma 4 and is detailed in the technical report [19].

Lemma 5. Given any geometrical path Pg , there exists a back-

bone path Pb such that d(Pb) = O(d(Pg)) and ∀vi covered

by Pg , vi is either covered or touched by Pb. Particularly, let

P ∗
g = argmin

Λ(Pg)=Vg

d(Pg), it holds that d(Pb) = Θ(d(P ∗
g )).

We then proceed to approximate a backbone path Pb by a

geometrical path Pg by introducing backbone geometrisation,

formally defined in the following.

Definition 4 (Backbone Geometrisation). Given a backbone

path Pb, the backbone geometrisation procedure finds a geo-

metrical path Pg that approximates Pb. By approximation we

require that d(Pb) = Θ(d(Pg)), and Λ(Pb) ≥ Λ(Pg).

In [12], the authors develop a polynomial-time backbone

geometrisation algorithm, which will be used in our design.

The following lemma approximates a geometrical path by

another geometrical path geometrised from a backbone path.

Lemma 6. Given any geometrical path Pg , there exists a path

P ′
g geometrised from a backbone path Pb such that

d(P ′
g) = O(d(Pg)), and Λ(P ′

g) ≥ Λ(Pg).

Proof: The lemma follows straightforwardly from Lemma 5

and the backbone geometrisation algorithm.

After establishing the relationship among geometrical, back-

bone and geometrised backbone paths, we now present the

design of the global PTAS for Problem 1 for the overlapping

neighborhood case, as detailed in Algo. 4.

Algorithm 4 PTAS solving Problem 1: overlapping neighbor-

hood case

Input: Coordinates of nodes in V
Output: Π∗: a constant factor approximation of P ∗

1: Construct a graph G′ whose node set is V and there is an

edge between vi and vj if vivj ≤ 2r;

2: Run Algo. 3 on G′ to construct an MIS U ;

3: Construct a complete graph G with node set V ; set the

length of the edge between vi and vj to be vivj ;

4: For each node pair (vi, vj), with the MIS U constructed

in 2, find the backbone path Πb(i, j) passing the maximum

number of nodes in V whose geometrised path Πg(i, j)
satisfies d(Πg(i, j)) ≤ T using the algorithm in [12] and

the algorithm of max-prize path in [20] by setting the

prize for each node i to be the number of nodes covered

or touched by Di;

5: Return Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j));

The core idea of Algo. 4 is as follows: for each node

pair (vi, vj), we find the bcckbone path Πb(i, j) passing

the maximum number of nodes in V whose geometrised

path Πg(i, j) satisfies d(Πg(i, j)) ≤ T ; we then return

Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j)). The two building blocks in

Algo. 2 is the backbone geometrisation algorithm [12] and the
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algorithm of max-prize path [20]. When running the algorithm

of max-prize path, we set the prize of each node vi to be the

number of nodes covered or touched by Di, which allows us

to achieve constant-factor approximation (as detailed in the

proof of Theorem 5). The following theorem establishes the

performance of Algo. 4.

Theorem 5 (Performance of Algo. 4). Algo. 4 returns Π∗

within polynomial time. It holds that Λ(Π∗) = Θ(Λ(P ∗)),
where P ∗ denotes the optimal data harvesting path.

Proof: The polynomial-time complexity of Algo. 2 follow-

ing from the polynomial-time complexity of the geometrisa-

tion procedure [12] and the algorithm of max-prize path. We

now prove second part of the theorem Λ(Π∗) = Θ(Λ(P ∗)).
Given a path Pg geometrised from a backbone path Pb,

we denote the total collected prize along Pb by Q(Pb) and set

Q(Pg) = Q(Pb). It can be noted that Λ(Π∗) ≤ Q(Π∗). It then

follows from Algo. 4 and Lemma 6 that Q(Π∗) = Ω(Λ(P ∗)).
In the calculation of the max-prize in Algo. 4 (Step 4), a

node may be counted multiple times in the final prize of the

path. This is because a node can be covered by at most one

node from the MIS U but can be touched by multiple nodes

from U . We next upper-bound the number of times a node is

counted by 5. To prove this, we note that a node is counted

more then once in the prize of a path if and only if it is

not covered by any node in U and it is touched by multiple

nodes in U . Since any two node in U do not have overlapping

neighborhoods, it is geometrically easy to see that any node

not covered by any node in U can be touched by at most 5
nodes in U . This result leads to 5Λ(Π∗) ≥ Q(Π∗).

We have already proved that Q(Π∗) = Ω(Λ(P ∗)). It then

holds that Λ(Π∗) = Ω(Λ(P ∗)). On the other hand, by the

definition of P ∗, we have Λ(Π∗) ≤ Λ(P ∗). It then holds that

Λ(Π∗) = Θ(Λ(P ∗)), which completes the proof.

VI. NUMERICAL ANALYSIS

In this section, we conduct numerical analysis to evaluate

the performance of the our constant-factor approximation

algorithm of the time-constrained data harvesting problem. To

our knowledge, our algorithm is the only one addressing the

trajectory optimisation in the time-constraint data harvesting

problem, so we evaluate the performance of our algorithm with

respect to the random algorithm where the data harvesting path

is randomly chosen.

Specifically, we set up a simulation area of an Euclidean

quare [0, 1000]2 and randomly deploy a number of n nodes

in the square, where n varies from 200 to 1000. The time

constraint T is set to 100. We vary the communication range

r to study various representative scenarios. By varying n

and r, we can simulate both a sparsely deployed network

where the neighborhoods of nodes are largely non-overlapping

(small n and r) and a densely deployed network where the

neighborhoods of nodes are largely overlapping (large n and

r). For each set of chosen parameters, we run a number

of independent simulations where the nodes’ positions are

randomly chosen and the required number of simulation runs is

calculated using “independent replications” [22]. Throughout

our simulations, we trace the following metric to evaluate the

performance of our algorithm:

Υ =
Quantity of data harvested by our algorithm

Quantity of data harvested by random algorithm
The value of Υ characterises the performance gain of our

algorithm over the random one. We are particularly interested

in tracing the following cases:

• Worst-case performance gain: Under given parameters n,

r, we study the worst-case performance gain among the

simulation runs, i.e., the minimum value of Υ, denoted

as Υmin. This result gives the lower-bound of the perfor-

mance gain our algorithm can achieve over the random

one;

• Best-case performance gain: Under given parameters n,

r, we study the best-case performance gain among the

simulation runs, i.e., the maximum value of Υ, denoted

as Υmax. This result gives the upper-bound of the per-

formance gain our algorithm can achieve;

• Average performance gain: Under given parameters n,

r, we study the average performance gain among the

simulation runs, i.e., the average value of Υ, denoted as

Υavg. This result gives the average of the performance

gain of our algorithm.

The simulation results are illustrated in Fig. 2 and Fig. 3.

In Fig. 2, we fix n = 200 and trace Υ as a function of r by

varying r from 2 to 10. In Fig. 2, we fix r = 6 and trace Υ
as a function of n by varying n from 200 to 1000. Based on

the simulation results, we make the following observations:

• Compared to the random algorithm, our algorithm

achieves significant performance gain. Particularly, our

algorithm can secure a performance gain of nearly 5 times

that of the random algorithm in the simulated scenarios.

In the extreme case, it performances 50 times better than

the random algorithm. The results also demonstrate our

theoretical finding in Sec. IV that a data harvesting algo-

rithm not carefully chosen, such as randomly choosing a

data harvesting path, may lead to significant performance

loss.

• When the system scales, the performance gap between

our algorithm and the random one increases, which again

is in accordance of our theoretical analysis Sec. IV. When

the communication range r increases, the the performance

gap also increases. This can be explained by the fact that

our algorithm carefully chooses the data harvesting path

so as to cover as many nodes as possible given the time

constraint. In contrast, the random algorithm cannot fully

take the advantage brought by larger r with a randomly

chosen path.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have studied the problem of time-

constrained data harvesting problem in which a data ferry

seeks an optimal data collection path to collect as much

data as possible within a time duration. This problem models

the situation where time-sensitive data should be reported to

the sink within certain time before they become obsolete.

We have first characterised the performance bound given
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Fig. 2. Maximum, average, and minimum performance gain of our algorithm
over the random algorithm as functions of r (n = 200).
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Fig. 3. Maximum, average, and minimum performance gain of our algorithm
over the random algorithm as functions of n (r = 6).

by the optimal data harvesting algorithm and shown that

the optimal algorithm significantly outperforms the random

algorithm, especially when the network scales. Motivated by

the theoretical analysis and proving the NP-completeness of

the time-constrained data harvesting problem, we have then

devised a PTAS of the problem and mathematically proved its

output being a constant-factor approximation of the optimal

solution.

As a small step towards characterising efficient data harvest-

ing algorithms, our work can stimulate further investigations

in this field. The first interesting research direction is to use the

methodology in the paper to study more sophisticated variants

of the data harvesting problem, e.g., the case of multiple data

ferries with heterogeneous moving speed. The second consists

of investigating the data harvesting problem where the data

ferry does not have full knowledge of the network topology

and should make its decision based on only local information

and interactions.
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