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ABSTRACT
Using optical sensors for indoor monitoring has been widely
adopted in many smart building applications. An important
design problem in this space is to explore the tradeoff be-
tween energy consumption and coverage quality. While it is
important that the sensors achieve full coverage (i.e., every
interesting target point can be monitored by at least one sen-
sors), it is often a waste of energy to keep sensors on all the
time as events are typically stochastic and rare and most of
the time the sensors are on idle monitoring. In this paper we
design efficient sensor duty cycles to ensure that any target
point of interest is still covered sufficiently frequently while
only a subset of sensors are kept on at any time slot. We
denote by the maximum dark length for each target point
p as the maximum duration in which p is covered at least
once. We formulate two optimization problems: the min
max dark length scheduling and the min average dark length
scheduling. For both versions we provide efficient, practical
algorithms with provable approximation guarantee. The two
algorithms have been tested on two real testbed scenarios to
evaluate its efficiency and coverage quality.

CCS Concepts
•Networks → Sensor networks; •Theory of computa-
tion → Scheduling algorithms;
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1. INTRODUCTION
Optical networks have been widely deployed in modern

buildings for various indoor monitoring applications, such
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as motion detection using passive infrared sensors [1], safety
surveillance using camera networks [2], window system con-
trol using visible light sensors [3], and indoor localization
using infrared systems [4]. By the nature of the direction-
ality of signals used in these applications, it is often a non-
trivial problem to deploy the sensors to obtain full coverage
of the domain. Once the sensor locations are determined, it
is often assumed that all sensors are kept on all the time.
Keeping all sensors on may consume a significant amount
of energy especially when the events happen in a stochastic
manner. Most of sensing energy is wasted on idle monitor-
ing, which is inefficient and sometimes unnecessary. There
is a need to reduce energy consumption on idle sensing as
long as the application requirements are met.

For most of the optical sensing applications such as surveil-
lance and target localization, full coverage is important so
that every location of the area can possibly be monitored.
Fortunately, these applications may not require every loca-
tion in the domain to be covered all the time, because 1) the
physical events that appear in the domain usually last for
a certain period of time. For example, an intruder usually
passes through a camera’s view in a few seconds; the shadow
cast by human movement lasts for hundreds of milliseconds;
2) these events can be collaboratively detected by a net-
work of sensors. One location can be covered by multiple
sensors. Although an individual sensor can miss an event,
another sensor may still catch it. Therefore, our goal is to
design efficient optical sensing schedules to turn sensors on
and off, achieving a good tradeoff between detection delay
and sensing energy consumption.

In this paper we formulate the sensor duty cycle schedul-
ing problem in a general manner. We assume a domain D
and a set of n sensors that collectively cover it. We do not
make any special assumptions on sensing coverage range.
Instead each node g is associated with a set P (g) represent-
ing the region of coverage. This allows the results in this
paper to be applied in the most general setting, incorporat-
ing a variety of sensing models (omni-directional models or
non-isotropic ones such as line-of-sight constraints). We as-
sume that time is slotted and at each time slot, k out of n
sensors are turned on. k is a parameter that can be used to
tune the expected energy consumption level. The problem is
to decide which set of sensors to turn on in each slot and in
what order such that each target point is covered sufficiently
frequently. The set of target points can be either discrete or
continuous.

We discussed two different evaluation metrics on the qual-
ity of coverage. The first version, the min max dark length



scheduling, minimizes the value C such that in every con-
secutive C slots every target is covered at least once. This
provides worst case guarantee on all target points. We show
that this problem in general is NP-hard, but if the set of
sensor nodes V is a minimal set – meaning every node cov-
ers a unique target that is not covered by any other sensors
(i.e., every sensor is needed for full coverage), then round
robin on this set V is optimal.

In the second evaluation metric, we try to minimize the
weighted average of the max dark length for each target in
the domain D. This has the freedom of being not tailored
by the worst case scenario but rather measures average cov-
erage quality. The weights can also be used to provide dif-
ferentiation on the importance of different targets. For this
problem we provide, again, an easy and intuitive algorithm
with an O(1)-approximation when k = Ω(logn/ log log n)
and O(logn/ log logn)-approximation otherwise. The algo-
rithm is basically round robin on a random permutation in
which there are τ(g) copies of each sensor g. The parameter
τ(g) for each g ∈ V can be solved by convex optimization.

In addition to providing theoretical guarantees of the algo-
rithms, we have also conducted both simulations and testbed
experiments to evaluate our algorithms. Under different de-
ployment topology and schedules, we can achieve a signif-
icant amount of energy saving on sensing with a modest
decay of coverage quality.

The contributions of this work are listed as follows,

• To the best of our knowledge, this is the first work to
investigate general sensor scheduling of optical sensor
networks with theoretical guarantees. The algorithms
are sufficiently simple and can be implemented in a
real system.

• With extensive simulations and system experiments
on an infrared localization system and a camera net-
work, our algorithms can reduce energy consumption
to about 1/3 with a maximum detection delay of 5
seconds.

In the rest of the paper we first survey related work on
sensor duty cycle scheduling. Then we present our theoret-
ical analysis and algorithm design under two optimization
metrics. We report the simulation results and testbed eval-
uation last.

2. RELATED WORK
There are three major lines of research relevant to this

work: scheduling algorithms in sensor networks, scheduling
algorithms in camera networks, and coverage algorithms.

Scheduling Algorithms in Sensor Networks. Schedul-
ing algorithms are studied in a wide range of computing
systems, such as wireless networks [5, 6, 7, 8, 9, 10, 11, 12,
13], sensor systems [14, 15, 16, 17, 18, 19, 20, 21, 20, 22, 23,
24, 25, 26], and energy systems [27, 28]. Among these al-
gorithms, duty cycle based scheduling algorithms have been
widely adopted in communication [29, 30, 31] and energy
management [32, 33] in low power systems. Various duty
cycled sensing algorithms have also been developed with
different detection and energy saving objectives. In [34],
authors designed algorithms to adjust a node’s duty-cycle
according to the current amount of residual energy. In [35],
a probabilistic scheduling of the duty cycles is designed to

ensure event detection probabilities. These works usually
assume that a sensor is switched on-and-off once every cer-
tain period of time, which is easy to implement. What has
been missing in such work is the lack of coordination among
different sensors. In particular, when multiple sensors have
significantly overlapping sensing ranges it would be more ef-
ficient to consider a joint optimization of multiple sensors at
the same time, to further reduce energy consumption while
maintaining the same level of coverage quality. This is also
the main aspect that our work differs. The challenge of our
problem is to consider the collaborative sensing on the tar-
get areas at a network scale with monitoring performance
guarantees and reduced energy consumption.

Scheduling Algorithms in Camera Networks. There
are a few papers that discuss specifically scheduling and con-
trol in optical sensor or camera networks. Authors of [36,
37] presented collaborative sensing algorithms using the field
of view sensing model. In [38, 39, 40, 41], authors designed
algorithms to determine the locations of cameras given dif-
ferent deployment requirements. In [42], authors formulate
an optimization problem that aims to maximize the dura-
tion of coverage for the most critical part of the monitored
region. Our work falls in this category as well, although we
do not limit our algorithm to be just for camera scheduling.
We allow a general definition of sensing ranges and in addi-
tion provide worst case guarantees for coverage quality. This
complements and enriches existing work in this domain.

Coverage Algorithms. There are a large body of re-
search literature on coverage algorithms in wireless sensor
networks. Some of these works consider the sensor selection
and scheduling problems to meet specific coverage goals [43].
In [44], an analytical framework for object detection in sen-
sor networks is described, which allows mathematical anal-
ysis on average-case object detection quality in random and
synchronized sensing schedules. Authors of [45] investigated
the problem of sensor selection for minimizing error covari-
ance using mobile sensors. In [46], authors presented a cen-
tralized and a distributed algorithm to select the minimal
number of nodes to monitor p-percent of the monitored area.
These works usually assume circular sensing range, which is
not suitable for optical sensor network or camera networks
discussed in this paper.

3. SCHEDULING PROBLEM STATEMENT
We define the scheduling problem in a generic manner.

Given a domain D to be monitored and a set of n sensor
nodes V, we define by P (g) the region of coverage by a sen-
sor node g ∈ V. Without loss of generality we can assume
that the union of coverage ranges by all nodes in V is D. D
can be either a continuous domain (for example when the
entire room needs to be monitored) or a discrete set of tar-
get locations of interest. We would like to design an efficient
duty-cycle schedule of the sensor nodes such that D is still
well covered and the total amount of time that the sensors
stay on/active is reduced. This problem explores the trade-
off between coverage quality and energy consumption in the
design space.

In our definition, we assume that time is slotted and at
any slot, only k nodes are active. k is a parameter that
controls the amount of energy consumption expected in the
system and is assumed to be given. We will need to choose
which set of nodes to turn on and in what order to ensure



that the coverage quality remains high. Since not all sensors
are on all the time, a point p ∈ D is not necessarily covered
at all times. Thus we say p is lighted up if any of the active
nodes at this slot covers p; and dark otherwise. Naturally
we would like the dark period to be as short as possible.
Rigorously, we define for each point p ∈ D the max dark
length T (p) such that p is lighted up at least in some slot
for every contiguous T (p) time slots. It is exactly one plus
the maximum length of any contiguous dark period. An
example of T (p) is shown in Figure 1.

g1 g2 g3 g2 g1 g2 g3 g2S :

p1

p2 p2

p3

p4

p2

p3

p2

p3

p2

p3

p1

p2

p4

...

Figure 1. An example of four target points p1, p2, p3, p4
and three sensor nodes g1, g2, g3. P (g1) = {p1, p2}, P (g2) =
{p2, p3}, P (g3) = {p4}. k = 1. Suppose we have a schedule
S that repeatedly turns on g1, g2, g3, g2 in this order. With
this schedule the max dark length for the four targets are
the following: T (p1) = 4, T (p2) = 2, T (p3) = 2, T (p4) = 4.

Now we formulate two research problems.

1. Min Max Dark Length Scheduling. Find a sched-
ule S as an ordered list in which Si is the set of nodes
staying on in the ith time slot, |Si| ≤ k such that the
maximum dark length for any point p ∈ D is mini-
mized:

min max
p∈D

T (p).

2. Min Average Dark Length Scheduling. Find a
schedule S as an ordered list in which Si is the set
of nodes staying on in the ith time slot, |Si| ≤ k such
that the weighted average of maximum dark length for
all points p ∈ D is minimized:

min
∑
p∈D

w(p) · T (p).

Here w(p) is a weight parameter and can be set higher
for locations that are more important in applications.

In the first problem we minimize the maximum dark length
for all points in the domain, achieving a worst case guaran-
tee. In the second problem formulation, we try to achieve
a good average and further we can use the weight w(·) to
allow differentiation of different target points in D. In the
following we will discuss the two versions separately.

4. MIN MAX DARK LENGTH
SCHEDULING

The intuitive explanation for this objective function is
that we want to cover every point regularly and we want
to minimize the maximum time period that some point is
uncovered, when only k nodes can be active during any time
slot. Define C as the objective function maxp∈D T (p). First

we look at an intuitive schedule, by simply taking every k
nodes in an arbitrary sequence of the n nodes in a Round
Robin manner. That is, the first k nodes stay active in slot
1, the next k nodes stay active in slot 2 and so on. When
n is not a multiple of k, the last time slot is filled up by
arbitrarily other nodes. This schedule with period of dn

k
e is

then repeated indefinitely.

Theorem 4.1. Given a domain D and a set of n nodes V,
at any time only k nodes are operating simultaneously, a
round robin scheduling has max dark length at most dn

k
e.

Proof. For every dn
k
e slots in an arbitrary sequence of

the n nodes, each sensor node appears at least once in the
schedule. Since all nodes together cover D, every point of
D is covered at least once in one period. Therefore, ∀p ∈
D, T (p) ≤ dn

k
e. �

Given a set of node V, we say V is a minimal cover, if each
node of V covers a unique target point (which is not covered
by any other nodes of V). In other words, every node in V is
crucial and cannot be omitted if we want D to be covered.
In this case, the round robin scheduling is optimal. To show
that we first state a useful property of an optimal schedule.

... Si ... ... Sj ...S∗ :

p∗ p∗

C∗

Figure 2. When each node covers a unique target, the
round robin scheduling is optimal.

Suppose S∗ is the optimal schedule and p∗ be a point that
T (p∗) = C∗. In this optimal schedule the set of active nodes
in the ith slot is Si. Assume that the optimal value C∗ is
achieved by p∗ covered in Si and Sj with j > i but not in
any slot in between. C∗ = j− i. See Figure 2. For any other
points p′ ∈ D \ p∗, T (p′) ≤ T (p∗). So p′ must be covered
at least once between the ith and (j − 1)th slot. Therefore,
the union of the nodes that are active from the ith slot to
the (j−1)th slot, ∪j−1

`=i S`, covers all points of D. We denote
the schedule S̄ = Si, Si+1, · · · , Sj−1 a crucial sub-schedule
of S∗.

Theorem 4.2. If V is a minimal cover of D, the Round
Robin schedule is optimal.

Proof. We just need to show that the optimal scheduling
achieves dark length no less than dn

k
e. Suppose S∗ is the

optimal schedule and suppose C∗ < dn
k
e. Therefore, the

total number of nodes that are active in the crucial sub-
schedule is | ∪j−1

`=i S`| ≤ kC∗ < n. Thus at least one sensor
node (say node x) is not active in this period of time. The
target node p that is uniquely covered by x is not covered.
This means p must have dark length T (p) > C∗, which is a
contradiction that C∗ is the optimal value. �

When V is not a minimal cover, the challenge is to find a
minimum number of nodes in V that provide full coverage
of the domain D, denoted by the minimum cover, which by
itself is a classical set cover problem and thus is NP-hard.



But once this minimum set cover solution is given, doing a
periodic round robin scheduling is the optimal.

Theorem 4.3 (NP -hardness). Given a domain D, a set
of n nodes V among which k nodes operate simultaneously,
we have two statements:

1. Repeating a Round Robin schedule on a minimum
cover is the optimal schedule that minimizes the max
dark length of all points of D.

2. But finding this optimal schedule is NP-hard.

Proof. To prove the first statement, suppose S∗ is an
optimal schedule. Recall that the nodes that are active in
a crucial subschedule cover all points of D. This means
that C∗ is no smaller than dn∗/ke, where n∗ is the size of
the minimum cover. Since a round robin schedule using
a minimum cover achieves max dark length of dn∗/ke, by
Theorem 4.1, the optimality follows.

For the second claim, we use a reduction from the Set
Cover problem. Given an instance of the Set Cover Problem
(U ,S), U is the universe and S contains sets {Gi}, where
Gi ⊂ U . We take D as the universe, and create a set of
nodes where node i covers the subset Gi ∈ S. We also set
k = 1 in this reduction – if this special case of k = 1 is
NP-hard it is obvious that the general problem is NP-hard
as well. Our goal is to show that if we can solve the max
dark length problem then we find the optimal set cover. For
that, we will use two steps.

1. Claim 1: Any optimal schedule S∗ can be turned into
a periodic one.

2. Claim 2: For a periodic optimal schedule, the nodes
that ever appear in the schedule is a minimum cover
of D.

Therefore, any algorithm that solves the max dark length
problem basically solves the Set Cover problem.

For Claim 1, using the same setting as before, we can
simply repeat the crucial subschedule S̄ = SiSi+1...Sj−1 in-
definitely which achieves the same optimal value.

For Claim 2, recall that the union of the nodes that are
active in the crucial subschedule covers all points of D. Since
k = 1 this must be a minimum cover — otherwise we take
round robin on a minimum cover and we get a contradiction
on optimality. �

To summarize the discussion on this metric, if V is a min-
imal cover of D, we can find the optimal schedule imme-
diately by repeating the Round Robin sub-schedule. Oth-
erwise, we need to find a minimum cover of D to obtain
the optimal schedule which is NP-hard, but has an O(logn)
approximation by a greedy algorithm.

5. MIN AVERAGE DARK LENGTH
SCHEDULING

While the previous version provides the worst case guar-
antee of coverage quality for any point in D, it is possible
that a small portion of D controls the worst case value. For
example, suppose we have three nodes g1, g2, g3. g1 covers
only one target p1; g2 covers one target p2; and g3 covers
four targets p3, p4, p5, p6. In the optimal min max schedule
we will rotate between these three nodes and each target

has a dark length of 3. But in the min average optimization
we would favor g3 (i.e., schedule it more frequently) as its
coverage range is greater. To see that, just verify that the
average dark length for repeating the schedule g1, g3, g2, g3 is
8/3 ≤ 3. The min average optimization is able to adjust to
the differences in coverage range and in addition we can use
the weight function w(·) to provide better coverage quality
for targets of high importance. We assume that the weights
are integer values.

Before we present our algorithm we first analyze proper-
ties of the optimal solution.

Theorem 5.1 (Periodicity). There is a schedule for min
average dark length problem which is periodic and is a 2-
approximation.

Proof. We define A∗ =
∑
p∈D w(p) · T (p) as the op-

timal value. We also define A(t) as the weighted aver-
age of the schedule in the first t time slots, i.e., A(t) =∑
p∈D w(p)Tt(p), where Tt(p) is the maximum dark length

in the first t slots for target point p. A∗ and A(t) for any
t are integers. In fact the sequence A(t) when t goes to in-
finity will converge to A∗. For any target point p we notice
that Tt(p) is a non-decreasing function when t goes to infin-
ity. Thus A(t) is also non-decreasing. For a non-decreasing
sequence to converge to a fixed value A∗, it means that for
any ε > 0 there is a value T such that for any t ≥ T ,
|A(t)−A∗| ≤ ε. If we take ε = 1/2 we know that A(t) = A∗

for any t ≥ T , since both A(t) and A∗ are integers. By the
same argument we can say that Tt(p) = T (p) for any t ≥ T .

Now suppose the set of sensors active in the tth slot is
denoted as St. We take the following sequence and repeat
indefinitely:

S1, S2, · · ·ST−1, ST , ST−1, · · · , S2.

The new schedule S′ is a periodic schedule. Now we argue
that for each target point p ∈ D, T ′(p) ≤ 2T (p), where T ′(p)
is the maximum dark length in the new schedule S′.

Recall that for each point p, T (p) is realized in the first
T slots. We take j ≤ T to be the highest value such that
Sj covers p, and i ≥ 1 to be the smallest value such that Si
covers p. Clearly, T − j ≤ T (p); i − 1 ≤ T (p). Therefore,
consider the dark gap formed by

Sj+1, Sj+2, · · · , ST−1, ST , ST−1, · · · , Sj+1.

The dark length is no greater than 2T (p). Similarly, for the
dark gap formed by

Si−1, Si−2, · · · , S2, S1, S2, · · ·Si−1

the dark length is no greater than 2T (p). This proves the
claim that the new schedule S′ is a 2-approximation. �

Motivated by the above theorem, we will only consider pe-
riodic schedules. The best periodic schedule is a 2-approximation
of the optimal. In the following we first look at a special case
when the schedule is formed by taking a permutation of the
n nodes and performing round-robin on the sequence. Then
we generalize the results to a periodic schedule without the
permutation requirement.

5.1 Scheduling with a Permutation
In this part we first look at a special case, when the sched-

ule is determined by doing round robin on a permutation π
of the nodes. We can define the optimal schedule with this



additional restriction as the one that minimizes the objec-
tive function

∑
p∈D w(p) ·T (p). We denote the permutation

used in the optimal schedule as π∗.

G(p) = {g1, g2, g3, g4, g5, g6}

g1

g3

g4g6

g5

g2

bin1,3 bin3,4 bin4,6

bin6,5 bin5,2 bin2,1

G(p) ⊆ V , |V | = 16

m = |V \G(p)| = 10 balls

` = |G(p)| = 6 bins

Assume G(p) appears in the permutation with

this order g1, g3, g4, g6, g5, g2

Figure 3. Repeat a random permutation of nodes in V.

Consider a point p ∈ D, define G(p) as the collection
of nodes of V that cover p. Therefore the schedule with a
permutation π can be represented as placing the nodes in the
order of π on a circle. See Figure 3. The nodes of G(p) are
spread out along the circle. Therefore the maximum dark
length T (p) is precisely one plus the maximum gap between
these nodes of G(p) on the circle. Suppose |G(p)| = h(p).
Thus the nodes that are not in G(p) need to be placed in
the gaps between the nodes of G(p) on the circle. This gives
a trivial lower bound on T (p) for any permutation π:

Tπ(p) ≥ d1 +
|V \G(p)|
k · |G(p)| e = 1 + dn− h(p)

k · h(p)
e = B(p).

Therefore,

Aπ =
∑
p∈D

w(p)Tπ(p) ≥
∑
p∈D

w(p) · [1 + dn− h(p)

k · h(p)
e] = B.

The lower bound on the right hand side of the above inequal-
ity is usually impossible to achieve. But we show that by
using a random permutation π we can actually get a good
approximation to the lower bound B.

We now compute the expectation of the objective function
with respect to running round robin on a random permuta-
tion using linearity of expectation:

E[Aπ] = E[
∑
p∈D

w(p)Tπ(p)] =
∑
p∈D

w(p) ·E[Tπ(p)]

To analyze E[Tπ(p)] we will relate to the classical ‘Balls and
Bins’ problem. For a particular target p ∈ D, let ` = |G(p)|
and m = |V \G(p)|. B(p) ≥ 1 +m/(k`). Then Tπ(p) under
a random permutation is related to the maximum load of
throwing m balls into ` bins independently and randomly.
Figure 3 illustrates this connection.

The maximum load in the balls and bins game has been
studied a lot in the literature [47, 48]. We will basically state
the results.

• If m = Ω(` log `), then E[Tπ(p)] ≤ 1 +O(1) ·m/(k`) =
1 + O(1) · B(p), where B(p) is the best possible (as-
suming balls are uniformly put in the bins).

• If m = o(` log `), E[Tπ(p)] ≤ (1 + O(1)) log `
k log log `

≤
O(1) logn

k log logn
.

If we take k ≥ logn/ log log n, then from the above results
we see that E[T (p)] ≤ O(1) · B(p). Otherwise, E[Tπ(p)] ≤
O(logn/ log log n) ·B(p).

Theorem 5.2 (Random Permutation). Given n nodes
V that cover a domain D, the solution of doing round robin
of a random permutation π gives a α-approximation for
the min average dark length scheduling problem with ad-
ditional restriction that only round robin of a permutation
is used. Here α = O(1) if k ≥ logn/ log log n, and α =
O(logn/ log log n) otherwise.

5.2 Approximation Algorithm
The observation from the previous section can be used to

provide an approximation algorithm for the general case. We
consider the optimal periodic schedule. By Theorem 5.1 if
we have a β approximation of the best periodic schedule then
it is a 2β approximation for the optimal solution (possibly
non-periodic).

Suppose S is a periodic schedule. We consider the sched-
ule of one period, denoted by S̄. S̄ is not necessarily a
permutation of V. In fact, certain nodes in V may not show
up in S̄ at all, while some other nodes of V may show up
multiple times in S̄. We denote by τ(g) the number of times
that a node g ∈ V appears in one full cycle. τ(g) is always
an integer. τ(g) ≥ 0. Denote by T the length of one full
cycle in the schedule S. Then we know

∑
g∈V τ(g) = T · k.

Suppose we are able to guess the correct value of τ(g) and
T , then we can simply reduce the problem to the special case
studied in Theorem 5.2 and get an O(α) approximation. In
the following we show how to obtain good values for τ(g)
and T to achieve that.

If we define f(g) = τ(g)
kT

as the frequency of occurrence of
g in the schedule S, we have∑

g∈V

f(g) =
∑
g∈V

τ(g)

kT
= 1.

For each point p ∈ D, define the number of times that p is
covered in one cycle by X(p) :=

∑
g∈G(p) τ(g). Thus, T (p),

the largest dark length in the schedule, is lower bounded by
the average separation if all occurrences of nodes that cover
p are uniformly spread out:

T (p) ≥ T

X(p)
=

1∑
g∈G(p) τ(g)/T

=
1

k
· 1∑

g∈G(p) f(g)

The objective function for S is lower bounded in the follow-
ing inequality:

A =
∑
p∈D

w(p)T (p) ≥
∑
p∈D

w(p)/k∑
g∈G(p) f(g)

= B

Notice that in the above discussion we didn’t make any as-
sumption on what S is. Take the best periodic schedule S∗

the inequality holds.

A∗ =
∑
p∈D

w(p)T ∗(p) ≥
∑
p∈D

w(p)/k∑
g∈G(p) f

∗(g)
= B(f∗(g),∀g ∈ V)

The right hand side (i.e., B) is a lower bound of the op-
timal value, in which the only parameter is the frequency
f(g) of each node g. In the following we use two steps to
get a good approximation.



1. We show that we can minimize the value B in poly-
nomial time by choosing proper values of f(g) for all
g ∈ V.

2. We show an algorithm that achieves a β approximation
of the minimum possible B, which immediately gives
us a β approximation to the best periodic schedule, or
a 2β approximation to the optimal schedule.

Lemma 5.3. The following optimization problem is convex
and thus can be solved in polynomial time:

min
∑
p∈D

w(p)∑
g∈G(p) f(g)

subject to ∑
g∈G

f(g) = 1, f(g) ≥ 0

Proof. In this minimization problem the only parame-
ters are the values f(g) for g ∈ V. We only need to show
that the objective function is convex. Since the sum of con-
vex functions is still convex, we only need to verify that
1/

∑
g∈G(p) f(g) is convex. In other words,

1∑
g∈G(p)[f(g) + f ′(g)]

≤ 1∑
g∈G(p) f(g)

+
1∑

g∈G(p) f
′(g)

This can be verified easily. �

Remark that in the optimization problem it is easiest to
understand when the domain D has a discrete, finite num-
ber of target points. But the same can be applied when the
domain D is continuous. In this case, we can find the ar-
rangement defined by the sensor coverage ranges (i.e., the
decomposition of the domain D into pieces Di such that all
points in each piece Di are covered by the same subset of sen-
sors). The number of pieces in the arrangement is bounded,
typically in polynomial of n. For example, if line of sight
constraints is the only constraint in sensor coverage, with n
sensors inside a polygon of h vertices, the number of pieces
in the arrangement is bounded by O(n2h2). Then the sum-
mation over all points of p boils down to a weighted sum of
the finite number of pieces in the arrangement, which can
be solved in the same manner.

Now we solve this optimization problem for the best fre-
quency f ′(g) for all g ∈ V, which are real numbers. Since
f ′(g) minimizes the function B, we have

B(f ′(g), ∀g ∈ V) ≤ B(f∗(g), ∀g ∈ V) ≤ A∗

We can approximate these real number f ′(g) by rational

numbers f̂(g) while losing only a tiny factor (1 + ε) for an
ε > 0 that can be made arbitrarily small:

B(f̂(g),∀g ∈ V) ≤ B(f ′(g),∀g ∈ V)(1 + ε)

For rational numbers f̂(g) we can find integer values τ̂(g) for

all g ∈ V and integer value T̂ such that f̂(g) = τ̂(g)/(kT̂ ).

The scale of T̂ depends on the resolution of f̂(g) which de-

pends on the error ε. Thus for a fixed error ε, T̂ is bounded.
Now we have a set of nodes V and for each node g ∈ V

we repeat it τ̂(g) times so that we have a new set of nodes

V̂. By the discussion in the previous section, we simply
choose a random permutation of V̂ and run round robin
on it. This generates a schedule whose average dark length

value is at most α times the value B(f̂(g), ∀g ∈ V), according
to Theorem 5.2. Therefore the random permutation using
repetition τ̂(g) for g ∈ V will generate average dark length
value at most

α ·B(f̂(g),∀g ∈ V) ≤ α(1 + ε) ·A∗,

This finishes the proof for the following theorem.

Theorem 5.4. In polynomial time we can generate a sched-
ule which is round robin on a random permutation in which
node g is repeated τ̂(g) times, where τ̂(g) is produced by
the convex optimization procedure. This schedule achieves
an (2 + ε)α approximation to the optimal schedule. Here
α = O(1) if k ≥ logn/ log logn, and α = O(logn/ log logn)
otherwise.

At the end, we would like to summarize the algorithm for
the sake of clarity:

1. Solve the convex optimization problem for f(g) for
each node g ∈ V:

min
∑
p∈D

w(p)∑
g∈G(p) f(g)

subject to ∑
g∈V

f(g) = 1, f(g) ≥ 0

2. Suppose the optimal values for the above problem is
f ′(g) for g ∈ V, we take rational numbers f̂(g) to ap-
proximate f ′(g) such that the objective function is only
losing at most a factor (1 + ε) for ε > 0.

3. With f̂(g) being rational numbers, we find integers

τ̂(g) and T̂ such that f̂(g) = τ̂(g)/(kT̂ ).

4. Given the nodes V, we generate V̂ which is a random
permutation in which node g ∈ V is repeated τ̂(g)

times. We run round robin on V̂.

We remark that although the analysis of the theoretical
guarantee of the above algorithm is non-trivial, the algo-
rithm itself is essential taking a random permutation which
is sufficiently simple and practically appealing.

6. SIMULATION
We ran simulations to evaluate the performance of the

scheduling algorithm. We consider the scenario of an indoor
localization application, in which the topology of a room is
represented by a polygon and the possible target points (the
domain set D) monitored are selected by a grid sampling of
the interior of the polygon. Then we run a Greedy Set Cover
to find the set of vertex guards (the node set V) that can
fully cover these target points since the general Art Gallery
Problem is NP-hard. To maintain a full coverage of the
room, all guards in the greedy set need to be turned on at
all times. This is the baseline energy consumption.

Assume k = 1 and each time slot is 1 second in the lo-
calization system. Now we can only turn on one node per
second instead of |V| nodes. So the targets are not covered
in every time slot. We want to know the dark length of the
target points to understand the detection delay in such a
application.
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Figure 4. A topology with 113 targets in the domain and
3 nodes to cover the domain. The target point represented
by a red cross is uniquely covered by node g3.

Figure 4 illustrates an example with |D| = 113 and |V| =
3. There are three nodes where g1 covers 109 targets, g2
covers 108 targets and g3 covers 101 targets. If we want to
minimize the average dark length, we run the approxima-
tion algorithm in Section 5.2. After the optimization, the
weight of g1, g2 and g3 are 0.4173, 0.3883 and 0.1944 re-
spectively. In a periodic schedule with the length of period
= 100 time slots, g1, g2 and g3 should appear 42, 39 and 19
times respectively. Random permutation according to the
weights gives out an average dark length of 1.74 time slots
for each target. The weight of g3 is lowest because it covers
the least number of target but is necessary as a target point
(represented by red cross) is uniquely covered by g3. The
maximum dark length of this periodic schedule is very high
as g3 is not frequently scheduled so it is dominated by the
dark length of this unique target point. This illustrates the
difference between min average dark length and min max
dark length.

We simulated with 10 different room topologies (A few fig-
ures are provided after the conclusion). If we want to mini-
mize max dark length, we need to find the minimum cover.
The Greedy Set Cover solution is a O(logn)-approximation
to the optimal cover. For min average dark length, we run
the algorithm to get the periodic schedule. The result of
the approximation scheduling algorithm is reported in Ta-
ble 1. Note that this algorithm tries to minimize the average
dark length but not the maximum dark length so there is a
large difference between average and max dark length of the
schedule.

For such a localization application and topology, if we can
only turn on one sensor in each time slot, the mean detection
delay is 3.588 time slots which could be less than 2 seconds
in our experience of infrared localization system.

7. TESTBED EVALUATIONS
We had implemented the approximation scheduling algo-

rithm on a camera network. The objective of this network is
to detect the random occurrence of an event in a room. We
had deployed networked camera nodes to monitor the testing
environment. One camera node is shown in Figure 5. A full
description of a similar network can be found in [39]. Sev-

Table 1. Approximation algorithm on 10 topologies.

Topology |D| |V| Avg Dark Len. Max Dark Len.

1 114 3 3.34 9

2 113 3 1.74 26

3 135 4 4.15 26

4 181 4 6.13 20

5 175 3 3.45 13

6 165 2 1.96 6

7 146 4 3.97 22

8 157 3 4.11 13

9 118 2 1.9 9

10 243 3 5.13 13

eral valuable points on the ground are marked (the weight
w(p) is non-zero). The coverage of those points with respect
to each camera is recorded (P (g) is known). The resource
constraint on the system is designed as follows: only one
camera node can be turned on in each 5 seconds time slot
(k = 1) and the camera takes a picture in the beginning of
the slot. With the information about the weight, coverage
and resource constraint, we can run the scheduling algorithm
to determine an efficient ordering for the nodes to be turned
on in each time slot.

Figure 5. A camera node. Each node is able to communi-
cate over WiFi, take pictures and store pictures in the USB
drive.

An event is represented by a blinking LED light bulb con-
trolled by a Raspberry-PI in Figure 6. This is analogous to a
fire event or smoking behavior. Each blinking event lasts for
6 seconds. Therefore, if a camera that can cover the event
point is turned on during the period, the event is detected
and reported.

A case study of 4 target points and 3 camera nodes in
a room is illustrated in Figure 7. A target point is repre-
sented by a red cross. Therefore, P (g1) = {p1, p3}, P (g2) =
{p1, p2}, P (g3) = {p2, p4}. If the targeta are equally impor-
tant w(p1) = w(p2) = w(p3) = w(p4), then f(g2) is set to
be 0 in our approximation algorithm. Therefore, we will al-
ternate between camera g1 and g3. Instead of turning on 3
cameras all the time, we will cut the energy consumption to
1
3

while increasing the detection delay by one time slot (5
seconds). Our experiment confirms the delay but we cannot
achieve exactly the theoretical energy saving because of sys-
tem overhead. Keeping the cameras connected and ready



Figure 6. The LED bulb is connected and controlled by
the program on Raspberry-PI. The timing of the random
blinking event is recorded.

causes energy even when they are not taking photos. The
energy saving is around 60% for the experiments.

camera g2

camera g3camera g1

p1

p3

p2

p4

Figure 7. Physical layout of experiments on camera net-
work in a room. 3 cameras (black dot) is deployed to cover
4 target points (red cross).

The weights of the target points also play an important
role. Suppose that the event occurs more likely at p1 and
p2. Then the weight of p1 and p2 is increased. For example,
we can change the control program on Raspberry-PI so the
probability of blinking event is higher at p1 and p2. Then the
frequency of g2 will be non-zero and higher in the schedule.

8. CONCLUSION
In this paper we proposed the first set of solutions for joint

sensor duty cycle scheduling for indoor applications when
the sensors collaboratively cover the domain with quality
guarantee while significantly reducing energy consumption.
We remark that the efficiency of the algorithm makes it ap-
pealing to be applied in practical applications. There are
a couple of open questions that we wish to answer in fu-
ture work. First we would like to know if it is NP-hard to
find the optimal schedule in the second optimization metric
(min max dark length). Second we wish to establish hard
coverage frequency requirement for each target and develop
efficient scheduling algorithms.

Figure 8. Topology 1

Figure 9. Topology 4

Figure 10. Topology 6



Figure 11. Topology 8
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