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Abstract
Various non-isotropic sensors, such as acoustic, visible

light, and infrared sensors, heavily rely on the line of the
sight signal propagation to achieve desired sensing and mon-
itoring quality in a complex environment. Although re-
searchers have tested these sensing systems in many real sce-
narios, there is still limited theory to guide the sensor deploy-
ment with realistic sensing characteristics. In this paper, we
design deployment algorithms for robust coverage under spe-
cific angle of arrival sensing requirements. We formulate the
optimal deployment problem as a robust variant of the Art
Gallery Problem called robust guarding, i.e., placing mini-
mum number of transmitters such that all points of the do-
main are covered by two sensors from sufficiently different
directions. We prove that this problem is NP-hard and pro-
vide combinatorial upper and lower bounds for the number
of sensors needed. Furthermore, we show that n/2 guards
are always sufficient and sometimes necessary for rectilinear
polygons. In the system evaluation, we developed a testbed
using low cost off-the-shelf IR sensors for indoor device-free
localization. Experiments with both simulation and real sys-
tem show that our solution outperforms existing algorithms
on sensing accuracy and coverage significantly with almost
negligible overhead.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design

General Terms
Design, Experimentation, System, Performance

Keywords
Sensor networks, Line-of-sight sensor, Art gallery prob-

lem, Localization

1 Introduction
Various non-isotropic sensors, such as camera, ultra-

sound, and infrared sensors, have been deployed for safety
surveillance [22], occupancy monitoring [8], and target
tracking [6]. These non-isotropic sensors rely on signals
that propagate in a directional manner, casting shadows on
targets, which can be exploited for indoor monitoring and
sensing purposes. These signals are preferred over radio-
frequency (RF) for the relatively simple propagation model
(as compared to the complex propagation properties of RF in
an indoor environment) as well as the relatively low interfer-
ence with other signal sources in the same domain.

However, while the signal propagation by infrared or
camera sensors can be easily described and modeled, the line
of sight constraint creates non-trivial challenges for sensor
deployment and scheduling. The environment in which the
sensors are deployed is typically an indoor setting with com-
plicated geometric features. Therefore to ensure full cover-
age we often immediately encounter the classical Art Gallery
Problem – placing a minimum number of sensors such that
any point in the domain has a direct line of sight path to at
least one sensor. In the setting for indoor monitoring, we
may have additional constraints to guarantee quality of sens-
ing. First, for robustness it often happens that we wish the
targets to be visible to multiple sensors. In addition, by us-
ing the interaction of the signals/sensors one may infer ad-
ditional knowledge other than just the existence of targets.
For example, infrared sensors cast shadows when targets are
around. The shadow could be used to infer the location of the
target if the target is visible to at least two sensors – trace the
line between the infrared emitters and their respective shad-
ows; the target is located at the intersection. In addition, the
two sensors better shine on the targets from different angles
and the quality of the sensing outcome depends on the angu-
lar separation. In the extreme setting if the two sensors are
from exactly the same direction they behave as the same sen-
sor. The closer they are from the same direction the worse
the quality of resolution we obtain. In the setting of cam-
era sensors, it is often desirable to have pictures of the target
taken from different views. Again it would be good if the
target is visible to multiple sensors from different angles.

The main contribution in this paper is to examine the sen-
sor deployment and coverage problem with line of sight con-



straints and the angular requirement. We model the input
domain as a polygon with holes (e.g., obstacles). We for-
mulate the problem as the α-robust guarding, in which each
emitter casts signal in all directions which is only blocked by
obstacles/walls. Further, we wish each point in the domain
is visible to at least two emitters, such that the angle between
them is above a given threshold α, 0 < α ≤ π/2. This is a
special variant of the classical Art Gallery Problem and has
not been investigated much. Almost nothing is known theo-
retically about this problem even for the most basic questions
such as: how many emitters do we need in a polygon with n
vertices? how many emitters are always enough? How many
emitters are at least needed? What if the polygon is rectilin-
ear (with only horizontal and vertical edges)? In this paper
we initiate the study of this problem and provided various
upper and lower bounds. We show that finding a minimum
number of guards to α-robustly guard a simple polygon is
NP-hard. For a general polygon of n vertices, b3n/4c guards
are sometimes necessary (while for a standard art gallery
problem bn/3c guards are both sufficient and sometimes nec-
essary). For rectilinear polygons and placements of guards
on the vertices, we show that bn/2c guards are sometimes
necessary, and surprisingly, always sufficient – we prove that
placing guards in alternating order along the polygon bound-
ary is an α-robust guarding solution. This provides not only
tight bounds for robust guarding in rectilinear cases but also
a practical algorithm for sensor deployment in indoors when
the region can be approximated by a rectilinear polygon.

Further, we apply our results for sensor placement in an
environment sensing and tracking application. We devel-
oped Infrared Localization nodes, called iLoc nodes, with
off-the-shelf infrared (IR) emitters and sensors with compo-
nent costs of only a few dollars. In this testbed, the infrared
emitters are deployed using our deployment algorithm and
the infrared sensors are placed along the wall/furniture to
capture the shadows caused by the targets and/or the reflec-
tions from the targets.

We develop algorithms for both single target and multiple
target detection using our testbed. Experimental results show
that our design detects human location in an office setting
in real-time with an average error of 11.7 cm which outper-
forms many other device-free techniques. The contributing
factors for this high precision localization are the accurate
detection of shadows and reflections by the new hardware
design, the collaborative sensing of the localization scheme,
and our guard deployment algorithm.

2 Related Work
Robust guarding. The problem of α-robust guarding has
not been studied much. The problem was first proposed
in [7] as one of the two models used to ensure that a poly-
gon would be robustly guarded by a set of guards. Then
a O(log |OPT|) approximation was proposed for the robust
guarding problem inside a simple polygon using the standard
technique of a geometric set cover where OPT is the mini-
mum number of guards needed. Some more observations
were made in [2] for the case when α is in between π/2 and
π. Specifically, it was shown that any polygon of n vertices
can be 2π/3 robustly guarded by the n vertices and this is

sometimes necessary. The upper and lower bounds are gen-
eralized for other values of α∈ [π/2,π]. From an algorithmic
perspective, it proposed algorithms for detecting if a simple
polygon can be α-guarded by a given set of guards and, if
not, by computing the region of α-robustly guarded points.

The results of this paper add to the collection of results
above. Our hardness results and tight bounds for rectilin-
ear polygons are new. The problem of robust guarding is
also related to the coverage problems encountered when us-
ing cameras. A popular model of robust coverage when us-
ing cameras as sensors models each camera as a fixed angle
cone with a radius r. In certain applications such as surveil-
lance, it is important to capture the front face image of the
target person which requires that every point in the domain
is covered by all directions. Under this model, Wang and
Cao [22] developed an algorithm to test whether a given set
of cameras could cover all points of the domain and they also
provided bounds on the density of cameras needed in a ran-
dom deployment.
Indoor Localization. Device-based localization assumes
that the target carries a special device. Such a device either
measures the distances to nearby anchor nodes or generates
signals for nearby anchor nodes to use to localize the de-
vice. Various device-based localization systems have been
developed based on wireless [5, 4, 28, 21, 26, 24], opti-
cal [9, 16], and acoustic signals [18, 10]. Some other works
introduces inertial sensing [11, 25], magnetic sensing [1] and
even indoor GPS [14] to assist in localization. These works
can achieve high localization accuracy but their applicability
may be limited due to privacy and cost concerns.

In contrast, device-free localization techniques remove
the burden of users carrying around devices and have re-
ceived a lot of attention recently [12, 27]. Existing sys-
tems include indoor GPS [14], radar [12], and camera net-
works [22, 3]. These localization systems achieve high lo-
calization accuracy with specially designed devices but their
cost is relatively higher. Other works use ultrasound sen-
sors [8] and pressure sensors [15]. These systems detect tar-
gets reliably in specific deployment locations [19] but they
do not cover the whole building due to limited sensing range.

A number of device-free localization works use WiFi to
capture signal variations caused by target movement. In [17],
the authors designed a probabilistic algorithm to detect a sin-
gle target based on radio signal strength readings. In [23]
the authors used CSI to perform fine-grained activity recog-
nition. These systems have very low cost but the localiza-
tion accuracy varies with different environmental conditions
since the wireless signals are sensitive to multi-path, shad-
owing, and interference effects.

In contrast, we are exploring IR signals and hope to build
a system that is complementary in terms of performance met-
rics to the systems above. Infrared is very robust to ambient
environmental changes. The cost of systems using off-the-
shelf hardware is relatively low. There have been IR based
localization systems in the past. For example, authors of [6]
develop a real-time tracking system with binary IR motion
sensor networks which focused on tracking in a hallway sce-
nario and used IR sensors as ‘tripwires’. Our goal is to apply
IR sensors for full coverage in an indoor setting.



(i) (ii) (iii) (iv)
Figure 1. (i) A “spike box.” (ii) 5 vertex guards are required to α-robustly guard this polygon. (iii) It requires b3n/4c+ 1 vertex guards. (iv) A
rectilinear polygon that requires n/2 vertex guards.

3 Robust Guarding: Combinatorics and Al-
gorithms

To achieve full coverage in an indoor environment, we
need to deploy the iLoc devices effectively and efficiently.
In this section, we model the sensor deployment and its qual-
ity requirement as the robust guarding problem: the indoor
environment is regarded as a polygon and iLoc guard nodes
as point guards. We deploy iLoc strips of sensors along the
boundary of this polygon to detect the arrival angle for local-
ization.

An α-robust guarding solution for a polygon P requires
that each point p of P is visible to at least two guards g1,g2
such that the angle between the two rays pg1 and pg2 is
at least α. We provide an upper bounds on the number of
guards required as well as algorithms for guard placement in
any rectilinear polygon and a lower bound for the worst case.
We focus on the case of placing guards only at vertices of P
and we consider the case when α ∈ (0,π/2].
3.1 Hardness and Lower Bounds
THEOREM 1. Let P be a simple polygon with n vertices.
Finding an optimal set of guards to α-robustly guard every
point p ∈ P is NP-hard.
PROOF. The proof uses a reduction from the NP-hard prob-
lem Minimum Line Covering Problem [13]. In this problem,
a set of n lines L = `1, ..., `n is given in which no two lines
are parallel and not all lines intersect at the same point. One
asks for a minimum-cardinality set of intersection points S
of L such that each line `i has at least one point of S on it.
We now turn this problem to an instance of α-robust guard-
ing. We draw a large box that contains all intersections of
the arrangement of L. For each line `i, we chop away (ar-
bitrarily) one of the rays extending outside the box, and, for
other ray, we turn it into an extremely narrow “spike”. See
Figure 1 (i) for an example. We form a polygon, commonly
called a spike box, with complexity O(n). If we make the
angle at each of the spikes to be smaller than α, it is neces-
sary to place one guard at the tip of each spike to cover this
tip, and the other guard somewhere near or on the line. Now
we argue that an optimal solution to minimum line covering
problem, together with the guards at the tips of all spikes,
gives a α-robust coverage for the spikebox.

First we argue that the interior of the box is α-guarded.
When not all lines intersect at the same point, the minimum
line covering problem uses at least two points to cover L. We
make α smaller than any angle pg1, pg2, where g1,g2 are
any two intersections of L and p is any point inside the box.
Thus, placing guards at the solution of the minimum line

covering problem will be sufficient to guard the interior of
the box. For the points inside each spike i, they are guarded
by the guard at the tip of the spike and the guard that covers
the line `i. Thus if the minimum line covering problem uses
k points, then the α-robust guarding of the spikebox requires
at least k+n.
THEOREM 2. Let P be a simple polygon with n vertices.
b3n/4c+ 1 vertex guards are sometimes necessary to α-
robustly guard P.
PROOF. For the polygon with 6 vertices in Figure 1 (ii), we
need 5 vertex guards (in red) to α-robustly guard any point
with the angle constraint. We can form a chain of copies of
the polygon in Figure 1 (ii) resulting in a larger polygon as
in Figure 1 (iii). With the addition of each new copy of the
base polygon we increase the number of vertices by 4 and so
we need 3 additional guards. Therefore, we need b3n/4c+1
vertex guards to guard such a polygon.

3.2 Rectilinear Polygons
For indoor localization, a realistic assumption is to con-

sider only rectilinear polygons whose edges are horizontal or
vertical. Many indoor environments can be modeled or ap-
proximated by a rectilinear polygon. In this subsection we
prove tight bounds of the α-robust guarding problem. Note
that it is necessary for the number of vertice n of the rectilin-
ear polygon to be even (n/2 is an integer).
THEOREM 3. Let P be a simple rectilinear polygon with n
vertices. Then, n/2 vertex guards are always sufficient and
sometimes necessary to α-robustly guard P.

We first show an example that requires n/2 guards in Fig-
ure 1(iv). This is an example like that of Figure 1(iii) where
only horizontal and vertical edges are used. In each iteration,
we increase the number of vertices by 8 resulting in needing
4 additional guards. Therefore, we need n/2 vertex guards
to guard such a rectilinear polygon.

To establish the upper bound, we show that the simple so-
lution of placing guards at alternating vertices of the bound-
ary of P will always α-robustly guard P, for any α∈ (0,π/2].
We will begin by building some structural lemmas of recti-
linear polygons to prove the theorem.

Let p be a point in P. We define Pmax to be the rectangle
inside P with maximum area containing p. All edges of Pmax
overlap with some portion of the boundary of P. For an edge
e of Pmax, the overlapping line segments are defined as l(e)
where l(e) = e∩P. Thus, there are only three possible cases
for l(e): (a) l(e) contains both endpoints of e, (b) l(e) con-
tains no endpoint of e, (c) l(e) contains only one endpoint of
e. Figure 2 show the three cases.
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Figure 2. Different cases for intersection between the
boundaries of Pmax and P.

LEMMA 1. Any two neighboring edges e and e′ of Pmax
must have at least one vertex of P. Further, the boundary
of Pmax contains at least four vertices of P.
PROOF. Consider two neighboring edges, e and e′, sharing a
corner vertex v = e∩e′ of Pmax. First, an edge e of Pmax does
not contain a vertex of P only if e is completely in the interior
of an boundary edge of P. Therefore, for two neighboring
edges e and e′ of Pmax sharing a corner vertex v, they must at
least contain one vertex of P because if l(e) = e and l(e′) =
e′, then the vertex v′ where v′ = e∩e′ must be a vertex of P .

For the second claim, if l(e)∩ l(e′) 6= /0, the vertex v must
also be a vertex of P. If l(e)∩ l(e′) = /0, there is a vertex of
P on e if v /∈ l(e) and a vertex on e′ if v /∈ l(e′). There are
four pairs of neighboring edges in a rectangle. Therefore, the
edges of Pmax must contain at least four vertices of P.
LEMMA 2. There must exist two points g and g′ on the
boundary of Pmax such that g,g′ are selected as guards in
gv(P).
PROOF. By Lemma 1 there are only three cases for the lo-
cation of the vertices of P on the boundary of Pmax: Case(a)
all edges of Pmax contain at least a vertex of P, Case(b) only
one edge of Pmax does not contain any vertex of P, Case(c)
a pair of opposite edge of Pmax does not contain any vertex
of P. If Pmax contains more than four vertices of P, pick any
four vertices such that any neighboring edges of Pmax must
contain at least one vertex.

If any two vertices vi and v j out of the four selected is on
the same edge e of Pmax, one of them is chosen as a guard if
they are connected by odd number of edges in P. If they are
connected by even number of edges, then one of the incident
edge of vi or v j is completely on the edge e of Pmax. So there
must be a vertex of P on e such that it is in gv(P).

This leaves only the case that two vertices of the four ver-
tices are on neighboring edges of Pmax. If the incident edge
of v j is completely on the boundary of Pmax. Then either an
endpoint of this edge is the vertex guard. Otherwise, the in-
cident edge is only partially contained and let vk be the the
first vertex among the four that is traversed from v j in anti-
clockwise direction. See Figure 3. If v j and vk is connected
by odd edges, either one is in gv(P). Otherwise, the incident
edge of vk is completed on the boundary of Pmax. So there
must be a vertex of P on the edges of Pmax that contains v j
and vk.

Case(a): Since each edge of Pmax contains a vertex, we

get two pairs of two vertices that are on different neighbor-
ing edges. We can apply the argument above for each pair.
Therefore, there are at least two vertices in gv(P).

Case(b): If the edge opposite to the edge without any ver-
tex of P contains two out of the four vertices, we group each
vertex on this edge with the vertex on the neighboring edge.
We have two pairs of two vertices on different neighboring
edges. Otherwise, we group the only vertex with the vertex
on the neighboring edge that contains one vertex. Then, the
remaining edge contains two vertices. In both cases, we get
at least two vertices in gv(P).

Case(c): Since there is a pair of opposite edges of Pmax
that does not contain any vertex of P, the remaining two
edges each contains two vertices. Thus, there are two ver-
tices in gv(P).

vj

vk vk

vj

Figure 3. Vertices on two neighboring edges

We are now ready to show that n/2 vertex guards are al-
ways sufficient to α-robustly guard a rectilinear polygon.
PROOF. By the above lemma, for any point p ∈ P, there are
two points g and g′ from gv(P) on the boundary of the maxi-
mum rectangle Pmax that contains p. Since p is visible by any
boundary point of Pmax, p is visible to at least two guards g
and g′ in gv(P).

If 6 gpg′ ≥ α, the point must be α-robustly guarded. If
6 gpq < α, we must be able to draw a line l through p such
that g and g′ lie on the same side of line and l must be par-
allel to some edges of the polygon P. Then we draw a line
l′ through p particular to l. We divide the polygon into four
regions. If we discover another vertex guard g′′ such that it
lies on the opposite side of l, we can check whether p is now
α-robustly guarded. If it fails, then the three vertex guards
g,g′,g′′ must lie into two neighboring regions. We can draw
a new separating line and repeat the process. Now the four
guards must lie in three different regions. Then the angle
constraint must be satisfied. An example is shown in Fig-
ure 4.

g′′

g′

g

g′′

p
< α′

v′

l′

l

g′

g

p

v

(i) (ii)
Figure 4. (i) Searching for g′′ (ii) Sweeping for v and v′.

Now we need to show that if there is a separating line,
we are always able to find such a new vertex guard. We



use a sweeping strategy, taking the line l as our sweep line
and moving it away from the points g and g′. The sweeping
stops when we first find two vertices, say v and v′, of P that
are visible to the point p and they are on the opposite of l′.
See Figure 4(ii). When the sweep line discovers v (or v′), it
encounters the other endpoint of the edge containing v (or v′)
and parallel to the sweep line. If this endpoint is also visible
to p, then both endpoints of this edge is visible to p and either
one of them must be in gv(P). Then we find the new vertex
guard g′′. So the only case we need to prove is that only v
and v′ are visible after the sweeping stops. We can connect
v and v′ by extending them towards the line l, shown with
the dotted blue line in Figure 5. This dotted blue line and
the edges of P that connects v and v′ in the other way form a
new rectilinear polygon. Since v and v′ are separated by three
edges across the blue line, they must also be separated by odd
number of edges on the other way. Therefore, in the original
polygon p, one of v and v′ must be in the set gv(P).

v

l′

l

p

v′

Figure 5. Either v or v′ ∈ gv(P)

THEOREM 4. Let P be a rectilinear polygon with rectilin-
ear holes. The total number of vertices including vertices on
the holes and outer boundary is n. Then, n/2 vertex guards
are always sufficient to α-robustly guard any point p ∈ P.
PROOF. For rectilinear polygons with holes, the proof is
similar. The algorithm is different only in the sense that the
alternative selection of vertices on the holes is opposite to the
selection on the boundary of the polygon. Now the sweep
line also searches for vertex guards on the holes. If v and v′
are on different holes, we draw a narrow bridge along the line
l to connect the two holes such that v and v′ are separated by
three edges. If they belong to the same hole, we draw a line
along l to extend the hole. Again, v and v′ are separated by
three edges. Therefore, the sweep line always finds a vertex
in gv(P).

We remark in our problem formulation that we only re-
quire a lower bound of α for the difference of direction of
the angles of arrival from two different emitters at any point
inside the domain. In the formulation in [7], the direction
from the two emitters must lie in the interval [α,π−α], i.e.,
avoiding two emitters and the target location being nearly
collinear. This model also makes sense in applications. Still,
there are polygons that cannot be robustly guarded even if
we place guards at all vertices – for any given angle α con-
sider an extremely skinny rectangle and the center of mass p,
the directions from all vertex emitters are within α or greater
than π−α. Thus studying the combinatorial bounds for this
version is not very meaningful.

4 Collaborative Sensing Framework
After the placement of sensors to achieve α-robust cov-

erage, we ensure that we have full coverage with reasonably
good sensing quality. The next step is that we need to in-
terpret the signals to reason about the environment. In this
section, we present a general framework of perception strate-
gies that are specific to line-of-sight sensors while general
to different applications. These strategies are motivated by
the nature of how we utilize such directional sensors in a
device-free manner. Shadowing and reflection both gives us
opportunities to detect and understand the events happening
in the domain. But pinpointing the precise details of an event
involving multiple targets require non-trivial strategies pre-
sented below. Then we present a case study to demonstrate
how these strategies are applied in a localization application.

Sensor fusion. As a collaborative sensing system, multi-
ple sensors are deployed in the environment and more than
one reasoning technique (shadowing and reflection) are used.
We need to incorporate the information from these multi-
ple sources. Since the signals may align or contradict to
each other, a probabilistic framework is flexible enough to
integrate the varied information. The exact procedure on
how to transform the signals into probabilistic beliefs of the
real world depends on the application and implementation.
The possible related techniques are filtering, signal process-
ing and machine learning with a rich set of literature. After
developing the beliefs, an optimization approach should be
used to find out the best explanation.

Iterative reasoning. In a multiple target environment, the
signals are generated by different targets. Since the targets
are not carrying any device, we don’t have any identification
on the signals. In other words, the impact of each individual
target is tangled in the signals. Therefore, we suggest to use
an iterative manner to isolate the effects of each target. In
each iteration, we allocate the contribution of a subset of the
signals to a single target. The procedure continues until all
targets are identified.

Signal structure. The line-of-sight constraints impose com-
binatorial constraints on the signal’s structure. Both the ex-
istence and absence of some signals provide hints about the
events in the domain. For example, a target completely
blocking the emitter creates shadows everywhere. If some
line of sight is not blocked, we can disfavor this situation.

4.1 A Case Study: Infrared Localization
Here we use a localization system as an example to

demonstrate our collaborative sensing framework.

4.1.1 Single Target Localization
The localization scheme is used to determine the loca-

tion (x,y) of an object. It can utilize the signals detected
at sensors to determine the angle of the object from known
emitters. For example, if the line of sight between an emitter
at (xi,yi) and a sensor at (x j,y j) is blocked, the strength of
light received decreases and a shadow signal is detected at
the sensor. Then we know that the object should be located
on the line of sight between them. Its distance from the line
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(a) A shadow is detected
by two emitter-sensor pairs
(e1,r13),(e2,r1) since target is
blocking their lines of sight
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d1e1

(b) Beside a shadow, a reflec-
tion is reported by angle sensor
on emitter e1 with a distance of
d1 since the target is close

d1
d3

d2

e1
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(c) Three reflections are cap-
tured since the target is within
the detection range of the angle
sensors on emitters e1, e2, e3

iLo guard node (ei)

Angled sensor

Strip sensor (ri)

Directional infrared ray

Signal detected at sensor

Figure 6. To determine the location of a target (represented by a black dot), we need either two shadows in subfigure (a),
one shadow and one reflection in subfigure (b) or three reflections subfigure (c) where there is no sensor on boundary

should be zero:

|(y j− yi)x− (x j− xi)y+ x jyi− y jxi|√
(y j− yi)2 +(x j− xi)2

= 0

With two such lines that are not parallel, we can uniquely
determine the location of an object causing these two signals.

The angled sensors on the emitter can also report reflec-
tion sensor readings if an object is within the reflection de-
tection range t. If this is the case, a reflection signal is re-
ported with an estimated distance di between the emitter and
the object:

di =
√
(x− xi)2 +(y− yi)2 < t

With either two shadow signals or one shadow and one re-
flection signal, we can uniquely determine the location as
illustrated in Figure 6(a) and 6(b). With three reflection sig-
nals in 6(c), trilateration is also possible without any shadow
signals (which means no strip sensor is needed on the bound-
ary). But for our iLoc guard’s reflection module, the range
is usually short relative to the room’s size so simultaneous
detection of multiple reflection signals is unlikely.

In the complete system, we have multiple iLoc guard
nodes (emitters and angled sensors) at corners and iLoc strip
nodes (sensors) on the entire boundary so that more signals
are detected than needed. Therefore, the probabilistic frame-
work for the sensor fusion can integrate multiple and possi-
bly noisy signals to estimate the final location. To achieve it,
we developed a metric for the belief and localization scheme
to optimize against the metric considering efficiency to com-
pute on the controller which has limited resources.

For the localization scheme, suppose there are r strips of
sensors (iLoc strip node) and e points where emitters (iLoc
guard node) are placed with their locations known to the lo-
calization procedure. To uniquely determine the identifica-
tion of an emitter, we need modulation so that the sensor can
decide where the source of light is from.

In our system, e emitters take turn emitting light. As an
example, when the i-th emitter is emitting a pulse, the j-
th strip sensor processes the signal and reports a probability
p j

shadow. For reflection, the angled sensors on the emitter re-
port a probability pi

reflection with a distance di. Then we can

define a metric for the estimated location (x,y) for the object
based on the IR pulse emitted by the i-th emitter as

Li(x,y) =
1

∑
r
k=1dpk

shadowe
×

r

∑
j=1

(
p j

shadow×

|(y j− yi)x− (x j− xi)y+ x jyi− y jxi|√
(y j− yi)2 +(x j− xi)2

)
+

pi
reflection×|

√
(x− xi)2 +(y− yi)2−di|

(1)

Intuitively, if the shadow probability is strong, the object
should be on the line between the emitter and strip sensor.
Similarly for reflection signal, it should be at distance d from
the emitter. Each emitter is equal therefore the normalizing
factor 1

∑
r
k=1dpk

shadowe
for the shadow signal can help in the case

where the object is close to an emitter and a lot of shadow
signals are detected. To integrate the signals from different
emitters, we minimize the summation of metrics for all e
emitters together so that the estimated location aligns with
all the signals as much as possible:

(x∗,y∗) = argmin
x,y

e

∑
i=1

Li(x,y)

After minimization, the object is best estimated at (x∗,y∗).

4.1.2 Multiple Target Localization
When there are multiple human objects in the sensing en-

vironment ambiguity may arises. For a rectangular room, we
need two guards to guarantee two shadows for a single target.
But when there is more than one target, it creates the possi-
bility of phantom points such that we cannot determine what
the real locations of the objects are. See Figure 7 for an ex-
ample. To resolve this issue, we can add one additional guard
(not co-linear with the previous two). Unless any two of the
targets and one guard form a line, 3-coverage is enough to
uniquely determine the location and number of targets.

In addition, we will modify the signal processing algo-
rithm accordingly to accommodate possibly multiple targets.

Recall that in the cost function, |(y j−yi)x−(x j−xi)y+x jyi−y jxi|√
(y j−yi)2+(x j−xi)2

represents the distance between a target estimated at (x,y)



Figure 7. Phantom targets in multiple target environ-
ment. With 4 blocked lines of sight, 7 possible configu-
rations of targets’ location (red crosses) could explain de-
tected shadows. Ambiguity of true locations and number
of targets arises.

and the blocked line of sight connecting emitter i and re-
ceiver j. If this distance is larger than the typical width of
a human body, this shadow is very unlikely to be casted by
this human target. With this intuition, we should modify the
scheme in the sense that we apply iterative reasoning to at-
tribute a subset of all remaining signals to a newly estimated
location. In each iteration, we perform the optimization to
search for a target’s location that its metric ∑Li(x,y) sum-
ming over the subset of signals attributed to this location is
smallest. Then we remove this subset of signals from the
following iterations. We stop when all signals are removed
or the remaining signals are not strong enough to reasonably
represent a human target.

To explain the detected signals, multiple targets can al-
ways be assumed to be in front of each emitter. However,
this assumption cannot reason about the absence of some
shadow/reflection signals. Therefore, for a estimated loca-
tion, if signals that should be detected do not exist, we should
increase the metric of this location in the localization scheme
such that the optimization (minimization of the metric) step
will not favor this location. The signal structure helps to
disambiguate events.

Figure 8 illustrates an example of localizing two targets
in the environment with the modified scheme.

Before localization After first iteration After second iteration

Figure 8. Iterative localization of two targets: Each itera-
tion localize one target and remove the signals attributed
to the target. Algorithm stops after the two targets are
located.

5 Evaluation
We built a device free localization testbed using infrared

sensors, which helps us to evaluate and demonstrate our de-
ployment algorithms.

5.1 Design and Implementation
Our localization system is comprised of three types of

nodes: iLoc guards, iLoc strips, and a iLoc coordinator, as
shown in Figure 9 (a). IR emitters on the guard node emit
light into the localization domain where it is monitored by IR
intensity sensors on the strip nodes to detect shadows. Three
desirable traits for the iLoc system are to have: 1) reliable
long range IR emitters; 2) IR sensors that can be easily de-
ployed along the localization domain; and 3) use a minimum
number of nodes to robustly monitor the domain.

iLoc guard. Typical off-the-shelf infrared emitters pro-
duce irregular cone-shaped dispersion patterns that make it
difficult to effectively illuminate, and therefore interpret, a
2d cross-section of a room. In contrast, we designed the iLoc
guard to emit a long range high intensity IR pulse of short du-
ration over a narrow 170-degree horizontal band. Since the
IR pulse only needs to occur long enough for the system to
collect a snapshot of the localization environment, the iLoc
guard produces a long range high intensity pulse that is pos-
sible only with a low duty cycle. In addition, we equipped
the iLoc guard with angled IR light intensity sensors to infer
the direction of sensed light. The aim is to use these sensors
to detect reflections off of the target when the target is close
to a pulsing emitter.

iLoc strip. To complement the iLoc guard, we designed
iLoc sensor strips to have a high density horizontal row of IR
light intensity sensors. The iLoc sensor strips are connected
to a local controller that allows them to be coordinated by
the system, aggregate sensed data, and report the aggregated
data in real time. Due to the distributed nature of the system
and the iLoc guards’ pulsed emission, we designed a coor-
dinator node called the iLoc coordinator that is responsible
for system wide data collection synchronization and emitter
coordination.

iLoc coordinator. The iLoc coordinator is used to im-
plement time division based modulation to allow sensors to
differentiate between emitters. In addition, the iLoc coordi-
nator is also used to: 1) optimize data communications by
selectively targeting nodes where a shadow is expected to
appear first; 2) dynamically control the system duty cycle to
balance energy saving with real-time target tracking: and 3)
adapt to interferences from ambient light sources.

The distributed nodes of the system are connected by a
400 kHz Two-Wire Interface (TWI) bus and a single GPIO
interrupt line. For ease of implementation and testing, We
connected an iLoc guard and two iLoc strips as a single unit.
Each contains two base components: 1) a TWI bus repeater
that increases the system’s scalability by increasing the pos-
sible range between nodes, and 2) two Atmel Attiny841 mi-
crocontrollers that work in parallel to complete the tasks of
data aggregation, analog to digital conversion of each light
intensity sensor output, as well as control the LED power
circuitry. Figure 9 (b) provides an overview of components
on a single iLoc unit.

For an iLoc guard, 17 directional LEDs were placed ev-
ery 10 degrees in a 170 degree fan-out configuration. Each
LED will produce 550 mW/Sr at its maximum forward cur-
rent rating of 100 mA. These LEDs are driven with 500 mA
for a period of 2 milliseconds. At this current, the LEDs emit
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Figure 9. iLoc Localization System

approximately 4 times the radiant intensity than when driven
at 100 mA. Although it only takes 234 microseconds to com-
plete the analog to digital conversions of the sensor outputs,
a 2 ms pulse is necessary to allow the LED intensity to set-
tle before taking the reading. This high intensity 15 Watt IR
pulse allows for shadow detection to up to 23 m. The LEDs
can sustain a pulse frequency of up to 600 Hz when driven
at this current and pulse length. The node uses two high
current buck regulators to convert a 5 V power rail to 1.8 V
which is then used to drive the LEDs. Using buck regulators
in this configuration allows the system to better tolerate the
large current draw of the 15 W IR pulse. The node is also
equipped with 5 angled low sensitivity light intensity sen-
sors that are intended primarily for reflection sensing. Sen-
sors face 30 degrees apart, allowing the system to identify
the reflection direction. Low sensitivity sensors were used to
prevent saturation by the emitter.

A single LED used in the emitter has a relatively narrow
viewing angle which is specified in the data sheet. Our iLoc
guard is designed to overcome this shortcoming. We con-
ducted empirical tests to evaluate this property in real de-
ployment. Figure 9 (c) demonstrates the results of infield
tests to determine the effects of angle and distance on sensor
readings. The contours verify the omni-directional emitting
property of our iLoc guard node except at extreme angles.
This wide angle property continues to be preserved when the
distance is 7.5 m and the intensity drops by 50%.

Table 1. Reflection Intensity vs. Distance
Distance (cm) 28 35.5 50 75 101.5
Reflection Strength (%) 100 75 50 15 10

Table 1 shows the change of intensity of the reflected IR
by a human body. The intensity drops by 50% when the
target is located 50 cm away from the emitter. This limits the
effective range for reflection detection.

5.2 Performance Evaluation with Robust
Constraints

The effect of α on localization accuracy is investigated.
We placed two iLoc guard nodes separated by the angle α

to localize an human target which was 1 meter away. The
average accuracy is 15.7 cm, 4.9 cm and 2.8 cm when α is
π/6, π/3 and π/2 respectively. Based on this observation, we
use α = π/2 for the following simulations and experiments.

5.3 Performance Evaluation with Simulations
We simulated the coverage quality for different sensor de-

ployment algorithms. We compare our solution against two
algorithms for the general art gallery problem which are 1)
greedy set cover and 2) 3-coloring for standard sensor cov-
erage. In the greedy set cover, we find the greedy set to en-
sure all points are visible to at least a single guard. In the
3-coloring algorithm, the input polygon is first decomposed
into a triangulation. Then we find a 3-coloring of the ver-
tices of the triangulation and place guards at the vertices of
the least used color. This algorithm is guaranteed to find a
valid art gallery solution. It will use at most bn/3c guards.

For alpha robust guarding, we propose to run a greedy al-
gorithm to iteratively pick guards to increase coverage while
satisfying the robust constraint. In this algorithm, we always
select the next pair of guards that can cover the most num-
ber of targets robustly until all targets are covered. The final
guard set is the union of all selected pairs which is also the
objective that we want to minimize. Then we have a problem
of submodular cover with submodular objective function. By
[20], an O(logn) is obtained immediately.
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Figure 10. Guard set size & coverage for deployment al-
gorithms

We run the three algorithms on 100 random rectilinear
polygons with α = π/2. As a result, Figure 10 shows the
average number of guards deployed as a fraction of the poly-
gon’s size and the corresponding coverage as a fraction of
targets that is alpha-robustly guarded. Obviously, the greedy
set cover and 3-coloring cannot guarantee a full robust guard-
ing. Despite only some small extra guards over 3-coloring,
our greedy α robust guarding deployment provides full cov-
erage. In theory, the lower bound is n/2 for the worst case
as shown in Section 3 where n is the size of polygon. Our
simulation shows that empirically we need 0.338n guards on
average to achieve α-robust guarding.



Figure 11. Deployment Setup

5.4 Performance Evaluation with Testbed
Experimental Setup. A series of localization experiments
have been conducted to test the ability of the system to lo-
cate a human in an office room. The test room was a 409
cm by 255 cm space shown in Figure 11. The geometry of
the room was visualized by the boundary of polygon in Fig-
ure 12. Since it is a polygon with 6 vertices, we placed iLoc
guard nodes at the vertices (represented by the red dots) ac-
cording to Theorem 3. iLoc sensor strips (represented by
the white dots) were deployed on all walls at about the same
height. For each of the 16 locations (represented by the black
dots), a sensor snapshot of the readings was taken and fed
in real time to the localization program described in Sec-
tion 4.1.1 with a human subject standing at the location and
facing the right wall. We repeated the tests 10 times at each
testing point to obtain statistical results.

Figure 12. Testbed Layout. The three red dots at ver-
tices represent iLoc guard nodes; the white dots along
the edges represent iLoc sensors; the black dots repre-
sent the testing locations. It demonstrates the case when
a person is at location 5.

Experimental Results. We implemented a simple thresh-
old based signal processing algorithm to determine pi

reflection

and p j
shadow. The two probabilities equal to the percentage

increase and decrease of the sensor reading respectively. For
reflection, we used Table 1 to determine di which is calcu-
lated by mapping pi

reflection to the distance in the table. Based
on the current implementation, the effective range of reflec-
tion detection is relatively small (around 50 cm) compared to
the effective sensing range for shadows (23 m). For shadow,
we use a threshold λ. If the infrared light intensity reading
of a sensor drops more than λ from the reading taken when
there is no target, a shadow is detected at the sensor:

p j
shadow =

∆reading j

reading j if
∆reading j

reading j > λ

This approach utilizes background subtraction which
does not require any learning or modeling of the testing en-
vironment. It is also adaptive to more permanent changes in
the room such as furniture movement.

When λ is set to 30%, the algorithm achieves the low-
est average localization error with smallest standard devia-
tion: the average accuracy is 11.7 cm while the worst-case
localization error is 20.0 cm. Choosing a lower threshold
may take into account signals caused by noise and a higher
threshold may ignore potential shadows.

Figure 13 shows the accuracy result for all evaluation
points. For the evaluation points represented by red triangles,
they are visible to all three emitters. With the extra shadow,
the average localization error is 9.1 cm, which is much lower
compared to 16.1 cm for the other points (black square) that
report shadows from only two emitters. This shows the inte-
gration of multiple and excessive signals through probabilis-
tic beliefs enhances the localization accuracy.
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Figure 13. Localization error for 16 evaluation points
(λ=30%)

To compare different deployment algorithms, Greedy Set
Cover deploys only 1 guard at the top left and 3-Coloring
deploys one located at the top left and another at the bottom
right. In Figure 14, Greedy Set Cover resulted in a average
error of 249.9 cm because only one shadow can be generated
by the single emitter and it is not enough to uniquely deter-
mine location. For 3-Coloring, the average error is 89.1 cm.
Much error is contributed by the poor estimation for point 6,
12 since they are not visible to the bottom right emitter.

Experiments were performed to evaluate the localization
system in a multiple target setting. For each setting of 2 tar-
gets, 3 targets and 4 targets, we randomly selected 30 combi-
nations of the 16 testing points with multiple human subjects
standing on them. Then the signals were analyzed by the
scheme in Section 4.1.2. The localization error is reported in
Figure 15.
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6 Conclusions
In this paper, we presented both theoretical results and

experimental results for device-free indoor localization us-
ing infrared tripwire sensors. For the theoretical part, we
have a tight bound on α-robust guarding for rectilinear poly-
gons. For the experiments, we studied target localization and
showed promising deployment results for realistic settings.
For future work, we will extend it to α-robust guarding for
general shapes. More sophisticated signal processing algo-
rithms can also enhance the localization.
7 Acknowledgments

K. S. Liu, and J. Gao would like to acknowledge the
support through NSF CNS-1217823, CCF-1535900, CNS-
1618391, and DMS-1737812. K. S. Liu and S. Lin are
grateful for support through NSF CNS-1553273 and CNS-
1463722.
8 Appendix
Power consumption. Each of the 15 light intensity sen-
sors on the iLoc node draw 1.1 mA totaling 16.5 mA. The
high current switching regulators that convert the system in-
put voltage of 5 V to the LED driving voltage of 1.8 volts
give tolerance for significant voltage drops on the 5 V rail
without causing system brown-outs. As the switching regu-
lators operate at about 92% efficiency, the 15 Watt LED pulse
draws approximately 16.5 Watts from the power rail. When
the switching regulators are not driving the LEDs, they are
in sleep mode, each drawing 1 mA. The power consumption
of both micro-controllers combined is less than 1 mA. Hence
altogether the system draws about 17.5 mA per node when
idle and about 3.3 A during the 2 ms period when the node
is emitting an LED pulse.
Sampling rate. The frequency that the system is able to
take a snapshot of the localization environment depends on
two factors: the ability of the system to perform all necessary
communications in a single sampling period, and the length

of the LED pulse. It takes approximately 12.5 microseconds
for the coordinator to receive data from a single node. As the
number of nodes increases, the time it takes to collect all of
the data increases proportionately. Therefore, a system such
as the 10 node system used in our evaluation will have a min-
imum period size of 6.375 ms which results in a maximum
sampling frequency of about 157 Hz.
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