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Abstract—WiFi is a major source of energy consumption on
smartphones. However, a non-negligible portion of the WiFi
energy consumption is spent for frames that are useless to the
smartphone. For example, energy is wasted to receive WiFi
broadcast frames that are not needed by any smartphone
application. What’s worse, in order to process the broadcast
frames received, a smartphone in suspend mode switches from
suspend mode to high power active mode and stays there
for a while. As such, additional energy is wasted to do the
processing. In this paper, we design a system, namely HIDE, to
reduce smartphone energy wasted on useless WiFi broadcast
traffic. With our system, smartphones in suspend mode do
not receive useless broadcast frames or wake up to process
useless broadcast frames. Our trace-driven simulation shows
that the HIDE system saves 34%-75% energy when 10% of the
broadcast frames are useful to the smartphone. Our overhead
analysis demonstrates that our system has negligible impact
on network capacity and packet round-trip time.

1. Introduction

WiFi is among the top biggest culprits for battery drain
on smartphones, mainly due to two factors. First, WiFi
consumes considerable amount of power on smartphones.
For example, when WiFi is turned off, power consumption
of Galaxy S4 is ∼130mW with system idle and screen
off. When WiFi is receiving data, the power consumption
adds up to ∼538mW . Second, the amount of data traffic
over WiFi is significant on smartphones. A report shows
that WiFi accounts for 73% of total traffic on Android
smartphones [1]. With mobile data offloading [2] [3], more
and more smartphone traffic will flow over WiFi.

Reducing WiFi energy consumption can effectively
boost smartphone battery life. Generally, energy consumed
by WiFi is spent for data downloading/uploading desired
by users. In some cases, unwanted (or useless) traffic may
become rampant and dominate WiFi energy consumption,
such as malicious traffic from attackers (e.g., denial-of-
service or energy attackers) [4] [5] and background broad-
cast data traffic that is useless to a smartphone [6] (e.g.,
WiFi broadcast frames for printer service discovery). Thus,
to reduce WiFi energy consumption, we seek to cut down
energy waste incurred by unwanted WiFi traffic.

Existing literature mainly focuses on how to receive
desired traffic in a more energy efficient way, e.g., traffic
scheduling or traffic shaping [7] [8] [9]. With these methods,

a client has no choice of what should be sent to it. Some
other work [6] has studied how to filter out useless broadcast
frames in WiFi driver at client side after they are received
by the WiFi radio. In this way, useless broadcast data frames
are still received by smartphones. Unnecessary energy has
already been consumed to receive and process these useless
data frames. What is worse, if a smartphone is in suspend
mode (i.e., the system-on-chip (SOC) of the device including
CPU, ROM, and the micro-controller circuits for various I/O
devices are suspended [10]) when a useless frame arrives,
the device still needs to switch to active mode in order to
wake up the CPU and other resources to do the processing.

In this paper, we improve smartphone energy efficiency
by reducing energy wasted on useless WiFi broadcast traf-
fic1. Specifically, we propose to filter out useless UDP-
padded broadcast frames (MAC layer WiFi broadcast data
frames with UDP payload) at APs before they are re-
ceived by smartphones. Thus, no energy will be wasted on
smartphones to receive or process these useless broadcast
frames. We focus on broadcast traffic because broadcast
traffic is normal traffic that naturally exists in almost every
network. In contrast, malicious unicast traffic is abnormal
traffic which only exists in the targeted network. It is trivial
to extend our system to incorporate useless unicast traffic.
Although it is also interesting to work on other types of WiFi
broadcast frames, in this paper, we focus on UDP-padded
broadcast frames as they are the majority of WiFi broadcast
data frames [6]. In the rest of this paper, unless specifically
stated, broadcast frame/traffic means UDP-padded broadcast
frame/traffic. Also, we target at smartphones in suspend
mode because power consumption is very low in this state.
If a data frame arrives during a smartphone’s suspend mode,
the smartphone needs to switch to high power active mode
and stays in that mode for a while. The energy impact of
useless traffic on smartphones in suspend mode is much
more serious than the impact on smartphones in active mode.

However, in order to filter out useless broadcast traffic
at APs, two research questions need to be answered. The
first question is how to differentiate between useful and
useless broadcast traffic. APs have no idea about what
broadcast frames are needed by clients. Moreover, the defi-
nition of “useful” and “useless” is different across clients. A
broadcast frame which is useless to a client may be useful
to another client. The second question is how to manage

1. In this paper, we use unwanted traffic and useless traffic interchange-
ably.



useless broadcast traffic in an energy efficient way. An AP
cannot simply drop a useless broadcast frame for one client
as it may be useful to other clients. Currently, the 802.11
network protocol assumes that broadcast frames are to be
received by all clients. So, an AP uses only one bit in
beacon frames to indicate any buffered broadcast frames to
all clients. This cannot deliver client-specific notifications.
Besides, communication between a client and AP has cost.
It incurs energy overhead as well as brings extra traffic to
the network which may decrease network throughput.

In this paper, we answer the above two research ques-
tions. Our main idea is to enable cooperation between an AP
and smartphone clients. Clients tell the AP what are needed.
With the information from clients, the AP identifies useless
broadcast frames for each client. Then, traffic notifications
sent out within beacon frames are extended to offer one
bit for each client. So, the AP can indicate to each client
only useful broadcast frames. With our solution, no energy
is wasted to receive useless broadcast frames. Moreover, if
there are no useful frames, a client does not even need to
wake up from suspend mode. Thus, our solution remarkably
reduces the energy wasted on unwanted traffic. Our main
contributions are:
• We design a framework, namely HIDE, working

between an AP and smartphone clients to reduce
smartphone energy wasted on useless broadcast traf-
fic. In our system, broadcast frames are managed at
the AP. The AP hides presence of useless broadcast
frames from each client. As a result, smartphones in
suspend mode do not need to receive and wake up
to process these useless broadcast frames.

• We demonstrate the energy saving of our system
with energy modeling and trace-driven simulation.
With five broadcast traffic traces collected in five
different real-world scenarios, we show that the
HIDE system saves 34%-75% smartphone energy
when 10% of the broadcast traffic are useful to
the smartphone. Our overhead analysis demonstrates
that our system has negligible impact on network
capacity and packet round-trip time.

The rest of this paper is organized as follows. In Section
2, we present background knowledge about how broadcast
frames are managed in current WiFi networks. Then, we
propose our system in Section 3. We model the energy con-
sumption of the proposed system in Section 4 and analyze its
performance overhead in Section 5. We evaluate our system
in Section 6. After that, we introduce related work in Section
7. Finally, we draw our conclusions and discuss future work
in Section 8.

2. Background

In 802.11 networks, an AP periodically sends out a bea-
con frame [11]. Every client under the AP must periodically
wake up the WiFi radio and receive beacon frames.

The AP buffers unicast frames for every client with WiFi
radio in Power Saving (PS) mode. Notifications of unicast

frames buffered at the AP are sent out in every beacon
frames with a TIM (Traffic Indication Map) information
element, shown in Figure 1. The notification data is encoded
in the Partial Virtual Bitmap field, one bit for each client. If
there are unicast frames for it, the client must send a Power
Save Poll (PS-Poll) control frame to retrieve each buffered
frame from the AP.
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Figure 1. Traffic Indication Map information element

The AP also buffers all broadcast/multicast frames as
long as there is one client with WiFi radio in PS mode.
Notifications of buffered broadcast/multicast frames are sent
out with a special type of TIM called DTIM (Delivery
Traffic Indication Map). This DTIM is generated within
beacon frames at a frequency specified by the DTIM period
(interval). In Figure 1, DTIM period is represented in unit of
beacon intervals. Typical values are 1 ∼ 3. The DTIM count
field indicates how many beacons must be transmitted before
receiving the next DTIM. The DTIM count is zero when
we reach a DTIM. The first bit of the Bitmap Control field
is used to indicate whether broadcast/multicast frames are
buffered at AP or not. If there are any broadcast/multicast
frames buffered, i.e., the first bit of the Bitmap Control is set
to one, every client must listen to the channel and receive
the broadcast/multicast frames. After a DTIM, the AP sends
the multicast/broadcast data on the channel following the
normal channel access rules (CSMA/CA).

3. Proposed System

In this section, we present the proposed system. our
main idea is to use UDP ports to differentiate useless and
useful UDP-padded broadcast frames. If the UDP port of a
broadcast frame is opened (listened to by a process) on a
client, then the AP considers this broadcast frame useful
to the client; otherwise, the AP considers this broadcast
frame useless to this client. Then in traffic indication, the
AP hides the presence of useless broadcast frames from
corresponding clients and only tells the presence of useful
broadcast frames. We call the proposed system HIDE.

3.1. System Overview

Figure 2 shows an overview of how the system works.
Every time before a smartphone enters suspend mode, it
collects all UDP ports currently opened and sends them to
the AP in a UDP Port Message. Upon receiving a UDP Port
Message, the AP responds with an ACK frame. At the same
time, the AP stores all UDP ports received from clients in
a hash table (Client UDP Port Table) and keeps the table
updated with the latest data from clients. After receiving
the ACK frame from the AP, the client now enters into
suspend mode. During suspend mode, the smartphone screen
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Figure 2. System Overview

is off. The CPU, ROM, and the micro-controller circuits for
various I/O devices are suspended [10]. However, the WiFi
chip is still able to receive beacon frames and check if there
are any frames buffered at the AP. When a DTIM period
starts, the AP calculates a flag for each client based on the
Client UDP Port Table. This flag indicates whether there
are useful broadcast frames buffered for the corresponding
client or not. These flags are carried in the Broadcast Traffic
Indication Map (BTIM) information element in a beacon
frame. Every client checks its exclusive bit in the BTIM
information element. If this bit is not set, then no useful
broadcast frames are buffered at the AP. The client stays
in suspend mode as long as there are no unicast frames
buffered. If the corresponding bit is set, then the client has
useful broadcast frames buffered at the AP. No matter there
are unicast frames buffered or not, the client needs to prepare
its WiFi radio for receiving data. And after data is received
by the WiFi radio, the client needs to switch to active mode,
i.e., waking up the CPU and other resources, to process the
frames.

In the following subsections, we present more details of
the proposed system about (1) how UDP port information is
sent from clients to the AP with a UDP Port Message, (2)
how the AP determines whether a client has useful broadcast
frames, and (3) how broadcast traffic indication flags are
delivered to clients in a beacon frame.

3.2. UDP Port Information Synchronization

In our HIDE system, an AP uses UDP ports to differenti-
ate useless and useful broadcast frames. This policy requires
that the AP has the information of all open UDP ports on
each smartphone. As this information is only available on

the client itself, a client needs to send the data to the AP.
The structure of this frame is shown in Figure 3. It is called
UDP Port Message.
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Figure 3. Frame structure of UDP port message

A UDP Port Message is a WiFi management frame
(type=00, subtype=1111) sent from a client to an AP, re-
porting a set of UDP ports opened on the client. To re-
duce the size of the message, a client only reports UDP
ports associated with the source address INADDR ANY. To
carry the UDP port information, we add a new information
element, named Open UDP Ports information element (as
in Figure 3) to the standard 802.11 protocol. We use 200,
which is reserved and unused by 802.11 protocols, as the
element ID for Open UDP Ports information element. This
information element contains an array of UDP port numbers.
Each UDP port number takes 2 bytes. Upon receiving a UDP
Port Message, the AP responds with an ACK frame, so that
the client knows the message is successfully delivered. If
an ACK frame is not received by the client, the normal
retransmission operation applies to the UDP Port Message.

Each time before a client enters suspend mode, it sends
a UDP port message to the AP. If there is a change made
to the set of open UDP ports on a client, such as adding a
new open UDP port or deleting an existing open UDP port,
the system should definitely have already resumed to active
mode to process such an event. Next time when the system
is about to enter suspend mode, a new UDP port message
will be sent to the AP with the latest UDP port information.
In this way, an AP can always get the updated open UDP
ports from a client.

3.3. Traffic Differentiation at AP

A broadcast frame may be useful to one client while
being useless to another client. So, in the HIDE system, the
AP maintains a broadcast flag (one bit) for every associated
client. If there is any useful broadcast frame buffered for a
client, the corresponding broadcast flag is set to 1; otherwise,
the broadcast flag is set to 0.

Open UDP ports of all clients are stored in a hash table
(Client UDP Port Table). With this hash table, the AP then
calculates the broadcast flag for each client. The procedure
is described in Algorithm 1. Right before transmission of a
beacon frame representing the start of a DTIM period, the
AP resets all broadcast flags to 0. Then, for every broadcast
frames currently buffered, the AP extracts the destination



Algorithm 1 Calculating broadcast flags
Input: broadcast frames currently buffered at the AP

Client UDP Port Table
Output: broadcast flags for clients

1: broadcast flags[ ] ← {0} // initialize the array of
broadcast flags to all 0

2: for all broadcast frames currently buffered do
3: O ← UDP port number from frame data
4: C ← list of clients by Client UDP Port Table lookup

with key O
5: for ci in C do
6: k ← AID of ci
7: m ← dk/8e − 1 // octet number
8: n← k−8∗m // bit number in the target octet
9: (the nth bit of broadcast flags[m-1]) ← 1;

10: end for
11: end for

UDP port number from the frame data. Then, the AP looks
up the hash table using the UDP port number as the key and
gets a list of clients C which have this UDP port opened.
After that, the AP sets the broadcast flags for all clients in
C to 1.

3.4. Broadcast Traffic Notification

The current traffic notification uses only one bit to notify
all clients of the presence of any broadcast frames. To enable
fine-grained notification of buffered UDP broadcast frames,
we add an information element, shown in Figure 4, in the
beacon frame.
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Figure 4. Broadcast Traffic Indication Map information element

We use 201 as the element ID for our Broadcast Traffic
Indication Map (BTIM) information element. The Length
field indicates the total length of the subsequent fields in
bytes. The Partial Virtual Bitmap is constructed in a similar
way as in TIM information element [12] in Figure 1. The
Partial Virtual Bitmap consists of the broadcast flags intro-
duced in the previous subsection. Each bit corresponds to
an Association ID (AID) of a client. For example, the 1st

bit is for the client with AID 1. If a bit is set to 1, then the
corresponding client has useful broadcast frames; otherwise,
the client does not have useful broadcast frames.

To shorten the length of this information element and
reduce the protocol overhead, we do not put all flags for
all clients in this bitmap. Instead, we compress the data and
only put part of the flags in this field. An example is shown
in Figure 5. Suppose the first N1 (N1 is an even number)
bytes of the bitmap are all 0 and all bytes after the (N2)th

byte are also 0, then we can only put the (N1)th to (N2)th

bytes in the Partial Virtual Bitmap. At the same time, we
use the Offset field to indicate the start of the partial bitmap:
Offset = N1.

For clients who do not support this AP-assisted broad-
cast traffic management, they can still follow the standard
802.11 protocol: check the first bit of Bitmap Control field
in the TIM information element (as introduced in the Back-
ground section) and discard our BTIM information element.
So, our system works with co-existence of HIDE-enabled
devices and legacy devices.

4. Energy Modeling

In this section, we present the energy modeling for the
HIDE system.

Suppose an AP sends out n UDP broadcast frames at
time t1, t2, ..., tn, respectively. Also, suppose frame i is sent
during beacon interval bi with a length of Li and a data rate
of ri. In the original system, a client receives and wakes up
for every broadcast frame sent out by the AP. However,
with the HIDE system, a client only receives and wakes
up for broadcast frames that are useful to it. Let ui denote
whether a UDP broadcast frame i is useful to a client or not.
If ui = 1, then the ith UDP broadcast frame is useful to the
client; otherwise, the ith UDP broadcast frame is useless to
the client. Based on this, the UDP broadcast traffic from the
AP, in the perspective of a HIDE-enabled client, is

n′ =
∑n

i=1 ui

ti′ =
{
ti , if ui = 1
null , if ui = 0

(1)

With the filtered UDP broadcast traffic, the total energy
consumed by the whole system for all the n UDP broadcast
frames can be calculated as

E = Eb + Ef + Ewl + Est + Eo (2)

where Eb is the energy consumed to receive all beacon
frames, Ef is the energy consumed to receive all broad-
cast data frames, Est is the energy consumed by system
state transfer, Ewl is the energy consumption during system
idle periods due to WiFi wakelocks, and Eo is the energy
overhead of the HIDE system.

1) System state. Energy consumed for a UDP broadcast
frame depends on the system state when the frame arrives.
Thus we derive the system state first. For each UDP broad-
cast frame received, a wakelock of duration τ is acquired
in the WiFi driver. This wakelock keeps the whole device
awake and allows time for applications to process and
respond to this frame. Also, due to the wakelock, subsequent
frames can be received immediately.

If a UDP broadcast frame arrives during the wakelock of
the previous frame, it renews the wakelock time and resets
the time-to-expire to τ . If a UDP broadcast frame arrives
when the system is in suspend mode, the WiFi driver needs
to first wake up the operating system. If a UDP broadcast
frame arrives during system resume operation, activation
of the WiFi wakelock will be delayed until the resume
operation is finished.
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Let s(i) stands for the operating system state when frame
i arrives. s(i) = 0 means the system is in suspend mode.
s(i) = 1 means the system is in active state, or is resuming
or suspending. Assume the wakelock for frame i starts at
time tr(i), then

tr(i) =

{
ti + li/ri + Trm , if s(i) = 0
max{ti + li/ri, tr(i− 1)} , otherwise

(3)
where Trm is the duration of system resume operation.
Immediately after a system resume operation is finished,
the delayed wakelocks are activated one by one in a self-
renewal way. Since all these happen in a very short time,
we combine them into one single wakelock. Active duration
of the wakelock for frame i is

twl(i) = min{tr(i+ 1)− tr(i), τ} (4)

Then, we calculate the system state s(i). Without loss of
generosity, assume s(1) = 0. For 2 ≤ i ≤ n

s(i) =

{
0 , if ti + li/ri ≥ tr(i− 1) + τ + Tsp
1 , otherwise (5)

where Tsp is the duration of system suspend operation.

2) Energy consumption of receiving beacon frames. The
first item Eb in Eq. (2) is calculated as

Eb = Eu
b ∗

∑
b1≤i≤bn

Li (6)

where Eu
b is the energy consumption per byte of WiFi radio

when receiving beacon frames and Li is the length of the
ith beacon frame.

3) Energy consumption of receiving broadcast data
frames. This second item in the right end of Eq. (2) Ef

is calculated as

Ef = Pr ∗
n∑

i=1

tt(i)+Pidle∗(
n∑

i=1

td(i)+
∑

b1≤i≤bn

tf(i)) (7)

where Pr and Pidle are the power consumption of WiFi radio
when receiving data and idle listening, respectively. tt(i) is
the transmission time of the ith UDP broadcast frame, td(i)
is the length of time that the WiFi driver spends in idle
listening state right after receiving the ith UDP broadcast
frame, and tf(i) is the idle listening time between the ith
beacon frame and the first UDP broadcast frame in the ith
beacon interval. So,

tt(i) =
li
ri

(8)

tf(i) = min
j∈{k|bk=i}

tj − tb(i) (9)

td(i) = {min{ti+1, tb(bi+1)}−ti− li/ri}∗dmore(i) (10)

where dmore(i) is the ‘more data’ bit in the ith UDP
broadcast frame. If this bit is set, WiFi radio listens to the
channel for future broadcast frames. tb(i) is the start time
of the ith beacon interval and Tb is the beacon interval.
Without loss of generosity, we assume tb(1) = 0. Then,

tb(i) = (i− 1) ∗ Tb (11)

4) Energy consumption of system idle due to WiFi
wakelocks. Ewl in Eq. (2) is calculated as

Ewl = Psa ∗
n∑

i=1

twl(i) (12)

where Psa is the power consumption when the system is
active and idle. twl is the duration of wakelock for frame i
being active which is presented in Eq. (4).

5) Energy consumption of state transfers. Est in Eq. (2)
is calculated as this.

Est = (Erm + Esp) ∗
n∑

i=1

[1− s(i)] + Esp ∗
n∑

i=2

y(i) (13)

where Erm and Esp are the energy consumption of system
resume and suspend operations, respectively. It may happen
that a WiFi driver tries to acquire a wakelock when the
system suspend operation is in execution. In this case, the
system aborts the suspend operation. Let y(i) denote the
time portion of system in suspend operation upon arrival of
frame i (2 ≤ i ≤ n), then

y(i) =
max{0, tr(i)− tr(i− 1)− twl(i− 1)} ∗ s(i)

Tsp
(14)

6) Energy overhead. Energy overhead of our HIDE system
contains two parts: energy consumed by transmission of
UDP port messages E1

o and energy consumed by receiving
extra bits in beacon frames E2

o .

Eo = E1
o + E2

o (15)

In the HIDE system, we add a Broadcast Traffic Indica-
tion Map information element in the beacon frame. So, the
extra energy consumed to receive beacon frames in a HIDE
system is

E1
o = Eu

b ∗
∑

b1≤i≤bn

Lb
i (16)



where Lb
i is the total length of BTIM information element

in beacon frame i.
In the HIDE system, a client sends out UDP Port Mes-

sages to synchronize open UDP ports with AP. This part of
energy overhead, denoted as E2

o , is calculated as

E2
o = M ∗ Pt ∗

∑
i

Lm
i

rmi
(17)

where M is the number of UDP Port Messages sent out by
the client.

M = f ∗ Tb ∗ (bn − bi + 1) (18)

In Eq. (17), Pt is the power consumption of WiFi radio
when sending data. rmi is the data rate of the ith UDP port
message from a client and Lm

i is its length. From Figure 3,
we see that it includes the PHY and MAC layer headers, 2
bytes of fixed fields plus a series of UDP port. Each UDP
port takes 2 bytes. With Ni UDP ports in the message, we
have

Lm
i = Lphy + Lmac + 2 + 2 ∗Ni (19)

5. Network Capacity and Delay Analysis

The proposed system impacts network throughput and
delay in two ways. First, in our system, AP is in charge
of managing broadcast traffic. Frame processing at AP
is slowed down. Consequently, packet delay is increased.
Second, extra management frames (UDP Port Message) are
introduced in the system. Protocol overhead is increased.
Consequently, the network capacity, which is the maximum
network throughput, is decreased. In this section, we quan-
tify the impact of our system on network capacity and delay.

5.1. Network Capacity

In [13], the authors model the maximum network
throughput that can be achieved in an 802.11 network
with different numbers of nodes. We borrow their model
to calculate the network capacity, denoted as S. Let Φ be
the network throughput defined in [13], which is defined
as the fraction of time the channel is used to successfully
transmit payload bits. And let r be the average WiFi data
rate (in bits/s) during transmission of payload bits. Then, the
network capacity (in bits/s) of the original 802.11 network
is

S1 = Φ ∗ r (20)

Assume that there are N clients in the network and the
percent of clients with HIDE enabled is p. With our system,
the total number of UDP Port Messages sent out per unit
time by all clients is

nu = N ∗ p ∗ f (21)

where f is the frequency of sending UDP Port Messages
from a client. Meanwhile, in the original network, the num-
ber of data frames transmitted per unit time is

n = S1/L (22)

where L is the average length of payload bits in a data frame.
Let Lm denote the average length of UDP Port Messages.
Then, the network capacity with our HIDE system is

S2 = (n− nu ∗ d
Lm

L
e) ∗ L (23)

Therefore, the percentage of decrease in network capacity
is

c = 1− S2/S1 (24)

5.2. Network Delay

Delay overhead of the HIDE system is mainly due
to maintenance of the Client UDP Port Table and table
lookup for identifying useful broadcast frames. Here, we
calculate the extra network delay incurred by the HIDE
system through approximate estimation.

For each UDP port message received, an AP needs to
refresh the table by deleting the old ports from the hash
table and inserting the new ports to the table. Assume the
original round-trip time of a packet is D. Let no be the
average number of open UDP ports in a client. With N as
the total number of clients in the network, p as the percent
of clients with HIDE enabled, and f as the sending rate
of UDP Port Messages from a HIDE-enabled client, frame
processing time at the AP will be increased by

t1 = f ∗D ∗N ∗ p ∗ no ∗ (τdel + τins) (25)

where τdel and τins are the durations of a delete operation
and an insert operation, respectively.

At the start of each DTIM period, for each UDP broad-
cast frame currently buffered, an AP needs to look up the
UDP port from the hash table. Frame processing time at the
AP will be further increased by

t2 = nf ∗ τlp (26)

where τlp is the duration of a table lookup operation and nf
is the average number of broadcast frames buffered at AP
during each DTIM period.

Then, the percentage of increase in network delay is

d = (t1 + t2)/D (27)

Here, the delay overhead calculated is actually the upper
bound, because the processing time of UDP Port Messages
at the AP may overlap with part of the packet round-trip
time, such as the channel access time and packet forwarding
time in the backbone network. Also, a packet exchange may
start and end in the middle of one DTIM period. In this case,
our system does not incur the delay overhead of t2.

6. Evaluation

In this section, we demonstrate the performance of the
proposed system, namely HIDE, by answering two ques-
tions: 1) how much energy can our HIDE system save in
real-world scenarios? 2) how much does the system affect
network throughput and delay?



6.1. Energy Efficiency

To show the energy efficiency of our system, we first
present the solutions for comparison. Then, we show results
of our trace-driven simulation.

6.1.1. Solutions for Comparison. To show the energy
efficiency of the HIDE system, we compare its energy
consumption to that of the “receive-all” method employed
on modern smartphones and the lower bound energy con-
sumption of the “client-side” solution [6].

“receive-all” solution: With the receive-all solution, the
AP forwards all broadcast frames. The client receives all of
these broadcast frames and activates a WiFi wakelock of
one second [6] for each broadcast frame.

“client-side” solution: In the HIDE system, we man-
age WiFi broadcast frames at the AP side. A “client-side”
solution is presented in [6]. In the client-side solution,
the smartphone receives all UDP broadcast frame. Then it
determines whether a broadcast frame is useful or useless.
If this is a useless broadcast frame, the smartphone drops
it and goes back to suspend state immediately. A “client-
side” solution reduces the time that the system spends in
active state due to WiFi wakelocks triggered by useless
broadcast frames. However, the overhead of this solution
is more frequent state transfers. We compare our method
to the lower bound energy consumption of the “client-side”
solution derived by the authors.

6.1.2. Trace-driven Simulation. We collect broadcast traf-
fic traces from 5 different real-world scenarios: a classroom
building, a CS department, a college library (WML), an off-
campus Starbucks store, and a city public library (WRL).
Each trace contains 30∼60 minutes data during peek hours.
The cdf plots of broadcast traffic volume in the traces, i.e.,
number of broadcast frames per second, are shown in Figure
6. The average value is indicated with a black square on each
curve.
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Figure 6. Broadcast traffic volumes in traces

With these wireless traces and the energy model in
Section 4, we calculate the energy consumption of different
solutions through trace-driven simulation. The energy profile
inputs for the model are measured with a Monsoon power
monitor [14] from two phones: Nexus One and Galaxy S4.
We list the values in Table 1. For the HIDE system setting,
we assume that the UDP port message are sent out every 10
seconds from each HIDE-enabled client with the lowest data
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Figure 7. Energy consumption comparison (Nexus One). Numbers along
x-axis are different percentages of useful broadcast frames.
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Figure 8. Energy consumption comparison (Galaxy S4). Numbers along
x-axis are different percentages of useful broadcast frames.

rate of 1 Mbits/s. And, the number of UDP ports included
in a UDP Port Message is set to 100. This setting is able to
represent smartphones in heavy usage. Thus, they are fair
enough to show the overhead of our system when compared
to others.

Figure 7 and 8 shows the average power consumption of
handling broadcast traffic with different solutions on Nexus
One and Galaxy S4, respectively. In each sub-figure, the
first bar is for the “receive-all” method and the second
bar is for the “client-side” method. The last five bars are
for the HIDE system with different percentages of use-
ful broadcast frames. In order to remove the differences
in duration between traces, we show the average power
consumption instead of the total energy consumption. Five
different colors stand for power consumed in five different
aspects as introduced in Equation 2.

From Figure 7 and Figure 8, first, we see that our
system saves significantly more energy than the “client-side”
solution. With 10% of the broadcast frames being useful,
we save 34%∼75% energy for Nexus One and 18%∼78%



TABLE 1. ENERGY/POWER CONSUMPTION MEASURED FROM PHONES

τ Trm Tsp Erm Esp Eu
b Pr Pt Pidle Pss Psa

Nexus One 1 s 46 ms 86 ms 18.26 mJ 17.66 mJ 1.25 mJ 530 mW 1200 mW 245 mW 11 mW 125 mW

S4 1 s 44 ms 165 ms 58.3 mJ 85.8 mJ 1.71 mJ 538 mW 1500 mW 275 mW 15 mW 130 mW

energy for Galaxy S4. We save even more energy when
2% of the broadcast frames are useful: 71%-82% for Nexus
One and 62%-83% for Galaxy S4. On average, HIDE:10%
(the HIDE system with 10% of the broadcast frames being
useful to the client) saves 23% more energy for Nexus One
and 35% more energy for Galaxy S4 than the “client-side”
solution. HIDE:2% saves 62% more energy on average for
Nexus One and 45% more energy for Galaxy S4 than the
“client-side” solution.

Second, we observe that energy savings of the HIDE
system are different across traces. This is mainly because
different traces have different broadcast traffic volumes.
Other factors, such as frame arrival pattern, frame length,
and data rate, are also causing the energy saving differences
between traces. The third observation is that the energy
overhead of our system, which is shown in red color, is
negligible. The overhead is minimal despite that the system
setting used in the evaluation represents smartphones in
heavy usage.

Third, we notice that state transfer overhead on Galaxy
S4 is much higher than on Nexus One. As a result, the
“client-side” solution does not save much energy when the
broadcast traffic is heavy, as shown in Figure 8. For example,
in the classroom and college library (WML) scenarios, the
“client-side” solution barely saves energy. In contrast, our
system still largely reduces the average power consumption.
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Figure 9. Fraction of time in suspend mode for Nexus One

In order to help understand the energy savings of our
method, we show the fraction of time that the device stays
in suspend mode in Figure 9. HIDE:10% (HIDE:2%) means
the HIDE system is used and 10% (2%) of the broadcast
frames are useful. Here, we only show the results for Nexus
One. Similar results are obtained for Galaxy S4. Generally,
the HIDE system spends much more time in suspend mode
than both the “receive-all” method and the “client-side” so-
lution. When the broadcast traffic is heavy, such as under the
classroom scenario and under the WML scenario, the device
spends less than 20% of the time in suspend mode when the
“receive-all” or “client-side” solution is used. However, with
our method, the device spends ≥80% of the time in suspend
mode with 2% of useful broadcast frames. One exception
is that, in the CS Department scenario, the fraction of time
in suspend mode for HIDE:10% is only slightly larger than

that of the “client-side” solution. Referring back to Figure
7, we know that the “client-side” solution saves much less
energy because it wastes a lot more energy in switching
between active mode and suspend mode.

6.2. Impact on Network Capacity and Delay

Impact on Network Capacity. Based on the analysis
in Section 5.1, we calculate the percentage of decrease in
network capacity with typical 802.11b network configura-
tions as used in [15]. The parameters are listed in Table
2. In addition, the sending interval of UDP Port Messages
from a client is set to 10 seconds. Each UDP Port Message
contains 50 UDP ports.

TABLE 2. NETWORK CONFIGURATION FOR OVERHEAD ANALYSIS

min contention window 32
max contention window 1024
slot time 20 us
SIFS 10 us
DIFS 50 us
propagation delay 1 us
channel data rate 11 Mbits/s
MAC Header 224 bits
PHY preamble +header 192 bits
average data payload size 1000 bits

Figure 10 shows the results of the decrease in network
capacity. We vary the total number of nodes in the network
from 5 and 50. Also, we vary the percentage of nodes with
HIDE enabled, denoted as p, from 5% to 75%. We made
the following observations. First, the more the nodes in
the network, the more the network capacity decreases. This
is because the number of UDP Port Messages transmitted
is linear to the number of nodes in the network. And,
the original network capacity drops only slightly when the
number of nodes in the network increases from 5 to 50.
Second, the decrease of network capacity is negligible. With
50 nodes in the network and 75% of the nodes with HIDE
enabled, the decrease of network capacity is only 0.13%.

Impact on Network Delay. To measure the network delay
overhead of our system, we set the percent of clients with
HIDE enabled p to 50%. In addition, we set the number
of broadcast frames buffered at the AP during each DTIM
period nf to 10. Note that the nf in the five traces we
collected are all much smaller than 10. For the original
network delay D, we measure the round-trip time (rtt)
when connecting to a YouTube server under a deployed AP
with ping command. In our experiments, the average rtt is
79.5ms. We use this measured rtt as the original network
delay D.

To get the time durations of hash table operations,
including deleting τdel, inserting τins, and lookup τlp, we



5 10 20 30 40 50
  0%

0.1%

0.2%

0.3%

0.4%

0.5%

Total Number of Nodes in the Network

T
h

ro
u

g
h

p
u

t 
O

v
e
rh

e
a
d

 

 

p = 5%

p = 25%

p = 50%

p = 75%

Figure 10. Decrease in network capacity with
different percents of HIDE-enabled nodes
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Figure 11. Increase in network delay with differ-
ent sending intervals of UDP Port Messages
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Figure 12. Increase in network delay with differ-
ent numbers of UDP ports in use

implement the Client UDP Port Table on an old smart-
phone. We use a smartphone instead of a computer because
computers have much more powerful processing capability
than wireless AP/routers. The processing time measured
on a computer does not reflect actual processing time on
wireless APs/routers. The smartphone we use has a 1 GHz
ARM processor and 512 MB memory with Android system
installed. This configuration is comparable to some wireless
routers in the market [16] [17]. To measure the time of
operations, we first initialize the hash table with N∗50%∗50
randomly generated pairs of (UDP port, Association ID).
The parameter is then calculated as the mean value from
10 repeated runs of 100 deleting, or inserting, or lookup
operations.

First, we fix the average number of open UDP ports in a
client no to 50 and vary the average sending interval of UDP
Port Messages. With this setup, the increase of packet delay
with our HIDE system is shown in Figure 11. We observe
that the more the nodes in the network, the more the packet
delay increases. At the same time, the more frequently the
UDP Port Messages are sent, the larger the increase is.
The same as the impact on network capacity, the impact
on packet delay is very small. When UDP Port Messages
are sent every 10 minutes (600s), the increase of rtt is as
small as 0.05%. Even when the UDP Port Messages are sent
every 10 seconds, the increase is only 2.3%.

Second, we fix the sending interval of UDP Port Mes-
sage to 30s and vary the average number of open UDP ports
no in a client. The results for this configuration are shown in
Figure 12. As expected, more open UDP ports means larger
delay overhead. However, the overhead is less than 1.6%
with 100 UDP ports in use on each HIDE-enabled client.

During our overhead analysis, we find that t1 � t2 in
Equation (27). Meanwhile, according to Equation (25), t1 is
linear to the original network delay D. Our analysis results
above actually have little dependence on the actual value
of the original network delay, although we use a measured
value of 79.5 ms.

7. Related Work

The work presented in [6] is the most related work to
ours. In that paper, the authors filter out useless broadcast
traffic in the WiFi driver at client side after they are received
by clients. With their method, energy is still wasted to
receive useless broadcast frames and wake up to do the
processing. In contrast, with our system, a smartphone in

suspend mode does not need to receive useless broadcast
frames or wake up to process the frames. Our evaluation
already shows that our method saves more energy than
“client-side” solutions including the work in [6].

Detecting/Filtering Unwanted Traffic. In [18] [19], the
authors measure the impact of unwanted traffic on 3G net-
works. In [20], the authors measure the impact of unwanted
link layer WiFi frames due to client association/dissociation
and probe activities. In this work, we focus on WiFi broad-
cast frames generated by upper-layer applications with UDP
payload.

The authors in [21] [5] detect data traffic sent from
DDoS attackers.The authors in [22] consider null data
frames from attackers as unwanted traffic and propose de-
fense mechanisms against it. These works focus on detecting
and filtering abnormal traffic from malicious nodes. How-
ever, in our work, we study WiFi broadcast frames that are
normal traffic from benign nodes.

Smartphone Traffic Reduction. In [23] [24] [25], the
authors propose to reduce data received by smartphones
during video chatting or streaming. However, these methods
target at unicast frames for a specific type of application. In
this work, we consider broadcast frames that come from
various applications.

In [26], the authors propose to let the server selectively
send the data to a smartphone according to the smartphone’s
battery status. Smartphone advertising is also one source
of unnecessary or unwanted traffic [27] [28]. Applications,
such as Adblock [29], have been provided to block such kind
of unwanted traffic. Again, all of these work study unicast
traffic. We study broadcast traffic.

In [30], the authors propose to reduce general data
traffic of smartphones by applying redundancy elimination
at different protocol layers. Their work is orthogonal to ours.

8. Conclusion and Future Work

Energy is wasted on smartphones to receive broadcast
frames that are useless to the smartphone and to switch
from low power suspend mode to high power active mode to
process these useless WiFi broadcast frames. In this work,
we propose a framework, namely HIDE, to reduce energy
wasted on smartphones due to useless broadcast frames, with
assistance from the WiFi Access Point (AP). In the HIDE
system, a client coordinates with the AP to identify useful
broadcast frames. Then, traffic notifications sent out from



AP only indicate useful broadcast frames that are currently
buffered at the AP. The presence of useless broadcast frames
is hidden by the AP from the client. As a result, a client in
suspend mode does not need to receive the useless broadcast
frames. Neither does it need to switch to active mode and
process the useless frames.

With WiFi broadcast traces collected from 5 different
real-world scenarios, we conduct trace-driven simulation
with the energy model derived in the paper. The results show
that our system saves 34%-75% energy for the Nexus One
phone and 18%-78% for the Galaxy S4 phone when 10%
of the broadcast frames are useful to the smartphone. When
2% of the broadcast frames are useful to the smartphone, our
system saves 71%-82% energy for Nexus One and 62%-83%
for Galaxy S4. We also analyze the performance overhead
of the proposed system. The impact of the HIDE system on
network capacity is less than 0.2% and the impact on packet
round-trip time is no more than 2.3%.

In future, we plan to evaluate the system with more
broadcast traffic traces and for more smartphones. Combin-
ing the HIDE system with the “client-side” solution is also
one direction to be explored.
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