
Signature Search Time
Evaluation in Flat File
Databases

KWANGIL KO

THOMAS G. ROBERTAZZI, Fellow, IEEE
Stony Brook University

For the first time, divisible load scheduling theory is used

to solve for the expected time for searching for both single

and multiple signatures in certain multiple processor database

architectures. The target architectures examined for illustrative

purposes are linear daisy chains and single level tree networks

with single and multiple installment load distribution. The use of

divisible load modeling and analysis yields elegant expressions for

expected search time.

Manuscript received October 18, 2005; revised May 26, 2006;
released for publication March 23, 2007.

IEEE Log No. T-AES/44/2/926535.

Refereeing of this contribution was handled by W. D. Blair.

Authors’ current addresses: K. Ko, Samsung Electronics, Suwon,
Korea; T. G. Robertazzi, Dept. of Electrical and Computer
Engineering, Stony Brook University, Light Engineering Bldg.,
Stony Brook, NY 11794, E-mail: (tom@ece.sunysb.edu).

0018-9251/08/$25.00 c° 2008 IEEE

I. INTRODUCTION

Flat file records are the most basic of database
records. In the work presented here, records consisting
of very long linear data sequences are considered.
It is desired to find certain distinctive patterns or
“signatures” in the records by a direct search on
a parallel computing system. This may be done in
aerospace applications such as radar and sensor data
processing, signature and pattern recognition, and
signal processing.
Related to this is string matching [6, 11] and

template matching [10]. Of course, there are far more
sophisticated database record approaches than flat files
and in fact early flat file systems are often converted
to such models [13, 14]. However for initial raw data
processing flat files are a natural choice [15].

A. Aerospace Database Applications

Database technology has been used for many years
in aerospace applications. Databases are used both in
flight systems and ground support systems.
In 1993 Roth et al. [20] and Glickstein et al.

[21] discussed database management as the heart of
integrated avionics systems. Real time databases for
avionics are examined in Peng and Lin [22]. Spatial
and temporal databases are the subject of Bonnor [23]
and Vladlamani and de Haag [24]. Finally security
and avionics databases are discussed in Roark [25].
Databases for space applications have been

discussed in terms of shuttle database integration by
Stevens and Componation [26], in terms of the use of
XML (extensible markup language) as the underlying
structure of the James Webb Space Telescope effort
by Detter et al. [27] and in terms of NASA’s New
Millenium project by Some et al. [28]. Moreover the
NASA Technical Report Server contains material on a
wide variety of aerospace-oriented databases, ranging
from those for turbulence studies, for images, for
astronomical data and for flight tests.
Ground support databases include those for

air traffic flow management as in Sripada et al.
[29]. Support for ad hoc queries for heterogeneous
databases is discussed in Adams et al. [30]. Databases
for human systems integration in use in the early
1990s appears in Gentner [31]. Finally, information
challenges for the aerospace industry are discussed in
Sripada [32].

B. Divisible Load Modeling

The novelty of this paper is in applying divisible
load scheduling theory for the first time to the
problem of finding expected signature search time
(i.e., expected time to a “match(es)”). The paradigm
of divisible loads has been considered during the
past 18 years as a tool for understanding parallel

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008 493

system performance. Divisible loads are loads which
can be arbitrarily partitioned among a number of
processors. Scheduling divisible load in parallel
system is surveyed in Bharadwaj [4, 5] and Robertazzi
[18]. The computation of schedules providing the
minimal amount of solution time for linear daisy
chain networks of communicating processors is
examined in Cheng [7], Mani [16] and Robertazzi
[17]. An example of the inclusion of reporting time,
the time taken for processors to report the solution
back to the originator, is also presented in Cheng
[7]. The determination of the optimal division of
processing load is discussed for both tree networks
with front-end processors and tree networks without
front-end processors in Bataineh [2], Bharadwaj
[4] and Cheng [8]. Optimal load allocation for load
sharing a divisible job over processors connected by
a bus network is considered in Bataineh [1, 2] and
Sohn [19]. Drozdowski [34] investigated signature
searching, among other computational problems, on
networks of transputers in the 1990s.
The use of divisible load modeling and the

associated analysis to evaluate parallel systems has
a number of advantages. Linear and continuous
modeling results in a tractable analysis. The
underlying load allocation equations are deterministic
so no probabilistic assumptions are made in this
part of the analysis. Furthermore the model is
generic enough that it can accommodate changes in
technology and topology.
Elegant expressions are presented here for the

expected time to find both single and multiple
signatures in specific target architectures. The
architectures investigated are a linear daisy chain of
processor and a single level tree network. For the
single level tree network both single installment and
multi-installment load distribution are considered.
These target architectures are chosen to be illustrative.
The techniques described here can be used to
model and solve for signature search time on
other architectures. This work is significant for
demonstrating the power of divisible load scheduling
theory for predicting search times.

II. SYSTEM MODEL

A parallel machine consists of a number of
processors and an interconnection network to tie
them together. This work examines a specific parallel
processing problem on specific architectures that
allows the study of the integration of communication
and computation.
The situations to be considered involve a linear

daisy chain of processors and a single level tree
network, as illustrated in Figs. 1 and 2, respectively.
The model of a linear daisy chain network or a single
level tree network consists of (M +1) processors.
Processor 0 is assumed to be the originating processor

Fig. 1. Model of linear daisy chain network with communication
links.

Fig. 2. Model of single level tree network with communication
links.

which distributes the fractions of the entire load
to M processors. Without loss of generality, it is
assumed that the load is instantaneously delivered to
the processor 0 and this processor becomes the load
origination processor. Each processor is interfaced
with the network via a front-end communication
processor for communication off-loading. That is, the
processors can communicate and compute at the same
time [4].
The following notation are used throughout this

paper.

®i: Fraction of entire processing load assigned to
ith processor.
wi: Constant that is inversely proportional to

computation speed of ith processor.
zi: Constant that is inversely proportional to

channel speed of ith link.
Tcp: Computation intensity: time taken to process a

unit (the entire) load on ith processor when wi = 1.
Tcm: Communication intensity: time taken to

communicate a unit (the entire) load over link li when
zi = 1.

In particular, a bus network can be modeled by
setting zi (i= 1,2, : : : ,M) in the single level tree
network to a common value Z.

III. EXPECTED TIME OF SEARCHING FOR A SINGLE
SIGNATURE

In this section we develop expressions for the
optimal amount of load (i.e., flat file load) to transmit
over each link and place on each processor for a time
optimal solution for various architectures. In particular
we focus on a linear daisy chain network and a single
level tree network. In addition, multi-installment
distribution in the single level tree network is
considered. The time to send a solution back to
processor 0 in the linear daisy chain network or the
root processor in the single level tree network is

494 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

ignored since it is assumed that the solution reporting
time is small compared with the load distribution time.
It is assumed that all processors will eventually

stop searching their records at the same time if the
desired signature is not found. This is the required
condition [17, 19] to minimize the time it takes to
process the entire dataset in the minimal amount of
time (finish time) for the load distribution sequence.
Intuitively this must be so as otherwise the finish time
could be improved by transferring load from busy to
idle processors. Naturally, the signature, if present,
will definitely be found by the finish time.

A. Recursive Equations

In this subsection recursive equations modeling
the different scheduling protocols covered here are
described. Existing work has developed expressions
for the finish time (makespan) of such schedules
[4, 33]. For these equations and associated figures,
expressions for the time to start searching are listed in
the following subsection. This leads to an analysis for
expected search time if there is a single signature in
the data file.
1) Linear Daisy Chain Network: In a linear

daisy chain network p0 is connected to p1, which is
connected to p2 and so on. Let p0 be the left most
processor and pM be the right most processor. Also
number the links 1,2, : : : ,M from left to right. Fig. 3
is a timing diagram for a linear daisy chain network.
Communication appears above the horizontal axis
and computation is below it. It can be seen that the
processing time ®iwiTcp of the ith processor equals the
transmission time (1¡®0¡®1¡ ¢¢ ¢¡®i)zi+1Tcm, from
the ith processor to the (i+1)th processor plus the
processing time ®i+1wi+1Tcp, of the (i+1)th processor
where ®i is the optimal fraction of the load assigned
to the ith processor. Thus a set of recursive equations
can be written

®iwiTcp = (1¡®0¡®1¡ ¢¢ ¢¡®i)zi+1Tcm+®i+1wi+1Tcp,

i= 0,1, : : : ,M ¡ 1: (1)

Here (M +1) is the number of processors. These
equations, along with the normalization equationPM
i=0®i = 1, form a system of (M +1) linear

equations in (M +1) unknowns. These can be solved
computationally by exploiting the recursive nature of
the equations [4].
2) Single Installment Distribution in Single Level

Tree Network: The root processor, located at level
0 distributes a fraction of the dataset to each of its
children processors, each of which searches for a
signature in its allocated fraction. Let the links and
children processors be numbered 1,2, : : : ,M: Each
processor at level 1 will search for a signature as
soon as it receives the entire single installment dataset
fraction from the root processor. Fig. 4 is the timing

Fig. 3. Timing diagram for linear daisy chain network.

Fig. 4. Timing diagram for single installment distribution in
single level tree network.

diagram of communication and computation for a
single level tree network with single installment load
distribution. Let the children processors be numbered
1,2, : : : ,M: For Fig. 4, the corresponding recursive
load distribution equations are

®iwiTcp = ®i+1zi+1Tcm+®i+1wi+1Tcp,

i= 0,1, : : : ,M ¡ 1 (2)

and the normalization equation is

MX
i=0

®i = 1: (3)

Recursive solutions to equations such as these
appear in Bharadwaj [4] and Ko [33].
3) Multi-Installment Distribution in Single Level

Tree Network: The expected time of searching for
a signature is expected to decrease as the finish time
becomes smaller. Sending the load fraction in more
than one installment so that a processor can begin its
computation earlier in time will reduce the finish time
and the time to start searching [3].
Consider a system in which the load is distributed

in N installments. The installments are such that all

KO & ROBERTAZZI: SIGNATURE SEARCH TIME EVALUATION IN FLAT FILE DATABASES 495

Fig. 5. Timing diagram for multi-installment distribution in single
level network.

the processors will nominally stop computing at the
same time instant. Let ®i,j be the fraction of the jth
installment assigned to the ith processor and ®i be the
fraction assigned to the ith processor

®i =
NX
j=1

®i,j : (4)

The timing diagram is shown in Fig. 5, from which
the recursive equations are expressed as follows:

®i,NwiTcp = ®i+1,N(zi+1Tcm+wi+1Tcp),

i= 1,2, : : : ,M ¡ 1 (5)

®i,jwiTcp =

"
MX

l=i+1

®l,jzl+
iX
l=1

®l,j+1zl

#
Tcm

i= 1,2, : : : ,M, j = 1,2, : : : ,N ¡ 1 (6)

®0w0Tcp =
MX
i=1

NX
j=1

®i,jziTcm+®M,NwMTcp: (7)

The normalizing equation is given by

®0 +
MX
i=1

NX
j=1

®i,j = 1: (8)

Solutions to multi-installment load scheduling
appear in Bharadwaj [4] and Ko [33].

B. Time to Start Searching

Defining the time for each processor to start
searching for a signature is important since this gives
the lower limit of the amount of time until a signature
is found on a given processor. Let Sm be the time for
the mth processor to start searching. Then this time is
given in Table I.

TABLE I
Time to Start Searching

Model S0 Sm (m= 1, : : : ,M)

Linear Daisy Chain Network 0 m¡1X
j=0

"Ã
1¡

jX
k=0

®k

!
¢ zj+1Tcm

#
Single Level Tree Network

(N = 1) 0
mX
j=1

®j ¢ zjTcm

Single Level Tree Network
(N ¸ 2) 0

mX
j=1

®j,1 ¢ zjTcm

C. Expected Time

In order to completely specify the expected time of
searching, one must identify the random variable that
describes the signature position in the dataset. Here, a
signature position variable is described in terms of the
uniform distribution and is denoted as X, where:

X»U(0,1): (9)

Since the dataset is normalized, a signature is
positioned between zero and one. Certainly more
complex assumptions on the statistics of signature
position are possible. However we examine the
uniform assumption case because it is canonical and
because of its tractability. A good discussion of such
assumptions appears in [9].
It is further assumed that the dataset is very

large. Thus, the distribution of a signature position
is regarded as a continuous variable. Now, considering
the quantity that must be described as the amount of
time until a signature is found on a given processor,
this random variable denoted by Y depends on
and can be obtained from the random variable of a
signature position X

Y= g(X): (10)

Here, g(X) is the transformation function from X
to Y.
Also Ym, defined as the probability distribution

of a signature in time when the signature is found in
the mth processor can be obtained from X using the
individual transformation function gm(X)

Ym = gm(X) (11)

where gm(X) depends only on wm, the inverse speed
of the mth processor. For the originating processor, the
transformation function is described as follows:

g0(X) =Xw0Tcp+ S0, 0·X· ®0: (12)

496 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Fig. 6. Transformation function: linear daisy chain network,
single level tree network; number of child processors, M = 5: Here

wTcp = 1 and zTcm = 1.

Fig. 7. Transformation function: multi-installment distribution in
single level tree network; number of child processors, M = 5,
number of installments, N = 3. Here wTcp = 1 and zTcm = 1.

For the mth processor, the transformation function,
gm(X) (1·m·M) is as follows:

gm(X) = (X¡
m¡1X
i=0

®i)wmTcp+ Sm,
m¡1X
i=0

®i <X·
mX
i=0

®i:

(13)

Here, Sm is the time for the mth processor to start
searching as before. Fig. 6 and Fig. 7 depict this
relationship between X and Y (based on their
respective earlier timing diagrams). For the linear
network and single level, single installment tree
network the transformation function of Fig. 6
maps the signature position (a continuous variable
from 0 to 1) into being found on one of the M+1
processors. Similarly the transformation function of
Fig. 7 maps the signature position into a processor

for multi-installment distribution on a single level
tree network. In other words, the transformation
function g(X) is the sum of the gm(X) defined as the
distribution of a signature in time when the signature
is found in mth processor

g(X) =
MX
m=0

gm(X): (14)

Note that in Figs. 6 and 7, wTcp = 1 and zTcm = 1.
From (11), (12), and (13), the probability density
function of Ym, denoted as f(y j pm), is obtained as

f(y j pm) =
1

Tfinish(M)¡ Sm
, Sm < y· Tfinish(M):

(15)
It is also assumed to be uniformly distributed on
(Sm,Tfinish(M)).
Assuming that a single signature exists in the

dataset, this signature exists at one of the (M +1)
processors with the probability which is equal to its
fraction of the normalized dataset. In other words,
if the signature is in the fraction assigned to the mth
processor, its probability equals to ®m

Prfa signature exists at pmg= ®m: (16)

Now, from the definition of the expected value,
the expected time of searching for a signature can be
written as

E[Y] =
Z Tfinish(M)

0
y ¢f(y)dy: (17)

From Bayes’ theorem, the probability density function
of Y can be expressed as

f(y) =
MX
m=0

f(y j pm) ¢Prfa signature exists at pmg

(18)

=
MX
m=0

f(y j pm) ¢®m: (19)

Here, the probability that a signature exists at pm is
already defined and equals to ®m. From (19), (17) can
be rewritten as

E[Y] =
Z Tfinish(M)

0
y ¢
"
MX
m=0

f(y j pm) ¢®m
#
dy (20)

=
MX
m=0

®m

"Z Tfinish(M)

0
y ¢f(y j pm)dy

#
: (21)

From (15), f(y j pm) is only defined on (Sm,Tfinish(M)).
Thus the lower bound of the integral on the right side
of (21) can be substituted as Sm instead of as 0:Z Tfinish(M)

0
y ¢f(y j pm)dy=

Z Tfinish(M)

Sm

y ¢f(y j pm)dy:
(22)

KO & ROBERTAZZI: SIGNATURE SEARCH TIME EVALUATION IN FLAT FILE DATABASES 497

Solving the integral of the right-hand side of the
above equation by substituting (15) yieldsZ Tfinish(M)

Sm

y ¢f(y j pm)dy=
[Tfinish(M)]

2¡ [Sm]2
2

¢ 1
Tfinish(M)¡ Sm

(23)

=
Tfinish(M)+ Sm

2
: (24)

Therefore the closed form of the expected time of
searching for a signature is

E[Y] =
MX
m=0

®m
Tfinish(M)+ Sm

2
: (25)

Intuitively, this equation holds that the average
signature search time is the weighted sum of the mid
point of each segment weighted by the size of the
segment. The previous derivation, though, is more
general and establishes a framework for finding
expected search time for other interesting networks
and scheduling policies.

IV. EQUIVALENT EXPECTED TIME OF SEARCHING
FOR MULTIPLE SIGNATURES

The expected time of searching for a single
signature was considered above. The solution of the
expected time of searching for multiple signatures
quickly becomes unmanageable since the last
signature to appear in the dataset is not always the
last signature to be detected. This occurs because
the processors shift through the data concurrently
changing the order in which detections are made.
However, in the case of a single processor, the last
signature is detected last. Furthermore, since this is a
linear model, the expected time of finding all of the
signatures can be obtained by applying the mean of
the last signature position

E[YL] = g(E[XL]): (26)

Here, E[XL] is the mean of the last signature position
in the normalized dataset.
A multiprocessor will be modeled as a single

equivalent processor. For the case of a single
equivalent processor denote for convenience the
transformation function as geq(¢). Accordingly let

Y= geq(X): (27)

Furthermore, since it is clear that geq(¢) depends on
weq, the inverse speed of the equivalent processor, one
can use the (12) as follows:

geq(X) =XweqTcp+ Seq: (28)

Here, Seq is the quasi start time of the equivalent
processor. For a single processor, there is no
communication delay. However, in the equivalent

single processor, the quasi start time should be defined
as virtual communication delay which occurs and
is preserved in transforming a multiprocessor to an
equivalent single processor. The general relation
between X and Y is given below by combining the
last two equations:

Y=XweqTcp+ Seq: (29)

Since a multiprocessor is considered as a single
equivalent processor, the conditional probability
density function in (15) can be directly applied to the
probability density function of Y

f(y) =
1

Tfinish(M)¡ Seq
, Seq < y· Tfinish(M):

(30)

By the definition, the expected time of Y is derived as
follows:

E[Y] =
Z Tfinish(M)

Seq

y ¢f(y)dy (31)

=
Z Tfinish(M)

Seq

y
1

Tfinish(M)¡ Seq
dy (32)

=
Seq +Tfinish(M)

2
: (33)

To obtain Seq, let (33) equal to (25). Then:

Seq =
MX
m=0

®m(Tfinish(M)+ Sm)¡Tfinish(M): (34)

Taking the expectation of both sides of (29) yields

E[Y] = E[X]weqTcp+ Seq: (35)

The expected value of the distribution X is ¹ (= 0:5)
when the distribution X is uniformly distributed on
(0,1). The speed of the equivalent processor weq can
be expressed as follows using (35):

weq =
1
¹Tcp

"
MX
m=0

®m
Tfinish(M) + Sm

2
¡ Seq

#
: (36)

From (34), Seq is known. Therefore (36) is rewritten
as follows:

weq =
1
¹Tcp

"
Tfinish(M)¡

MX
m=0

®m
Tfinish(M)+ Sm

2

#
:

(37)

However, (29) is still not linearly proportional.
To create a linearly proportional equation, change the
variable Y as

Y0 =Y¡ Seq: (38)

Then the relation between X and Y0 is

Y0 =XweqTcp: (39)

This equation is linearly proportional.

498 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Assuming that L signatures are distributed
uniformly in the normalized data, the expected value
of the last signature location is [12]

E[XL] = 2¹
L

L+1
: (40)

Similarly, E[Y0L] can be expressed like (26)

E[Y0L] = E[XL]weqTcp (41)

= 2¹
L

L+1
weqTcp (42)

or

E[YL] = 2¹
L

L+1
weqTcp+ Seq: (43)

Substituting (34) and (37) into (43), the explicit form
of above equation is represented as

E[YL] = 2
L

L+1

"
Tfinish(M)¡

MX
m=0

®m
Tfinish(M)+ Sm

2

#

+

"
MX
m=0

®m(Tfinish(M) + Sm)¡Tfinish(M)
#
:

The above equation is the expected time of finding
all of L signatures in the dataset under uniformly
distributed signature placement.

V. SIGNATURE SEARCH EVALUATION

The finish time, the expected time (Section III)
and the equivalent expected time (Section IV) in a
linear daisy chain network and in a single level tree
network including multi-installment load distribution
are shown in Fig. 8 and Fig. 10, espectively. Note that
the horizontal axis of Fig. 8 represents the number
of processors in the linear daisy chain while the
horizontal axis in Fig. 10 represents the number of
children processors in a single level tree network
(not counting the root processor). Thus in the special
cases of a linear daisy chain with two processors and
a single level tree network with one child processor
(and one root node), the graphs show identical results.
Clearly, as the number of processors increases, all

plots in Fig. 8 and Fig. 10 are decreasing. Comparing
these two figures, the signature searching time in a
single level tree network is better than that in a linear
daisy chain network with the same parameters. In
Fig. 10, as the number of installments N is increased,
one can achieve a faster signature search time. In
Fig. 8 and Fig. 10 only one signature exists in a
dataset. In this case, the expected time and the
equivalent time are identical.
Fig. 9, 11, 12, and 13 shows a comparison of

Monte Carlo simulation results and analytic results for
the equivalent expected time. Assuming P signatures
in a dataset, the time to search for each signature can
be calculated using the transformation function in

Fig. 8. Linear daisy chain network: time versus number of
processors; one signature; wi = 1, zi = 0:2, Tcp = 1, Tcm = 1.

Fig. 9. Linear daisy chain network: time versus number of
processors and varying number of signatures P; wi = 1, zi = 0:2,

Tcp = 1, Tcm = 1.

Fig. 6 and Fig. 7. The largest time to search among
P signatures is the time to search for all signatures.
The simulation result provides the mean time to
search for all signatures. As shown in these figures,
the simulation result is very close to the equivalent
expected time.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper the expected search time for single
and multiple signatures is investigated in certain
database architectures. Open problems include the
following.

1) Finding an exact analytical expression for the
mean search time to find the last signature using
probabilistic means;

KO & ROBERTAZZI: SIGNATURE SEARCH TIME EVALUATION IN FLAT FILE DATABASES 499

Fig. 10. Single level tree network: time versus number of
processors and varying number of installments N; one signature;

wi = 1, zi = 0:2, Tcp = 1, Tcm = 1.

Fig. 11. Single level tree network: time versus number of
processors and varying number of signatures P; one installment

(N = 1); wi = 1, zi = 0:2, Tcp = 1, Tcm = 1.

2) A technique was proposed here for determining
the mean time to find the last of a number of multiple
signatures to be found. It is an open problem to find a
tractable means of determining the mean time to find
the nth signature;
3) Developing a technique to calculate the

distribution of search time, not just the mean search
time;
4) Accommodating in the analysis correlated

signature positions;
5) Extending techniques proposed here to other

scheduling policies and architectures.

Signature searching is a common problem for such
fields as DNA sequence analysis, network intrusion
detection, biometrics, and large scientific experiments.
Thus the progress reported here may be of interest to
others as well as the aerospace community.

Fig. 12. Single level tree network: time versus number of
processors and varying number of signatures P; two installments

(N = 2); wi = 1, zi = 0:2, Tcp = 1, Tcm = 1.

Fig. 13. Single level tree network: time versus number of
processors and varying number of signatures P; three installments

(N = 3); wi = 1, zi = 0:2, Tcp = 1, Tcm = 1.

REFERENCES

[1] Bataineh, S., and Robertazzi, T. G.
Bus-oriented load sharing for a network of sensor driven
processors.
IEEE Transactions on Systems, Man, and Cybernetics, 21,
5 (1991), 1202—1205.

[2] Bataineh, S., Hsiung, T., and Robertazzi, T. G.
Closed form solutions for bus and tree networks of
processors load sharing a divisible job.
IEEE Transactions on Computers, 43, 10 (1994),
1184—1196.

[3] Bharadwaj, V., Ghose, D., and Mani, V.
Multi-installment load distribution in tree networks with
delays.
IEEE Transactions on Aerospace and Electronic Systems,
31, 2 (1995), 555—566.

[4] Bharadwaj, V., Ghose, D., Mani, V., and Robertazzi, T. G.
Scheduling Divisible Loads in Parallel and Distributed
Systems.
Los Alamitos, CA: IEEE Computer Society Press (now
distributed by Wiley), 1996.

500 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

[5] Bharadwaj, V., Ghose, D., and Robertazzi, T. G.
Divisible load theory: A new paradigm for load
scheduling in distributed systems.
Cluster Computing, 6, 1 (2003), 7—18.

[6] Boyer, R. S., and Moore, J. S.
A fast string searching algorithm.
Communications of the ACM, 20, 10 (1977), 762—772.

[7] Cheng, Y. C., and Robertazzi, T. G.
Distributed computation with communication delay.
IEEE Transactions on Aerospace and Electronic Systems,
24, 6 (1988), 700—712.

[8] Cheng, Y. C., and Robertazzi, T. G.
Distributed computation for a tree network with
communication delays.
IEEE Transactions on Aerospace and Electronic Systems,
26, 3 (1990), 511—16.

[9] Christodoulakis, S.
Implications of certain assumptions in database
performance evaluation.
ACM Transactions on Database Systems, 9, 2 (1984),
163—186.

[10] Fujita, S., Yamashita, M., and Ae, T.
Parallel template matching in a restricted addressing
mode.
In Proceedings of the 24th Annual Hawaii International
Conference on Systems Sciences, 1991, 27—35.

[11] Galil, Z.
Optimal parallel algorithms for string matching.
In Proceedings of the 16th ACM Symposium on Theory of
Computing, 1984, 240—248.

[12] Harter, H. L.
Ordering Statistics and Their Use in Estimation and
Testing, vols. 1 and 2.
Washington, D.C.: Superintendent of Documents, U.S.
Government Printing Office, 1969.

[13] Hoffman, M. A., and Carver, D. L.
Reverse engineering data requirements.
In Proceedings of 1996 Aeropsace Applications Conference,
1996, 269—277.

[14] Kitakami, H., Shin-I, T., Ikeo, K., et al.
YAMATO and ASUKA: DNA database management
system.
In Proceedings of the 28th Annual Hawaii International
Conference on System Sciences, 1995, 72—80.

[15] Lübeck, M.
An overview of a large-scale data migration.
In Proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and Technologies,
2003, 49—55.

[16] Mani, V., and Ghose, D.
Distributed computation in linear networks: Closed-form
solutions.
IEEE Transactions on Aerospace and Electronic Systems,
30, 2 (1994), 471—83.

[17] Robertazzi, T. G.
Processor equivalence for daisy chain load sharing
processors.
IEEE Transactions on Aerospace and Electronic Systems,
29, 4 (1993), 1216—21.

[18] Robertazzi, T. G.
Ten reasons to use divisible load theory.
Computer, 36, 5 (2003), 63—68.

[19] Sohn, J., and Robertazzi, T. G.
Optimal divisible job load sharing for bus networks.
IEEE Transactions on Aerospace and Electronic Systems,
32, 1 (1996), 34—39.

[20] Roth, M. A., Ruberg, S. A., and Eldridge, B. L.
Database management: The heart of integrated avionics.
In Proceedings of the National Aerospace and Electronics
Conference, 1993, 535—541.

[21] Glickstein, I., Ruberg, S., and Marsh, J.
Database management for integrated avionics systems.
In Proceedings of the National Aerospace and Electronic
Conference, 1992, 617—622.

[22] Peng, C.-S., and Lin, K.-J.
A performance study of the concurrency control
algorithms for real-time avionics systems.
In Proceedings of the AIAA/IEEE Digital Avionics Systems
Conference, 1997, 1.2-23—30.

[23] Bonnor, N.
The development of digital databases for airborne
applications.
In Proceedings of the Colloqium on Serious Low Flying,
1998, 3/1—3/3.

[24] Vladlamani, A., and de Haag, M. V.
A 3-D spatial integrity monitor for terrain databases.
In Proceedings of the Digital Avionics Systems Conference,
2004, 4.C.2-1—4.C.2-13.

[25] Roark, M. B.
Reconciling avionics database management with security.
In Proceedings of the AIAA/IEEE Digital Avionics Systems
Conference, 1997, 1.2-1—1.2-7.

[26] Stevens, J., and Componation, P. J.
Shuttle performance improvement through multiple
database integration.
IEEE Transactions on Aerospace and Electronic Systems,
40, 2 (2004), 478—490.

[27] Detter, R., Mooney, M., and Fatig, C. C.
XML–James Webb space telescope database issues,
lessons and status.
In Proceedings of the IEEE Aerospace Conference, 2004,
3306—3312.

[28] Some, R. R., Czikmantory, A., et al.
XML hierarchical database for missions and technologies.
In Proceedings of the IEEE Aerospace Conference, 2004,
292—303.

[29] Sripada, S. M., Rosser, B. L., Bedford, J. M., and Kowalski,
R. A.
Temporal database technology for air traffic flow
management.
In Proceedings of the 1st International Conference on
Applications of Databases, 1994, 28—41.

[30] Adams, T., Dullea, J., et al.
Semantic integration of heterogeneous information
sources using a knowledge-based system.
In Proceedings of the Fifth International Conference on
Computer Science and Informatics, 2000, 289—294.

[31] Gentner, F. C.
Survey of air force MPTS tools and databases for human
systems integration.
In Proceedings of the 1991 National Aerospace and
Electronics Conference, 1991, 824—831.

[32] Sripada, S. M.
Information management challenges from the aerospace
industry.
In Proceedings of the 28th Very Large Database
Conference, 2002.

[33] Ko, K., and Robertazzi, T. G.
Signature search time evaluation in flat file parallel
databases.
In Stony Brook University College of Engineering and
Applied Sciences, Technical Report 822, Apr. 25, 2006;
available from T. Robertazzi.

KO & ROBERTAZZI: SIGNATURE SEARCH TIME EVALUATION IN FLAT FILE DATABASES 501

[34] Drozdowski, M., and Wolniewicz, P.
Experiments with scheduling divisible tasks in clusters of
workstations.
In A. Bode, et al. (Eds.), Proceedings of EURO-Par2000,
Lecture Notes in Computer Science, LNCS 1900, New
York: Springer-Verlag, 2000, 311—319.

Kwangil Ko received the M.S. and Ph.D degrees in 1996 and 2000 from Stony
Brook University, Stony Brook, NY.
He is currently with Samsung Electronics, Suwon, Korea, where he is working

as a traffic engineer on radio access networks. His research interests include the
performance measurement of networks, scheduling algorithms, flow control, QoS,
and resource management.

Thomas G. Robertazzi (S’75–M’77–SM’91–F’06) received the Ph.D. from
Princeton University, Princeton, NJ, in 1981 and the B.E.E. from the Cooper
Union, New York, NY, in 1977.
He is presently a professor in the Department of Electrical and Computer

Engineering at Stony Brook University, Stony Brook, NY. He is also the faculty
director of the Science and Engineering Living Learning Center at Stony Brook.
In supervising a very active research area, he has published extensively in
the areas of parallel processor and grid scheduling, ad hoc radio networks,
telecommunications network planning, ATM switching, queueing, and Petri
networks.
Dr. Robertazzi has authored, coauthored or edited five books in the areas of

performance evaluation, scheduling, and network planning.

502 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

