

1

Enforcing Mandatory Access Control in Commodity OS to

Disable Malware

Zhiyong Shan, Xin Wang, Tzi-cker Chiueh

Abstract—Enforcing a practical Mandatory Access Control (MAC) in a commercial operating system to tackle malware problem is a
grand challenge but also a promising approach. The firmest barriers to apply MAC to defeat malware programs are the incompatible
and unusable problems in existing MAC systems. To address these issues, we manually analyze 2,600 malware samples one by
one and two types of MAC enforced operating systems, and then design a novel MAC enforcement approach, named Tracer, which
incorporates intrusion detection and tracing in a commercial operating system. The approach conceptually consists of three actions:
detecting, tracing and restricting suspected intruders. One novelty is that it leverages light-weight intrusion detection and tracing
techniques to automate security label configuration that is widely acknowledged as a tough issue when applying a MAC system in
practice. The other is that, rather than restricting information flow as a traditional MAC does, it traces intruders and restricts only their
critical malware behaviors, where intruders represent processes and executables that are potential agents of a remote attacker. Our
prototyping and experiments on Windows show that Tracer can effectively defeat all malware samples tested via blocking malware
behaviors while not causing a significant compatibility problem.

Index Terms—Access controls, operating system, invasive software, OS-level information flow.

1 INTRODUCTION
ALICIOUS software (i.e., Malware) has resulted in
one of the most severe computer security problems
today. A network of hosts which are compromised

by malware and controlled by attackers can cause a lot of
damages to information systems. As a useful malware
defense technology, Mandatory Access Control (MAC)
works without relying on malware signatures and blocks
malware behaviors before they cause security damage.
Even if an intruder manages to breach other layers of
defense, MAC is able to act as the last shelter to prevent the
entire host from being compromised. However, as widely
accepted [2][3][5], existing MAC mechanisms built in
commercial operating systems (OS) often suffer from two
problems which make general users reluctant to assume
them. One problem is that a built-in MAC is incompatible
with a lot of application software and thus interferes with
their running [2][3][5], and the other problem is low
usability, which makes it difficult to configure MAC
properly [2]. Thus, enforcing a practical MAC on
commercial OS to defend against malware is a promising
but challenging task.

In order to devise a new MAC enforcement method to
defeat malware, we have performed two preliminary
studies. First, we analyzed the technical details of 2,600
samples so as to get a deep and overall view on malware
programs. We extracted 30 critical malware behaviors and
found three common malware characteristics that can guide
anti-malware system design. Second, we investigated the
root cause of incompatibility and low usability of existing
MAC models through experiments on two types of MAC
enforced operating systems. Our observations are as follows.

The incompatibility problem is introduced because the
security labels of existing MACs are unable to distinguish
between malicious and benign entities, which causes a huge
number of false positives (i.e. treating benign operations as
malicious) thus preventing many benign software from
performing legal operations; the low-usability problem is
introduced, because existing MACs are unable to
automatically label the huge number of entities in OS and
thus require tough configuration work at end users.

With these investigation results, we propose a novel
MAC enforcement approach, Tracer, which consists of three
actions: detection, tracing and restriction. Each process or
executable has two states, suspicious or benign. An
executable in this paper represents an executable file with a
specific extension, such as .EXE, .COM, .DLL, .SYS,.VBS, .JS,
.BAT, or a special type of data file that can contain
executable codes, say a semi-executable, such as .ZIP, .RAR,
.DOC, .PPT, .XLS, and .DOT. The actions of detection and
tracing change the state of a process or executable to
suspicious if it is suspected to be malicious, and the entity
marked as suspicious is called a suspicious intruder. The
action of restriction forbids a suspicious intruder to perform
malware behaviors in order to maintain confidentiality,
integrity and availability of the system, as well as to stop
malware propagation. To be precise, once detecting a
suspicious process or executable, Tracer labels it to be
suspicious and traces its descendent and interacted
processes, as well as the executables it generates. Tracer
does not restrict any operations of benign processes.
Meanwhile, it permits suspicious processes to run as long as
possible but only forbids their malware behaviors.

The novelty of Tracer is that, it incorporates light-weight
intrusion detection and tracing techniques for configuring
security labels, i.e., labeling suspicious OS entities, which is
often done manually. Moreover, rather than restricting
information flow as a traditional MAC does, it traces
suspected intruders and restricts the malware behaviors of
suspected intruders, i.e., processes and executables that are
potential agents of remote attackers. These novelties lead to
two advantages. First, Tracer is able to better identify

————————————————
 Zhiyong Shan is with the Key Laboratory of DEKE and Computer Science

Department, Renmin University of China. E-mail: shanzhiyong@ruc.edu.cn.
 Xin Wang is with the Electrical and Computer Engineering Department,

Stony Brook University, USA. E-mail: xwang@ece.sunysb.edu.
 Tzi-cker Chiueh is with the Computer Science Department, Stony Brook

University, USA. E-mail: chiueh@ cs.sunysb.edu.

M

2

potentially malicious OS entities and regulate their
behaviors, which in turn significantly reduces the false
positive (FP) rate which is the root cause of incompatibility
in existing MAC-enforced systems. Second, Tracer is able to
label OS entities automatically to tackle the low usability
problem which is the other major issue of existing MAC
systems [2].

We have implemented Tracer on Windows and have
been using evolving prototypes of the Tracer system in our
lab for a few months. Our experiments on the function of
Tracer with a set of real-world malware samples
demonstrate that it can effectively block malware behaviors
while offering good compatibility to applications and good
usability to normal users.

Moreover, we have added another experiment to
compare Tracer with existing practical online malware
defense technology. The result shows that Tracer causes
much fewer FPs than commercial anti-malware tools and
MIC (Mandatory Integrity Control) which is a MAC
mechanism on Windows Vista [4][16].

The contributions of this paper are as follows:
1. We introduce Tracer, a novel MAC enforcement

approach which integrates intrusion detection and
tracing techniques to disable malware on a
commercial OS in a compatible and usable manner.

2. We have implemented Tracer on Windows OS to
disable malware timely without need of malware
signatures. Developing a prototype on Windows is
important, because most of the over 236,000 known
malware items are designed for the attacks in the

Windows environment, only about 700 malware
items target for the attack of various Unix/Linux
distributions [12].

3. Based on the analysis of 2,600 malware samples, we
extract 30 critical malware behaviors and summarize
three useful malware characteristics, which will
benefit future anti-malware researches.

4. We investigate the root reasons of incompatibility and
low usability problems of existing MACs. Although
not all the observations are brand new, we believe that
understanding these reasons more comprehensively
and illustrating them through the design of an actual
system are useful for other MAC researchers.

The rest of the paper is organized as follows. Section 2
introduces in details our investigation on various
behaviors of malware programs, and our analysis on
existing problems in MAC. Section 3 describes Tracer
approach. Section 4 provides our prototype and tests of
Tracer on Windows. Section 5 discusses the approach from
the perspectives of security, compatibility and usability.
Lastly, we present the related research in Section 6 and
conclude the work in Section 7.

2 PRELIMINARY STUDIES
2.1 Malware Investigation
Malware contribute to most Internet security problems.
Anti-malware companies typically receive thousands of
new malware samples every day. An analyst generally
attempts to understand the actions that each sample can
perform, determines the type and severity of the threat
that the sample constitutes, and then forms detection
signatures and creates removal procedures. Symantec
Threat Explorer [6] is such a publicly available database
which stores the analysis results of thousands of malware
samples from various sources and is thus valuable to
malware researchers. To have a thorough understanding of
the philosophies behind malware design, we have spent
considerable amount of time analyzing the behaviors of
malware programs. Specifically, since 2008, we have read,
recorded and analyzed the technical details of 2,600
malware samples of a wide range of formats and varieties,
such as viruses, worms, backdoors, rootkits, and Trojan
horses. As taking many samples from the same malware
family might make the analysis results biased, we have
intentionally not chosen multiple samples of a
polymorphic malware or similar malware.

Figure 1 depicts the top 30 critical malware behaviors
extracted from the samples and ranked in the descending
order of their appearance times. For the behavior
repeatedly appearing in a single malware, we only count it
once. As the analysis is made on a great number of
malware samples, we expect the behaviors captured to
reflect the popular attacking techniques taken by the
community of malware writers. Our performance studies
in Section 4.2 have demonstrated that these behaviors are
helpful to defend against unknown malwares. Details of
the behaviors are provided in the supplemental materials.

Moreover, from the details of 2,600 malware samples,
we discovered three common characteristics of malware

Fig. 1. The top 30 Critical malware behaviors

0 500 1000 1500 2000 2500 3000

30. Add data streams(P)

29. Block access to security websites(A)

28. Change desktop backgrounds(A)

27. Install screen savers(P)

26. Modify layered service providers(IA)

25. Close security alert windows(A)

24. Make system/hidden directories(PI)

23. Restart computer(A)

22. Capture screen shots(C)

21. Change file time(I)

20. Install or modify drivers(P)

19. Create Windows hooks(P)

18. Copy executables to removable drives(P)

17. Modify registry for uninstallation(PIA)

16. Copy system executable files(P)

15. Copy special configuration files(P)

14. Log keystrokes and mouse clicks(C)

13. Modify system configuration files(PI)

12. End anti-malware processes or services(A)

11. Start hidden network clients(P)

10. Add IE or Explorer plug-ins(P)

9. Change security settings(PIA)

8. Create or modify Windows services(PIA)

7. Modify executable files(P)

6. Inject into other processes(PI)

5. Obtain personal or system information(C)

4. Copy itself(P)

3. Modify registry for startup(PIA)

2. Create executable files(P)

1. Communicate with a remote host(PC)

3

that can guide our subsequent anti-malware design:
(1) Entrance-Characteristics. All malware samples break

into hosts through two entrances, network and removable
drive. Most breaking-ins are via network through
frequently used protocols such as HTTP and POP3.

(2) Damage-Characteristics. Malware behaviors can
impose multiple forms of damages, i.e., resulting in
problems in confidentiality, integrity and availability.
Besides, we consider malware propagation as another type
of damage since it can indirectly cause the former three
forms of damages and eventually lead the entire host to be
taken over. For example, the behavior “Copy itself” does
not directly hurt security but is an essential step towards
propagating itself and then executing malicious behaviors
on a host. Therefore, we evaluate the damages of each
behavior and record them in Figure 1, using C, I, A, and P
to represent the damages related to confidentiality,
integrity, availability and propagation respectively.

(3) Attack-Characteristics. Malware samples from the
network have two attack patterns. One is that, most
malware samples exploit bugs in network-facing daemon
programs or client programs to compromise them, then
immediately spawn a shell or back-door process. Next, an
attacker typically tries to download and install attacking
tools and rootkits, as well as performs some other
adversary behaviors. The other attack pattern is that,
malware samples increasingly use social engineering
methods to lure users into downloading and launching
them. After started, a malware sample usually copies itself
and makes itself a resident in a host.

2.2 Problems in MAC
Incompatibility is a well-known problem when enforcing a
MAC model in a commercial operating system [2][3][5]. To
investigate its root reason, in a secure network
environment, we set up two machines to run MAC
enforced operating systems including SELinux [14] with
MLS policy enabled and RSBAC [15] with MAC module
enabled. After a few days, we observed that these MAC
systems produced a huge number of log records about
denied accesses, which indicated that some applications
failed and some acted abnormally. As the operation
environment is secure without intrusion and malware,
these denied accesses are thus “false positive”. In other
words, MAC systems consider benign accesses malicious
and refuse them. Many FPs together could make the whole
system finally unusable. Although part of the FPs can be
removed by experts through fine-granular policy
configuration, many of them are not removable, and thus
the impacted applications need to be modified before
running on the MAC enabled systems.

These unremovable FPs are resulted because most MAC
models aim to forbid illegal information flow rather than
forbid intrusive behaviors directly. An example of such FPs
is the self-revocation problem [3] in Low-Water-Mark
model, which forbids a process to write a file created by
itself if it has read a file with a lower integrity level before
the writing. From the perspective of stopping illegal
information flow, forbidding the write operation is
reasonable. However, from the perspective of stopping
intrusion, the write operation should not be denied if the

process is actually not serving for an attacker. Another
example of such FPs on a BLP-enforced Unix/Linux stems
from the access control of the directory “/tmp” shared by
the entire system [17]. To prevent illegal information flow,
a process with a lower sensitive level can not read from
/tmp or a process with a higher sensitive level can not
write to /tmp. However, from the view of intrusion
prevention, these processes do not necessarily represent
intruders so that their “read” or “write” accesses to the
/tmp should not be simply denied. Although it is possible
to resolve this problem by adding “hiding sub directories”
under /tmp, it is still difficult to eliminate the FPs resulting
from many other shared entities on an OS, such as shared
files, devices, pipes and memories.

Meanwhile, the security labels of MAC models also do
not suit for fighting against malware, as they are designed
to represent information integrity level or confidentiality
level but not to distinguish between malicious and benign
entities. In fact, a lower integrity level alone can not indicate
that a process is malicious, as “malicious” also has other
meanings, e.g., lower confidentiality and the risk of
damaging system availability. Similarly, a lower
confidentiality level alone cannot indicate that a process is
malicious. Moreover, MAC labels are defined before an
intrusion happens and can not be changed dynamically to
reflect intrusion propagation in an OS. Although some of
the MAC models are able to adjust label states, e.g. LOMAC
[3] and DTE [9], they are still not flexible enough to track the
intrusion propagation at the whole system level.
Consequently, MAC labels can not differentiate between
malicious and benign entities. Relying on these labels, a
MAC system often fails to make correct decisions on
intrusion blocking which eventually results in many FPs.

Low-usability is another problem in a MAC-enabled
system, as it often requires complicated configurations and
unconventional ways of usage. In a modern OS, there are a
wide range of entities including processes, files, directories,
devices, pipes, signals, shared memories and sockets, etc. If
just considering the files, there are more than 100,000 files
on a typical Windows XP or Linux desktop. Moreover,
MAC systems have complex policy interfaces which are
difficult to configure. For instance, SELinux has 29 different
classes of objects, hundreds of possible operations, and
thousands of policy rules for a typical system. Hence, it is
cumbersome for a common user to correctly configure
labels for all entities without leaving security
vulnerabilities. In addition, after enforcing a MAC, users
must break their usage convention and learn how to use
the MAC. Consequently, the ideal way for MAC to provide
good usability is to automatically initialize and change
entity labels without changing users’ usage convention or
requiring extra knowledge.

3 TRACER APPROACH
In this section, we present our Tracer approach that aims to
disable malware in a commodity OS by disallowing
malware behaviors. The adversaries of Tracer are malware
programs that break into a host through the network or
removable drives. As Windows is the most popularly used

4

OS and attractive to hackers, the description of Tracer is
based on our design for Windows. We believe the
approach can also be applied to other operating systems
(e.g. Linux) with some changes. Investigating the
suitability of Tracer for non-Windows operating systems is
beyond the scope of this paper.

3.1 Overview
The design of an access control mechanism needs to answer
two questions. The first is how to define the security label.
Based on the analysis in Section 2.2, we introduce a new
form of security label called suspicious label for our Tracer
approach. It has two values: suspicious and benign. A
suspicious label indicates that the associated process is
potentially serving for an intrusion purpose and thus
possible to initiate some malicious behaviors. Meanwhile,
Tracer only assigns a suspicious label to a process or an
executable, because a process is possibly the agent of an
intruder and an executable determines the execution flow of
a process which represents an intruder. All other entities in
OS, e.g. non-executables, inter-process communication
objects, registry entries, etc, do not need suspicious labels.
When a process requests to access these entities, Tracer
mainly utilizes their DAC information to make access
control decisions, thus a huge amount of configuration
work can be reduced while keeping traditional usage
conventions unchanged. The second design question is how
to configure security labels. As discussed in Section 2.2, in
order to achieve good usability, a MAC approach must
have the capability of automatically deploying security
labels. Accordingly, we introduce two types of actions
named “detection” and “tracing” to automate the security
label deployment progress. The two actions employ
intrusion detection and tracing techniques respectively to
recognize and mark suspicious processes and executables.

Figure 2 gives an overview of Tracer which consists of
three types of actions, detection, tracing and restriction.
Each process or executable has two states, suspicious and
benign. The actions of detection and tracing change the
state of a process or executable to suspicious if it is
identified as a potential intruder. The restriction action
forbids a suspected intruder to perform malware behaviors
in order to protect CIAP. That is to protect confidentiality,
integrity and availability, as well as to stop malware
propagation. The three actions work as follows. Once
detecting a suspected process or executable, Tracer labels it
as suspicious and traces its descendent and interacted
processes, as well as its generated executables. Tracer does
not restrict benign processes at all, and permits suspicious
processes to run as long as possible but stops their
malware behaviors that would cause security damages. In
addition, Tracer also provides a special system call to allow
a user to change the state of a suspicious process or
executable back to benign if the user trusts it.

A malware behavior is defined as a triple <operation,
object, parameter>, where the operation is a generalization of
one or several system calls that have similar functions. The
object and parameter represent the target and parameter of
the operation respectively. Specific malware behaviors
monitored in the current version of Tracer are listed in
Table 1, which contains the 30 critical malware behaviors

shown in Figure 1. Moreover, Tracer allows dynamic
addition of new behaviors.

The access control decision of Tracer is made in
accordance with normal MACs. Tracer uses the subject
label and behavior to make a decision while normal MACs
use the subject label, operation, object label and parameter.
As a behavior consists of operation, object and parameter,
Tracer actually uses the same four factors of normal MAC
decision. Moreover, Tracer’s decision procedure generates
three possible access control results: “allow”, “deny” and
“change label”, which resemble those of normal MACs.
The detailed decision logic of Tracer is shown in Table 1.
The detection and tracing actions lead to the decision result
“change label”, while restriction action leads to “deny”. All
access requests not denied are allowed.

As an online approach, Tracer can produce the FP rate
lower than that of behavior-blocking mechanisms in
commercial anti-virus software. This is achieved by two
means. First, as a MAC system, Tracer blocks a behavior
based simultaneously on the behavior and security label
(i.e., the suspicious label of the current process), rather than
merely the behavior as done by a behavior-blocking system.
Second, Tracer does not simply refuse all critical malware
behaviors in Figure 1. The behaviors that are indispensable
to benign programs while do not directly hurt security are
not blocked but traced, which are shown in Table 1.

In the rest of this section, we describe Tracer approach
in details, including detecting, tracing and restricting
intruders.

3.2 Detecting Intruders
The detecting action is responsible for identifying all
potential intruders. We do not intend to design a complex
intrusion detection algorithm to achieve a low FP rate at
the cost of heavy overhead. Instead, we design a
light-weight intrusion detection algorithm that can identify
all potential intruders but may have a relatively higher FP
rate at the initial step. However, even if the detecting action
wrongly denotes a benign process as suspicious, the
subsequent actions of Tracer, i.e., tracing and restricting
actions, will still allow it to run rather than stop it
immediately, but only prevent it from executing featured
malware behaviors. In other words, Tracer is built to have
a good tolerance to the FPs caused by the detecting action.

As depicted in Figure 2, the detection works at two levels:
entrance and interior. The detection at entrance attempts to
check all possible venues through which a malware
program may break into the system. Network
communications is the main type of entrances and most
malware programs exploit several common protocols to

Benign Suspicious CIAP

 At entrance
 At interior

Detection

Tracing

Restriction

Detection
 Process to process
 Executable to process
 Process to executable

 Critical malware behaviors
 Generic malware behaviors
 Bypassing Tracer behaviors

Tracing Restriction

Fig. 2. Tracer approach

5

compromise hosts according to the Entrance-Characteristics
presented in Section 2.1. We define these protocols as
dangerous protocols. Dangerous protocols are permitted by
firewalls, thus malware programs often use these protocols
to penetrate firewalls by disguising themselves as popular
software that generate benign network traffic. Dangerous
protocols mainly include HTTP, POP3, IRC, SMTP, FTP and
ICMP. The types of dangerous protocols should be adjusted
based on the actual firewall configuration.

Hence, we denote a process as suspicious if it receives
network traffic through dangerous protocols. A frequently
used application (e.g., web browser) thus might be denoted
as suspicious but its normal running will not be affected,
because Tracer doesn't restrict the suspected processes
instantly and permits them to perform as long as possible
except stopping their critical malware behaviors.

The non-dangerous protocols are difficult to be exploited
by malware programs, because they are not permitted by
firewalls since benign software rarely uses them. Here we
assume a “deny” default action for firewalls [31], thus any
traffic not specifically allowed by firewall rules are denied.
Nevertheless, in order to completely monitor all the
network traffic, we denote a process as suspicious if it
receives network traffic through a non-dangerous protocol
and then exhibits any of the malware behaviors. Instead of
only checking non-dangerous network protocols, further
checking malware behaviors can reduce the extra high FP
rate. The Attack-Characteristics summarized in Section 2.1
supports this point. That is, a process exploited by a
malware program from the network necessarily executes at
least one critical malware behavior, e.g., launching a shell
process or downloading an executable, to propagate the
malware program within the system. Although a carefully
crafted malware program that subverts a process through a
non-dangerous protocol can perform some behaviors before
performing a malware behavior, it is difficult for the process
to make significant damages on the system. The reason is
that the malware behaviors monitored by Tracer include all
of the behaviors that can cause significant damages, let
alone that malware programs are difficult to attack a host
through non-dangerous protocols which are usually
blocked by firewalls.

The other type of entrances through which malware
programs get into the system is removable drives
according to the Entrance-Characteristics, hence we denote
a process as suspicious when it opens or loads an
executable from a removable drive.

With these detection approaches enforced, however, two
types of system maintenance tasks, i.e., updating software
through the network and installing software from a
removable drive, can not be performed because the
processes that perform these tasks are treated as suspicious.
As presented in the literature work [2] [3], a MAC policy
should have ways to specify exceptions since no simple
policy model can capture all accesses that need to be
allowed and at the same time forbid all illegal accesses.
Hence, we provide two means to facilitate these system
maintenance tasks. One is trusted communications through
which processes can update software remotely without
being marked as suspicious. A communication is

considered to be trustful if the three factors associated with
it, i.e., “image file of the local process”, “communication
protocol” and “remote host” are all trusted. Meanwhile, a
trusted communication is time limited, i.e., effective only
within a predefined time period. Although a trusted
protocol, e.g. SSL, is not absolutely secure, a further check of
the process’ image file, the remote host and the time stamp
simultaneously will greatly reduce the attack surface. The
other means is a new system call to facilitate a user to
manually remove suspicious labels on specific processes or
files if the user trusts them. For example, when installing
benign software from a CD disk, a user can remove the
suspicious labels from the processes which read the
executables on the CD disk then Tracer will not affect the
installation progress any more. Note that, only a process
without a suspicious label has the privilege to use the
system call so as to prevent a malware program from
bypassing Tracer.

However, it is difficult for a normal user to identify a
trusted communication or detect a particular process that is
reading executables from a CD disk. To address this issue,
we introduce a special bit in kernel, namely attention bit. A
user can turn on the bit and start such communication or
process within a short time period. Tracer then intercepts it
and pops up a window, which displays the information of
the communication or process, to require the user’s consent.
Once conformed by the user, the communication is set to
be trusted or the suspicious label is removed from the
process. And then, the attention bit turns off automatically.
This mechanism avoids the manual work of recognizing
the trusted communication and the process without
annoying the user by frequently popping up windows.

Although bypassing the detection at entrances is
difficult, in case that a sophisticated malware program
unexpectedly breaks into the system, we prepare a type of
detection at the interior of the system to ambush it. This
type of detection monitors the exclusive malware
behaviors that a benign program will not exhibit. The
current version of Tracer conservatively uses five such
behaviors to detect malware programs inside a system,
including “Copying itself”, “Injecting into other processes”,
“Modifying executable files”, “Starting hidden network
clients” and “Ending anti-malware processes or services”.
More behaviors can be monitored for malware detection in
the interior at the cost of additional FPs. Actually, these
behaviors together provide a strong detection capability as
they are indispensable to most malware programs, e.g.,
“Copy itself”. In addition, this type of detection will not
bring extra performance overhead since the restricting
action of Tracer also needs to monitor such behaviors,
which will be presented in Section 3.3.

In short, the detection action identifies a process as
suspicious if it meets one of the detection rules:
 Receiving network traffic through dangerous protocols;
 Receiving network traffic through non-dangerous protocols

then exhibiting any of the malware behaviors;
 Reading or loading an executable from a removable drive;
 Exhibiting any of the five exclusive malware behaviors.
Columns “Detect” in Table 1 show the details of the

detection action.

6

TABLE 1. DECISION LOGIC OF TRACER.
The Benign Process and Suspicious Process columns represent that the
processes requesting the behaviors below are benign or suspicious
respectively. Cp and Ce indicate changing the label of related process or
executable to suspicious respectively. D indicates denying the behavior

3.3 Tracing Intruders
To track intruders within an operating system, one can use
OS-level information flow as done in [18] [26]. However, a
major challenge for leveraging OS level information flow to
trace suspicious entities is that, file and process tagging
usually leads the entire system to be floated with
"suspicious" labels and thus incurs too many FPs. To
address this issue, we propose the following two methods
to limit the number of tagged files and processes in a single
OS while preventing malware programs from evading the
tracing as much as possible.

For tagging files, unlike the approaches in [18] [26] and
the schemes of many malware detection and MAC systems
[1][2][5][21] that trace information flow on OS level, Tracer
only focuses on the tagging of executables while ignoring
non-executables and directories. This is because an
executable represents the possible execution flow of the

process loading it, thus it should be deemed as an inactive
intruder while a process is considered as an active intruder.
On the other hand, since there are a huge number of
non-executable files and directories within a single OS, not
tracing them can prevent the entire file system from being
floated with the suspicious labels that mostly are due to FP.

For tagging processes, we observed that the excessive
number of tags mainly come from tracing IPC (Inter-Process
Communication), i.e. marking a process as suspicious if it
receives IPC data from a suspicious process, just as the
approaches assumed in [2] [18]. To address this issue,
Tracer only tags a process receiving data from dangerous
IPCs that can be exploited by a malware program to take
control of the process to perform arbitrary malicious
behaviors. Note that, dangerous IPCs do not include the
other types of vulnerable IPCs that can be used to launch
denial-of-service attack, or disclose sensitive information, or
escalate the privileges of the processes which send IPC data.
Moreover, a dangerous IPC only involves the local IPCs
instead of the IPCs over the network, since the detection at
entrance can mark a process that receives IPC data from the
network as suspicious. In order to identify the dangerous
IPCs, we investigated Microsoft Security Bulletins [19], a
database storing information about security vulnerabilities
on Windows family OS and other Microsoft software. As
malware programs usually exploit these vulnerabilities to
compromise Windows hosts, Microsoft Security Bulletins
become primary sources for analyzing attack vectors of
Windows OS as done in [11]. Concretely, we analyzed all
vulnerabilities recorded in security bulletins related to
named-pipes, local procedure calls, shared memories,
mailslots and Windows messages from 1998 to 2009, as
these IPCs send free-formed data that can be crafted to
exploit bugs in the receiving process. However, among all
of the security bulletins, we only found one dangerous IPC,
i.e. MS03-025 [19]. The result reveals that in reality it is quite
difficult to propagate malware through local IPCs within a
Windows OS since people could only find one dangerous
IPC over the period of eleven years. Consequently, Tracer
employs a Dangerous-IPC-List to record and trace each
type of dangerous IPC since there should be a very limited
number of dangerous IPCs in a Windows OS.

Therefore, we have the following tracing rules to mark
entities as suspicious:
 A process spawned by a suspicious process;
 An executable or semi-executable created or modified by a

suspicious process;
 A process loading an executable with a suspicious label;
 A process receiving data from a suspicious process through

a dangerous IPC;
 A process reading a semi-executable or script file with a

suspicious label.
Columns “Trace” in Table 1 show the details of the

tracing action.
A script file is written in interpreting language, e.g.

JavaScript or VBScript, and thus needs execution engine, e.g.
wscript.exe or cscript.exe, to load and run it. Accordingly, to
defend against a script virus, Tracer should restrict the
engine processes that are reading and interpreting a
suspicious script file. On the other hand, a semi-executable

Benign Process Suspicious Process
Malware Behaviors

Detect Trace Restrict Detect Trace Restrict
Normal CP 1. Communicate

with a remote
host Trusted

C i i

2. Create executable files Ce
3. Modify registry for startup D
4. Copy itself CP D
5. Obtain personal or system information D
6. Inject into other processes CP D
7. Modify executable files CP D
8. Create or modify Windows services D
9. Change security settings D
10. Add IE or Explorer plug-ins D
11. Start hidden network clients CP D
12. End anti-malware processes or services CP D
13. Modify system configuration files D
14. Log keystrokes and mouse clicks D
15. Copy special configuration files D
16. Copy system executable files Ce
17. Modify registry for uninstallation D
18. Copy executables to removable drives D
19. Create Windows hooks D
20. Install or modify drivers D
21. Change file time D
22. Capture screen shots D
23. Restart computer D
24. Make system/hidden directories D
25. Close security alert windows D
26. Modify layered service providers D
27. Install screen savers D
28. Change desktop backgrounds D
30. Add data streams D
31. Damage system integrity D
32. Steal confidential information D
33. Read executables on removable drives CP
34. Change file attributes D
35. Change registry entry attributes D
36. Create processes CP
37. Load suspicious executables CP
38. Read suspicious executables CP
39. Communicate via dangerous IPCs CP
40. Execute non-executable files D
41. Execute Tracer special system calls D

7

represents certain types of data files that might contain
executable codes, which mainly involves various types of
compressed files and Microsoft Office documents.
Compressed files such as zip files might include executable
files, and Office documents such as Word files might
enclose macro virus. Although the macro virus protection in
Office software can reduce the chances of macro virus
infection, relying on it is very dangerous because crafted
macro codes are able to subvert it and cause destructive
damages, for example, viruses Melissa and W97M.Dranus.

3.4 Restricting Intruders
In order to disable malware programs on a host, the
restricting action monitors and blocks intruders’ requests
for executing critical malware behaviors listed in Figure 1.
To follow the principle of complete mediation [13] for
building a security protection system, Tracer further
restricts two extensive behaviors, called generic malware
behaviors, to protect security more widely. The first one is
“Steal confidential information”, which represents all
illegal reading of confidential information from files and
registry entries. The other is “Damage system integrity”,
which represents all illegal modifications of the files and
registry entries that require preserving integrity. In
addition, other behaviors that can be used to bypass Tracer
mechanism also need to be monitored and restricted,
including “Change file attributes”, “Change registry entry
attributes”, “Execute non-executable files” and “Execute
Tracer special system calls”. The behavior “Change file
attributes” represents changing file extension names to
executable or changing file DAC information. All behaviors
restricted are listed on the column “restrict” in Table 1. In
summary, the restricting action consists of three rules:
 Restricting critical malware behaviors
 Restricting generic malware behaviors
 Restricting behaviors bypassing Tracer
By mediating all these behaviors, Tracer is able to

preserve system security and prevent a malware program
from propagating itself in the system. To be specific,
confidentiality is mainly achieved by blocking the generic
behavior “Steal confidential information”; integrity is
mainly protected by blocking the generic behavior
“Damage system integrity”; availability is defended by
blocking the behaviors listed in Figure 1 with the capital
letter A attached; propagation is prevented by blocking the
behaviors in Figure 1 with the capital letter P attached.

Meanwhile, blocking these behaviors can help to defend
against unknown malware programs for two reasons. First,
these behaviors are extracted from thousands of malware
samples and thus represent popular hacking techniques
that are often used in unknown malware programs by
malware authors. For example, the behavior “Add IE or
Explorer plug-in” is also a popular technique that is used
by enormous amount of malware programs both known
and unknown to hide and automatically launch themselves,
as well as monitor user data. Second, these behaviors are
high-level behaviors so that they widely cover various
low-level behaviors of various types of malware programs
known or unknown. For example, “Communicate with a
remote host” involves downloading hacker tools, sending
emails to spread malware programs, connecting with a

remote host to accept hacker commands, etc. Particularly,
the two generic malware behaviors presented previously
actually cover all illegal accesses of files/directories and
registry entries in the system.

To efficiently restrict these malware behaviors, two
issues need to be addressed. The first is how to determine
the generic malware behaviors. We identify behaviors
“Steal confidential information” and “Damage system
integrity” by monitoring illegal reading on read-protected
objects and illegal writing on write-protected objects,
respectively. However, it is difficult to identify the objects
that need protection among a large number of candidates
in a Windows OS in order to recognize the generic
malware behaviors. A traditional MAC requires users to
give every object a security label to identify whether the
object needs protection, which in turn becomes a heavy
burden on general users.

In Tracer, we use the DAC information of an object to
determine whether it is protected. To be specific, a file,
directory or registry key is treated as read-protected when
the user group “users” does not have a read permission on
it. A file, directory or key not readable by “users” means
that it should not be readable by the world, and thus
should be read-protected. Similarly, a file, directory or key
not writable by “users” is treated as write-protected. For
other types of objects, e.g., IPC objects and system devices,
we use “everyone” group to recognize protected objects.

However, considering the complexity and diversity of
practical application scenarios, it is inevitable to require
some exceptions for this method. Based on our extensive
experiments, we design four novel rules to handle
exceptions: (1) allowing exceptional read and write if the
path of the targeted registry key contains the program name
or alias of the process requesting the access, as such key
stores the process’ exclusive data; (2) allowing exceptional
read and write if the path of the targeted file or directory
simultaneously contains the program and user names of the
process requesting the access, as such file or directory stores
the process’ exclusive data; (3) allowing exceptional write if
the targeted file, directory or key is commonly writable by
various programs, as such object stores the output data of
multiple processes across the system; (4) allowing
exceptional read and write if the targeted IPC or device
object is providing system wide service.

DAC information and file extensions are not allowed to
be changed by attackers. As a result, attackers can not alter a
file or registry entry from a protected state to an unprotected
state to escape the access control mechanism. With above
methods, the configuration work required to identify files
and registry entries to be protected is significantly reduced
without changing the user’s usage convention.

The second issue is how to identify the file-copying like
behaviors in Figure 1 that require correlating two system
calls for reading and writing files respectively. These
behaviors are frequently used by malware programs but at
the same time difficult to be detected without a
hardware-level taint tracking which is not applicable to an
online system [1]. From the work of literature, we did not
find a proper online approach to detect all file-copying
behaviors. Thus, we devise a pair of novel algorithms to

8

correlate the read and write operations to identify a
file-copying behavior, which are shown in Algorithms 1
and 2. The Algorithm 1 intercepts a read operation and
adds the file name and read buffer into the read-list. The
Algorithm 2 intercepts a write operation and determines
that it serves for a file-copying behavior if the content of
the write buffer is equal or similar to a read buffer recoded
in the read-list. A read-list of a process consists of a list of
nodes each of which stores a read file and its buffers. The
maximum number of nodes and memory size for the list
are limited to prevent DOS attacks. The algorithms only
monitor the files that are copying-behavior-involved
including executables, special configuration files (e.g.,
desktop.ini and autorun.inf) and processes’ image files.

The algorithms may impose a relatively high overhead
only on the malware processes that frequently exhibit
file-copying behaviors but not on benign processes and the
suspected processes that are actually benign. For a benign
process, according to the detection action at interior
presented at the end of Section 3.2, the algorithms only need
to monitor the file-copying behavior “Copy itself” by
watching the read operation on the process’ image file.
However, in reality a benign process rarely tries to copy
itself, thus the read-list is often empty and the algorithms
do not need to do anything. For a suspected process that is
actually benign, it rarely reads an executable at runtime. It
only needs to read an executable in two situations while
such read operations do not need to be recorded into the
read-list. One is to load an image file for a process. As a
loaded image in memory is often marked as “read
forbidden”, a file-copying behavior will not happen. The
other situation is to install software. However, processes
installing software from the local host or from a remote host
through a trusted communication will be deemed as benign
according to the detecting action presented in Section 3.2.
Therefore, the read-list of a benign process is often empty or
short. A short read-list in turn leads to a low performance
overhead, because the Algorithm 2 will spend little time
searching the matched read buffer from the read-list. Our
performance evaluation in Section 4.2 will further
demonstrate that actually benign programs have lower
performance overhead than that of malware programs.

In addition, this pair of algorithms that correlate read
and write operations by comparing buffer contents are
more difficult to be circumvented than other candidate
algorithms, e.g., comparing buffer addresses. In the worst
case that a malware program successfully circumvents the
algorithms, Tracer still can tail it by monitoring related
behaviors, e.g., “Create executables”, since file-copying
behaviors need to create executables.

3.5 Dynamic Addition of New Behaviors
If the detection is purely based on known malware
characteristics and behaviors, a detector may not be able to
function effectively in the long run as new malware
characteristics and behaviors may emerge over the time. To
address this limitation [29], a novel extensible mechanism
is implemented in Tracer so it can dynamically add in new
behaviors to monitor.

A behavior consists of operation, object and parameter.
An operation is an abstract of one or several system calls

with similar functions. For example, the operation
create_file corresponds to two system calls: NtOpenFile
and NtCreateFile. In contrast, a single system call may
contain more than one operation. For example, NtOpenFile
contains four operations: read_file, write_file, create_file,
and delete_file. The object and parameter of a behavior are
extracted from a related system call.

Figure 3 illustrates how to dynamically add malware
behaviors. In each concerned system call, we set up one or
more checkpoints, each of which is responsible for checking
the behaviors belonging to the same operation with the
support of a modifiable behavior list in memory. The new
malware behaviors are read from a configuration file and
distributed to proper behavior lists corresponding to

Algorithm 1. Recording file-reading operations

INPUT: file A to be read; read buffer R

1: IF((file A is not copying-behavior-involved)OR((the current process is

benign)AND(file A is not an image file of the current process)))
 2: RETURN permit the operation;
 3: END
 4: IF((file A is a copying-source)OR(the memory or nodes of the read-list

reach the maximum))
 5: RETURN block the operation;
 6: END
 7: FOR each node in the read-list
 8: IF(file A is in the node)

9: Attach buffer R into the node;
10: BREAK;
11: END
12: END
13: IF(file A is not in the read-list)
14: Create a new read operation node;
15: Fill file A into the node;
16: Copy buffer R into the node;
17: Add the new node into the read-list;
18: END
19: RETURN permit the operation;

Algorithm 2. Detecting file-copying behaviors

INPUT: file B to be written; write buffer W

 1: IF(the read-list is null)
 2: RETURN permit the operation;
 3: END
 4: IF(file B is a copying-target)
 5: RETURN block the operation;
 6: END
 7: FOR each node in the read-list
 8: FOR each read buffer in the node

9: Compare the read buffer and buffer W;
10: IF(the buffers are equal or similar)
11: IF(the file of the node is the image of the process)
12: Identify the behavior “Copy itself”;
13: ELSE IF(file B is an executable in removable drive)
14: Identify the behavior “Copy executables

to removable drives”;
15: ELSE IF(the file of the node is a system executable)
16: Identify the behavior “Copy system

executable files”;
17: ELSE IF(the file of the node is a special configuration

file)
18: Identify the behavior “Copy special

configuration files”;
19: END
20: BREAK;
21: END
22: END
23: IF(identified a file-copying behavior)
24: Mark file B as a copying-target;
25: Mark the file of the node as a copying-source;
26: Destroy the node;
27: RETURN block the operation;
28: END
29: END
30: RETURN permit the operation;

9

different operations in memory. At each checkpoint, Tracer
searches for the object and parameter currently requested in
the corresponding list to determine whether the current
access forms a malware behavior.

4 IMPLEMENTATION
To evaluate the effectiveness of Tracer approach, we have
developed a prototype implementation for Windows XP,
and carried out a series of experiments. Although XP is not
as new as Vista, it is enough for verifying the Tracer
approach since both versions of OS have very similar
system calls and Win32 API functions based on which
Tracer works. Moreover, if developing the prototype on
Vista, the MIC might interfere with Tracer as both schemes
attempt to complete MAC tasks.

4.1 Implementation
Tracer implementation consists of two parts: Interception
and Decision. Most of the implementations are located in
the kernel so that they are difficult to be bypassed. The
Interception part monitors Native Windows API functions
(i.e. system call) at the kernel level and Win32 API
functions (i.e. system library functions) at the application
level, then issues behavior requests to the Decision part,
and allows or disallows a behavior according to the result
returned from the Decision part. The intercepted behaviors
are listed in Table 1.

Except the “file copying” like behaviors presented in
Section 3.4, all other behaviors can be intercepted by
monitoring only one essential system call function or a
Win32 API function, for example, monitoring
NtDeviceIoControlFile() for “Communicate with a remote
host”, monitoring NtCreateFile() for “Create executable”,
monitoring NtOpenFile() for “Steal confidential
information”. Some behaviors consist of more than one
system call or Win32 function, for instance, the behavior
“Inject into other processes” consists of OpenProcess(),
VirtualAllocEx(), WriteProcessMemory(), CreateRemote-
Thread(), etc. Considering the performance impact, we
only intercept the first essential function, i.e. OpenProcess(),
and block it if a suspicious process tries to perform an
execution, such that the subsequent calls, i.e.WriteProcess-
Memory() and CreateRemoteThread(), which would cause
damages are not executed any more. Moreover, to prevent
intended bypassing, Tracer always intercepts a function at
the kernel level rather than the application level if possible.
Thus, for the behavior “Inject into other processes”, Tracer
actually intercepts NtOpenProcess() at the kernel level
rather than OpenProcess() at the application level.

The Decision part residing in the kernel handles
behavior requests from the Interception part. When making
a decision, it first reads the Tracer attributes of processes
and files, e.g., suspicious flags and DAC information, and
then decides whether to permit the behaviors and whether
to modify the Tracer attributes according to the Tracer
actions presented in Section 3. Table 1 shows the decision
logic implemented in the Decision part.

To be permanent, the suspicious flag of an executable is
stored in a specially created file stream of the executable
file. The suspicious flag of a process, however, is stored in a

data structure associated with the process in the memory.
The data structure also records whether the process has
received a network package through non-dangerous
protocols. The whole implementation is encapsulated in a
kernel driver and a DLL. The kernel driver is responsible
for intercepting system calls via modifying the system call
entry point in the System Service Dispatch Table (SSDT),
and implementing the Decision part within the kernel. The
DLL is responsible for intercepting Win32 API functions
via modifying the library function entry point in the
Import Address Table (IAT) of application processes. Note
that, our Tracer implementation does not need to impose
any modifications on the Windows or application codes,
thus it is highly compatible with existing software.

4.2 Evaluation
We evaluate Tracer performance from three important
perspectives: its effectiveness in ensuing security, its
compatibility with application software, and the overhead
added after enabling Tracer on OS.

Security. To verify the capability of Tracer on restricting
malware behaviors, we collected 93 real-world malware
samples, most of which are obtained from a publicly
available website [20]. 32 of the samples are unknown to
Tracer, because they can not be found with the same or
different names in Symantec Threat Explorer from which
the critical malware behaviors are extracted. We also
prepared 54 benign samples mostly from two reputable
websites, i.e. technet.microsoft.com and www.download.
com. To further facilitate the experiments, we prepare a set
of monitoring tools to help check experimental results,
which include ApiMonitor to record system call and Win32
API, ProcessExplorer to analyze processes, Regmon to
trace registry activities, and Filemon to monitor file
operations. Meanwhile, we set up a local network which
consists of two servers and two hosts as a testing
environment. One server machine, on which the samples to
be tested are intentionally placed, runs an IIS web server,
an FTP server and an EZ-IRC server. The other server
machine, on which only benign samples are placed, runs
an IIS web server to act as a trusted site for testing trusted
communications. Note that, in reality the trusted sites can
be easily recognized by general users because a host only

Configuration
file for new
behaviors

NtOpenFile

NtCreateFile

Behavior list
belonging to

operation creat_file

Behavior list
belonging to

operation read_file

Behavior list
belonging to

operation write_file

Behavior list
belonging to

operation delete_file

Checkpoint for
create_file

Checkpoint for
read_file

Checkpoint for
write_file

Checkpoint for
delete_file

Checkpoint for
create_file

Checkpoint for
read_file

Checkpoint for
write_file

Checkpoint for
delete_file

Fig. 3. The mechanism to dynamically add new malware behaviors to
be monitored

10

TABLE 2. SECURITY TEST RESULTS.
FP Rate is 5.6% and FN Rate is 0%.

has to connect to several well-known websites to upgrade
its important software. The host machines installed with
Windows XP run the client programs that are often the
attacking vectors for malware samples, including mIRC,
MSN Messenger, MS Outlook, eMule, KaZaA, IE and FTP
client, etc. We set protocols HTTP, POP3, IRC, SMTP, FTP,
FastTrack, eDonkey and ICMP as dangerous.

To emulate the real-world usage scenarios, we login the
hosts and perform various types of tasks, such as browsing
the malicious website and FTP server in the local network
and downloading samples, sending and receiving
malicious instant messages and emails, accessing P2P
shared folders or removable drives that contain samples.
Thus, the samples are introduced into a host through
various channels. With this testing environment, the
capability of Tracer to detect, trace and restrict malware
behaviors can be thoroughly evaluated.

For every sample, we perform a two-step experiment.
First we run a sample on a host without turning on Tracer
and record what happens using the monitoring tools above.
Then, we enable Tracer protection, run the same sample, and
record what happens again. We can determine whether a
sample is indeed disabled from two perspectives. First, we
deduce whether malware behaviors are successfully
executed by comparing the two versions of logs produced
by ApiMonitor, Regmon and Filemon without or with
protection. Second, we manually check whether the files,
registry entries and processes that are created by the sample
and recorded in the former logs are exactly present or not in
the logs after turning on the Tracer. Moreover, we restart the
computer to see if the sample can be enabled automatically.

The testing results are reported in Table 2. For each type
of samples, after turning on Tracer, we record the number
of false negatives, i.e., FNs, and the number of FPs. We can
see that Tracer was able to correctly disable all malware
samples including known and unknown ones, as well as
block or cancel all their malware behaviors. However, it
falsely stopped 3 benign samples by blocking their
behaviors. The FPs were a personal firewall program, a file
system tool and a process tool, downloaded from the IRC
and web server with which we did not set up a trusted
communication. By analyzing the logs, we observed that
some behaviors of these benign programs closely resemble

those of malware, for example, “Create or modify
Windows services”, “Modify system configuration files”,
“Install or modify drivers”, “Modify registry for startup”,
etc. As Tracer relies on the source and behaviors of a
program to identify a malware program, the benign
programs that come from a remote host through an
untrusted communication are tracked and restricted as
suspicious ones. However, one still can make the programs
work by manually removing the suspicious flags from the
program files before running them.

Table 3 further describes the detailed test results of 20
selected malware samples. We can see that all the malware
samples are successfully disabled via the restriction of their
malware behaviors. For example, the worm
“Worm.Win32.Leave.i” downloaded from the local website
has the following main steps for function: it firstly copies
itself, i.e., regsv.exe, to C:\Windows, then runs regsv.exe as
a new process, the new process then adds a value under
registry key HKEY_LOCAL_MACHINE\Software\Micro-
soft\Windows\CurrentVersion\Run to point to C:\WIN-
DOWS\regsv.exe so that it can be launched when the
system restarts, finally listens at port 113 to accept
commands from a remote attacker. On a host without Tracer
enabled, all above steps are successfully executed. However,
after activating the Tracer protection, the malware behavior
“Copy itself” is blocked, i.e., the malware can not create a
new copy of itself in the system folder. Consequently, the
rest of the behaviors do not appear any more because these
behaviors depend on the new process launched from the
malware’s copy, i.e. C:\WINDOWS\regsv.exe. In other
words, the worm is disabled.

To compare with other anti-malware techniques on
Windows, we performed an experiment to test three
popular commercial tools: Kaspersky [27], VIPRE [28] and
MIC. The former two running on XP are well known
anti-malware tools and have modules blocking suspicious
behaviors to defend against unknown malware. The
anti-malware tools relying only on signatures can not
detect unknown malware [1] and thus are inappropriate to
compare with Tracer especially on FP rate. MIC is a partial
enforcement of BIBA model in Vista kernel [16], which is
the only MAC mechanism in Windows OS family. For
every anti-malware technique, we tested all of the samples
in Table 2. We count a program as a FP if the anti-malware
technique abnormally refuses or alarms at least one of its
access requests, since this will affect the running of the
testing program or annoy the user. We do not count a
program as a FP if it fails on Vista but the failure is not
caused by MIC. Figure 4 shows the FP rates (FPR) obtained.
MIC and the anti-malware tools have FP rates above 34%,
whereas, Tracer has FP rate of merely 5.6%. The high FP
rate of MIC comes from the no-write-up rule of BIBA
model. The modules that block suspicious behaviors
contribute to most of FPs of the anti-malware tools. The
fundamental reason is that the anti-malware tools identify
a suspicious behavior only based on the behavior itself
while Tracer further considers the suspicious label of the
process requesting the behavior. On the other hand, the FN
rates of Kaspersky, VIPRE and Tracer are almost all zero.
However, MIC is observed to have a high FN rate of 42%.

Programs Behaviors Samples
Total FNs FPs Total FNs FPs

Worm 20 0 - 274 0 -
Trojan 19 0 - 155 0 -

Backdoor 17 0 - 152 0 -
Script Virus 2 0 - 65 0 -

Known
malware

Macro Virus 3 0 - 49 0

Unknown malware 32 0 - 491 0 -
Security utilities 11 - 1 103 - 8
System utilities 10 - 2 83 - 15

Games 7 - 0 82 - 0
Multi-media 10 - 0 36 - 0

Benign
program

Web Pages 16 - 0 99 - 0

Sum 147 0 3 1589 0 23

11

TABLE 3. DETAILED TESTING RESULTS

One possible reason is that MIC does not implement the
no-read-down rule of BIBA model [16] in order to avoid a
significant impact on the usability and compatibility of
Windows which is a commodity OS. As a result, some
sophisticated malware programs can manage to bypass it.
Nevertheless, with MIC, Vista can still achieve a significant
security improvement compared with XP that can not
defeat any malware samples by itself.

Compatibility. The requirement for compatibility is that
existing Commercial Off-The-Shelf (COTS) software can
run on the MAC prototype without causing significant
incompatibility problems. On the two hosts with Windows
XP installed, we run many commonly used
network-dependent applications and local applications e.g.
Internet Explorer, MS Outlook Express, MS word, MS excel,
MS Power Point, MS Messenger, mIRC, Visual C++, Firefox,
Adobe Reader, QQ, Foxmail, Windows Media Player, Putty
SSH client, WinRAR, VMWare Workstation, AVG
Antivirus, Windows tasklist, Skype, Windows FTP client,
Beyond Compare, Source Insight, Calculator, Utility
Manager, Notepad, Minesweeper, Hearts, WebBench Client,
WebBench Controller, Winamp. We send emails, browse
websites through Internet, edit word documents, develop
VC++ programs, share files remotely, update Windows and
move files through USB disks, etc. The system works well
for the past a few months, without need of modifications of
existing software or running into failures.

Performance overhead. The performance overhead of
Tracer comes from the overhead of executing additional
instructions associated with every intercepted system call
and API function. In the following experiment, we evaluate
the additional overhead imposed by Tracer enforcement.
The test-bed is a Pentium-4 2.8GHz machine with 1GB

memory running Windows XP SP2. We first disable Tracer,
run a group of benign and malware programs, and count
the average CPU cycles spent in each system call and API
function through rtdsc instruction. Second, we enable
Tracer, run the malware programs, the benign programs
with suspicious flags and without suspicious flags to
perform the test again. In all tests, the average CPU cycles
of every system call or API function is calculated from 100
invokes. Results are shown in Table 4. With Tracer enabled,
the malware programs have 1.7%~38.1% more
performance penalty than native, while the benign
programs have only 0~13.5%. The highest performance
penalty comes from the interception of NtWriteFile() as a
result of capturing file-copying behaviors. The overhead
incurred on benign programs is lower than 2%. Therefore,
the general performance impact from the system call and
Win32 API function interception is acceptable.

5 DISCUSSIONS
5.1 Security

Security Protection. According to the ring policy of
BIBA model [8], Tracer can correctly protect integrity if
satisfying the following three conditions: (1) any subject (S)
can read any object (O), regardless of their integrity levels
(i); (2) s∈S can write o∈O, only if i(o)≤i(s); (3) s1∈S can
invoke s2∈S, only if i(s2)≤i(s1). The first condition means
that the ring policy has no requirements on read operations.
The second condition forbids the write operations where
i(o)＞i(s). Tracer meets this condition by restricting the
malware behaviors of low integrity level subjects (i.e.,
suspicious processes) that try to write high integrity level
objects (e.g., executables, system configuration and

Malware Channels Restricted Behaviors

Worm.Win32.Leave.i Web Copy itself
Net-Worm.Win32.Welchia.a Web Copy itself, Create or modify Windows services, Restart computer
Trojan-Spy.Win32.Dks.11.a Web Copy itself, Modify registry for startup, Create Windows hooks

IRC-Worm.Win32.Fagot.a Web Copy itself, Modify registry for startup, Change security settings, End anti-malware processes or
services

Trojan-PSW.Win32.QQlog.b FTP Copy itself, Modify registry for startup
Trojan.Swizzor.1 FTP Copy itself, Start hidden network clients, Inject into other processes, Modify registry for startup

Backdoor.Win32.Gobot.r IM Copy itself, Modify registry for startup, End anti-malware processes or services, Modify executables,
Restart computer, Steal confidential information

Backdoor.Win32.Rbot.15 IM
Copy itself, End anti-malware processes or services, Create Windows hooks , Capture screen shots, Modify
registry for startup, Change security settings, Steal confidential information, Create or modify Windows services,
Install or modify drivers

Backdoor.Win32.SdBot.04.d IM Copy itself, Modify registry for startup, Steal confidential information
Virus.VBS.GaScript.b Email Copy itself, Modify registry for startup
Email-Worm.Win32.Kitro.d Email Copy itself, Modify registry for startup, Steal confidential information
Email-Worm.Win32.Centar.j Email Copy itself, Modify registry for startup, Steal confidential information
Trojan.Win32.KeyPanic.b Email Modify registry for startup, Create Windows hooks
P2P-Worm.Win32.Sytro.a P2P Copy itself, Modify registry for startup, Damage system integrity
P2P-Worm.Win32.Skater.a P2P Copy itself, Modify registry for startup
P2P-Worm.Win32.Surnova.k P2P Copy itself, Modify registry for startup, Damage system integrity

Backdoor.Win32.Agobot.an RPC Copy itself, Modify registry for startup, Create or modify Windows services, Steal confidential
information, End anti-malware processes or services, Modify system configuration files

Rootkit.Win32.Agent.h removable
drive Install or modify drivers

Backdoor.Win32.MoSucker.06 removable
drive Copy itself, Modify registry for startup, Restart computer, Steal confidential information

Backdoor.Win32.SilentSpy.209 removable
drive Copy itself, Modify registry for startup, Create Windows hooks

12

write-protected objects). According to Section 3.4, the
“damage system integrity” behavior together with other
write style (e.g., modify, change, install and create)
behaviors listed in Table 1, cover all categories of objects
that need integrity protection, including files, directories,
registry keys, IPC objects, processes and system devices.
Thus, by preventing such behaviors, Tracer is able to
protect the high integrity objects of the whole system. In
other words, the second condition is satisfied. The third
condition requires preventing a low integrity level subject
from launching a high integrity level subject. In Tracer,
processes generated by a suspicious process are always
suspicious according to the tracing rules. In other words,
the third condition is met. Therefore, Tracer satisfies the
ring policy of BIBA model.

Tracer also can provide certain confidentiality
protection by restricting the read style malware behaviors
of low confidentiality level subjects (i.e., suspicious
processes) that try to observe high confidentiality level
objects. According to Section 3.4, the “Steal confidential
information” behavior together with other read style
behaviors listed in Table 1 actually cover all categories of
sensitive objects across the system. Hence, by stopping
such behaviors, Tracer can prevent direct leakage of
secrecy. However, it can not prevent indirect leakage. For
example, a benign process might unconsciously read
sensitive information and then output to a file without read
protection. We will try to resolve this issue in the future.

Moreover, by restricting the behaviors that could affect
the system availability, e.g. “End anti-malware processes or
services” and “Restart computer”, Tracer is able to protect
availability to a certain degree.

Implementation Security. Tracer modules in Windows
can act as a reference monitor to completely monitor all
dangerous operations, and is tamperproof, always-invoked,
carefully analyzed and tested as well. First, Tracer
prototype is difficult to be bypassed or subverted. This is
because most of the implementations of Tracer are located
in the kernel, and the behaviors that can be employed to
bypass or subvert Tracer, e.g. “Change file attributes”,
“Execute Tracer special system calls”, “Execute
non-executable files”, “Install or modify drivers” and

“Create Windows hooks”, are prohibited from being
executed by suspicious processes. Second, as presented in
Section 3.4, Tracer prototype obeys the principle of
complete mediation [13]. That is, the monitored behaviors
including critical malware behaviors, generic malware
behaviors and the bypassing Tracer behaviors actually
cover all security sensitive operations on Windows. The
complete coverage is formed mainly because that the two
generic behaviors, “Damage system integrity” and “Steal
confidential information”, represent all illegal operations
on the protected objects in an OS. Third, Tracer modules
are carefully analyzed and tested as they are independent
from Windows OS and concise in internal logic.

Potential Evasions. There are three potential evasions in
Tracer. The first evasion exploits the trusted
communications to control a privileged process or
download an executable without being attached with a
suspicious flag. However, as presented in Section 3.2, the
attack surface on trusted communications is tremendously
narrowed by checking the image file, protocol, remote host
and time simultaneously. Even if a malware program
manages to get into a host, Tracer is still able to detect and
restrict the malware behaviors. According to our
investigations presented in Section 2.1, all malware samples
need network communications for their functions, e.g.
downloading tools from malicious website. Thus Tracer can
detect a malware program by the detection action at
network entrance. Moreover, the detection action at interior
also has many chances of detecting the malware program
by monitoring exclusive malware behaviors in the system.
Although these approaches may not ensure absolute
security, there is a tradeoff between ensuring a higher
security and ensuring a good usability when there is a need
to facilitate system maintenance from the remote site.

The second potential evasion breaks intrusion tracing via
compromising a local IPC that is not considered as
dangerous. According to our investigation on Microsoft
Security Bulletin mentioned in Section 3.3, it is considerably
difficult to evade tracing through a local IPC. Although it is
rare, the evasion will occur when a malware author exploits
an IPC that is detected to be dangerous but not released to
the public, and thus cannot be traced by Tracer as it is not

Functions Native Tracer-m Tracer-bf Tracer-b Functions Native Tracer-m Tracer-bf Tracer-b

NtCreateFile 334492 348523(4.2%) 348197(4.1%) 338506(1.2%) CreateService 6568120 6679969(1.7%) 6679625(1.7%) 6568323(<0.1%)

NtOpenFile 167620 175311(4.6%) 173235(3.3%) 169713(1.2%) OpenService 5490443 5609529(2.2%) 5609352(2.2%) 5490560(<0.1%)

NtWriteFile 245179 338524(38.1%) 278286(13.5%) 249897(1.9%) NtSetValueKey 210491 225185(7%) 225093(6.9%) 210493(<0.1%)

NtCreateNamedPipeFile 204711 214798(4.9%) 214751(4.9%) 204789(<0.1%) NtCreateKey 281722 296451(5.2%) 296008(5.1%) 281784(<0.1%)

NtCreatePort 37241 40281(8.2%) 40180(7.9%) 37275(<0.1%) NtCreateProcess
E

206458 215487(4.4%) 215426(4.3%) 208849(1.2%)

MIC (FPR=34%)

27

14

VIPRE (FPR=37%)

34

20

Tracer (FPR=5.6%)

51

3
without FP

having FP

Kaspersky (FPR=39%)

33

21

Fig. 4. Comparing false positives with commercial anti-malware techniques on Windows

TABLE 4. OVERHEAD OF TRACER (CPU CYCLES)
The columns Tracer-m, Tracer-bf and Tracer-b show the CPU cycles taken by the malware programs, the benign programs with and without suspicious flags

running on Tracer, respectively.

13

included in the Dangerous-IPC-List. Even under this
situation, Tracer is still effective to recognize and confine
the malware to a certain extent because the network traffic
and exclusive malware behaviors will activate the
detections at entrances and interior respectively. There is a
tradeoff between a better security and a good compatibility
as tracing extra IPCs would lead to the result that a huge
number of benign processes are marked as suspicious and
thus unexpectedly restricted.

The last potential evasion is to exploit kernel
vulnerabilities. Tracer can defend against most kernel
rootkits by restricting the behaviors of suspicious processes
which can be used to compromise kernel integrity,
including “install or modify drivers”, “create Windows
hook”, “modify executable files” and “inject into other
processes”. However, if a malware exploits kernel
vulnerability of an OS which is not updated timely to fill
the security holes, the Tracer might be bypassed. This is a
common limitation of all access control mechanisms [30]
since they live inside the OS kernel. In this case, we can use
Tracer together with a kernel integrity preserving
mechanism [24][30] that lives outside of the OS kernel.
These two can complement each other, as a single
mechanism is difficult to detect both general malwares and
the special kernel rootkits that compromise kernel.

5.2 Compatibility
The good compatibility of Tracer is resulted from the
reduction of false positives. First, it directly stops malicious
behaviors rather than stop illegal information flow that may
incur FPs as presented in Section 2.2. Second, when
determining a malicious behavior, Tracer considers not only
the behavior itself but also the security label of the process.
As the security label is the result of a historic behavior,
Tracer actually determines a malicious behavior based on
two behaviors. Suppose using the current behavior or the
historic behavior alone to make decision would produce FP
rate 0 < p < 1 or 0 < q < 1, respectively. As in most cases the
two behaviors are independent, using the two behaviors
simultaneously would produce FP rate p*q where p*q <
min(p, q). Hence, Tracer can achieve a lower FP rate as
compared to a scheme that simply monitors one of the
behaviors. Third, Tracer only blocks the behaviors with a
small FP rate. For the rest of the behaviors, Tracer traces
them rather than blocks them immediately. This would
reduce the overall FP rate of Tracer. Third, for the situations
similar to malware activities, we devise exception
mechanisms to avoid producing a huge number of false
positives, which include trusted communications for remote
system maintenance and exception rules for identifying
generic malware behaviors. This helps to further reduce the
overall FP rate of Tracer.

5.3 Usability
Usability concerns with the amount of configuration work
and the impact on user’s usage convention. Most of the
configuration work of a MAC system is to arrange security
labels to a large number of entities in an OS. Tracer is able
to automatically fulfill this task by detecting and tracing
potential intruders. If considering the leverage of DAC
information to denote an entity to be protected, the

configuration work is then further reduced to nearly zero.
Thus, the rest of configuration work only involves
dangerous protocols and trusted communications that can
be specified by a default setting. On the other hand, by
utilizing existing operating system information, i.e. DAC
permissions and file extension, to identify files and registry
entries that require protection, Tracer follows conventional
usage styles very well.

6 RELATED WORK
DTE proposed by Lee Badger et al. [9] is a classical MAC
model to confine process execution, which groups processes
and files into domains and types respectively, and controls
accesses between domains and types. Tracer can be
regarded as a simplified DTE that has two domains (i.e.,
benign and suspicious) and four types (i.e., benign,
read-protected, write-protected and suspicious). Moreover,
Tracer can automatically configure the DTE attributes (i.e.,
domain and type) of processes and files under the support
of intrusion detection and tracing so as to improve usability.

LOMAC [3], UMIP [2], PPI [7] and MIC [4] aim to add
usable and compatible mandatory integrity protections into
mainstream operating systems. LOMAC deals with the
pathological cases in the Low-Water Mark model’s
behaviors to decrease its partial compatibility cost. UMIP is
designed to preserve system integrity in the face of
network-based attacks in a highly usable manner. PPI
automates the generation of information flow policies by
analyzing software package information and logs. MIC
implements the no-write-up rule of classical BIBA model in
Windows Vista kernel, but it does not implement the
no-read-down rule in order not to compromise compatibility
significantly. PRECIP [5] addresses several practical issues
that are critical to contain spyware that intends to leak
sensitive information. Tracer, however, differs from these
MAC models in that, it traces suspected intruders and
restricts their behaviors rather than restricts information
flow. With this novel concept, it is able to considerably
reduce FPs and automatically deploy security labels, which
result in good compatibility and usability. Meanwhile, the
philosophy of Tracer is roughly similar to the risk-adaptive
access control [10] that targets to make access control more
dynamic so as to achieve a better tradeoff between risk and
benefit. Tracer dynamically changes security labels of certain
processes to reduce the risk of executing malware behaviors,
while not restricting other behaviors and processes at all to
preserve the benefits of compatibility and usability.

Most existing anti-malware technologies are based on
detection [22][23]. Tracer tries to combine detection and
access control so that it not only can detect but also can
block malware behaviors before their harming security.
Another anti-malware technology that resembles Tracer is
behavior blocking [25], which can confine the behaviors
of certain adverse programs that are profiled in advance.
However, Tracer does not need to profile program
behaviors beforehand, and can confine the adverse
programs that execute malware behaviors.

Many commercial anti-malware tools [27][28] also have a
behavior-based module to defend against unknown

14

malware programs. The major difference between Tracer
and the commercial tools is that Tracer determines a
malicious behavior based not only on the behavior itself but
also the security label of the process requesting the behavior,
rather than merely the behavior as anti-malware tools do.
As a consequence, Tracer produces much less false positives
than that of the commercial-tools as shown in Section 4.2.

7 CONCLUSIONS
In this paper, we propose a novel MAC enforcement
approach that integrates intrusion detection and tracing to
defend against malware in a commercial OS. We have
extracted 30 critical malware behaviors and three common
malware characteristics from the study of 2,600 real-world
malware samples and analyzed the root reasons for the
incompatibility and low usability problems in MAC, which
will benefit other researchers in this area. Based on these
studies, we propose a novel MAC enforcement approach,
called Tracer, to disable malware timely without need of
malware signatures or other knowledge in advance. It
detects and traces suspected intruders so as to restrict
malware behaviors. The novelty of Tracer design is
two-fold. One is to use intrusion detection and tracing to
automatically configure security labels. The other is to trace
and restrict suspected intruders instead of information
flows as done by traditional MAC schemes. Tracer doesn't
restrict the suspected intruders right away but allows them
to run as long as possible except blocking their critical
malware behaviors. This design produces a MAC system
with good compatibility and usability. We have
implemented Tracer in Windows OS and the evaluation
results show that it can successfully defend against a set of
real-world malware programs, including unknown
malware programs, with much lower FP rate than that of
commercial anti-malware techniques.

REFERENCES
[1] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:

capturing system-wide information flow for malware detection and
analysis. In Proceedings of the 14th ACM conference on Computer
and communications security (CCS '07). Pages 116-127.

[2] N. Li, Z. Mao, and H. Chen. Usable Mandatory Integrity Protection
for Operating Systems. In Proceedings of the IEEE Symposium on
Security and Privacy (SP '07), pages 164-178.

[3] T. Fraser. LOMAC: Low Water-Mark Integrity Protection for COTS
Environments. In Proceedings of the IEEE Symposium on Security
and Privacy (SP '00). Pages 230-245.

[4] Microsoft, Mandatory Integrity Control, http://en.wikipedia.org/wiki/
Mandatory_Integrity_Control

[5] X. Wang, Z. Li, J. Y. Choi, N. Li. PRECIP: Towards Practical and
Retrofittable Confidential Information Protection. In Proceedings of
15th Network and Distributed System Security Symposium, 2008.

[6] Symantec, Inc, http://www.symantec.com/business/security_response/
threatexplorer/threats.jsp.

[7] W. Sun, R. Sekar, G. Poothia and T. Karandikar. Practical Proactive
Integrity Preservation: A Basis for Malware Defense. In Proceedings
of the IEEE Symposium on Security and Privacy (SP’08).

[8] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE, April 1977.

[9] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A.
Haghighat. 1995. Practical Domain and Type Enforcement for UNIX.
In Proceedings of the IEEE S&P 1995. Pages 66-77.

[10] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and
A. S. Reninger. Fuzzy Multi-Level Security: An Experiment on

Quantified Risk-Adaptive Access Control. In Proceedings of the IEEE
Symposium on Security and Privacy. Pages 222-230.

[11] M. Howard, Fending Off Future Attacks by Reducing Attack Surf-
ace http://msdn.microsoft.com/en-us/library/ms972812.aspx, 2003.

[12] M. Oers, OSX Malware not taking off yet, http://www.avertlabs.com/res
earch/blog/index.php/2007/03/20/osxmalware-not-taking-off-yet/, 2007.

[13] J. Saltzer and M. Schroeder. The protection of information in
computer systems. Communications of the ACM, 17(7), 1974.

[14] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, Clem Cole (Ed.). Pages 29-42.

[15] M. Jawurek, R. Aachen. RSBAC - a framework for enhanced Linux
system security, http://www.rsbac.org/documentation, 2006.

[16] Microsoft, Windows Vista Integrity Mechanism, http://msdn.microso-
ft.com/en-us/library/bb625964(v=MSDN.10).aspx

[17] V. D. Gligor, C. S. Chandersekaran, R. S. Chapman, L. J. Dotterer, M. S. Hecht,
W.-D. Jiang, A. Johri, G. L. Luckenbaugh, and N. Vasudevan. Design and
Implementation of Secure Xenix. IEEE Trans. Softw. Eng. 13, 2 (1987), 208-221.

[18] S. T. King and P. M. Chen. Backtracking intrusions. In Proceedings of the 19th
ACM symposium on Operating systems principles (SOSP '03). Pages 223-236.

[19] Microsoft Security Bulletins, http://www.microsoft.com/technet/secu-
rity/current.aspx.

[20] Offensive Computing, http://www.offensivecomputing.net/.
[21] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. 2006. Back to the

Future: A Framework for Automatic Malware Removal and System
Repair. In Proceedings of the 22nd Annual Computer Security
Applications Conference. Pages 257-268.

[22] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer.
Behavior-based spyware detection. In Proceedings of the 15th
conference on USENIX Security Symposium (USENIX-SS'06).

[23] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A Layered
Architecture for Detecting Malicious Behaviors. In Proceedings of the 11th
international symposium on Recent Advances in Intrusion Detection, Pages
78-97.

[24] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel Rootkits
with Lightweight Hook Protection. In Proceedings of the 16th ACM
Conference on Computer and Communication Security, 2009.

[25] C. Nachenberg. Behavior Blocking: The Next Step in Anti-Virus
Protection. http://www.securityfocus.com/infocus/1557, March 2002.

[26] A. Goel, K. Po, K. Farhadi, Z. Li, and E. Lara. The taser intrusion
recovery system. In Proceedings of the twentieth ACM symposium on
Operating systems principles (SOSP '05). Pages 163-176.

[27] Kaspersky Lab. http://www.kaspersky.com/.
[28] Vipre, Inc, http://www.vipre.com/vipre/.
[29] Z. Shan, X. Wang, T. Chiueh. Tracer: Enforcing Mandatory Access Control in

Commodity OS with the Support of Light-Weight Intrusion Detection and
Tracing. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pages 135~144, March 2011.

[30] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a Tiny Hypervisor to
Provide Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles, 2007.

[31] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed
firewalls. In Proceedings of the 23rd IEEE Infocomm, Hong Kong, Mar 2004.

Zhiyong Shan is an associate professor in the department of
Computer Science of the Renmin University of China. He was
a postdoctoral research associate in the department of
computer science of the Stony Brook University. He received
the PhD degree in computer science from Chinese Academy of
Science. Dr. Shan won president award of Chinese Academy
of Science in 2004 and Beijing Science & Technology
Achievement Award in 2005. His research interests include
operating system and computer security.
Xin Wang is an associate professor in the department of
Electrical and Computer Engineering and an affiliated professor
in the department of Computer Science of the Stony Brook
University. She received the PhD degree in electrical and
computer engineering from Columbia University. Her interests
include wireless networks, mobile and distributed computing,
computer security. She won NSF career award in 2001.
Tzi-cker Chiueh is a professor in the department of Computer
Science of the Stony Brook University. He received the PhD
degree in computer science from UC Berkeley. His research
interests include computer security and storage system. He
received an NSF CAREER award in 1995, a Best Paper Award
from 2005 Annual Computer Security Applications Conference.

