
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 1

Exploration-Based High-Level Synthesis of Linear Analog
Systems Operating at Low/Medium Frequencies

Alex Doboli, Member, IEEE,and Ranga Vemuri, Senior Member, IEEE

Abstract—This paper presents a methodology for high-level synthesis of
continuous-time linear analog systems. Synthesis results are architectures
of op-amps, sized resistors and capacitors such that their ac behavior and
total silicon area are optimized. Bounds for op-amp dc gain, unity-gain fre-
quency, input, and output impedances are found as a byproduct of syn-
thesis. Subsequently, a circuit synthesis tool can be used to synthesize the
op-amps of an architecture. The paper details the architecture generation
technique. Architecture generation produces alternative architectures for
a system specification using the tabu search heuristic. Its main advantages
over traditional methods is that it is application independent, does not re-
quire a library of block connection patterns, and is simple to implement.
The paper also discusses the hierarchical, two-step parameter optimiza-
tion that guides architecture generation. Experiments showed that linear
analog systems operating at low/medium frequencies (like telecommunica-
tion systems and filters) can be synthesized in a reasonably long time and
with reduced effort.

Index Terms—Analog synthesis, high-level synthesis, system architec-
tures, optimization.

I. INTRODUCTION

A AUTOMATED synthesis of analog systems is an important
research problem. Any real-life application requires an analog

interface to its outer environment. Because of fewer synthesis tools,
designing 10% of an overall mixed-signal system represented by
analog circuits requires 90% of the overall effort [30]. Depending
on the performed tasks, analog synthesis can be categorized into
three types: 1) high-level synthesis; 2) transistor (circuit)-level
synthesis; and 3) layout synthesis. High-level synthesis is the task of
automatically producing optimized system architectures from abstract
specifications with a hardware description language (HDL). Transistor
(circuit)-level synthesis [20], [30], [32] finds transistor dimensions
that optimize circuit performance (i.e., gain, bandwidth, CMRR, SR,
etc.). Layout design tools [3] place transistors on a silicon die, and
route signal and power interconnections to minimize total area and
performance degradations due to layout parasitics. As compared to the
other two synthesis kinds, high-level synthesis offers the advantages
of shorter design cycles, reduced design effort, and ease of use by
those unfamiliar with analog circuits [2]. High-level analog synthesis
is still in its infancy, as little research has been performed [2], [13].

This paper is one of the first attempts to perform analog high-level
synthesis from functional specifications with an HDL. Fig. 1 shows
the top-down exploration-based synthesis methodology. Targeted
applications are linear continuous-time analog systems operating at
low/medium frequencies characterized by performance in the fre-
quency domain. In our methodology, synthesis results are architectures
(net-lists) that consist of op-amps, sized resistors, and capacitors such
that their ac behavior and total silicon area are optimized. Bounds
for op-amp minimum input impedance, dc gain, dominant pole, and

Manuscript received January 20, 2002; revised November 18, 2002. This
work was supported in part by the IEEE and by the U.S. Air Force Research Lab-
oratories, Wright Patterson Air Force Base under Contract F33615-96-C-1911.

A. Doboli is with the State University of New York, Stony Brook, NY
11794-1611 USA.

R. Vemuri is with the Department of Electrical and Computer Engineering
and Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA.

Digital Object Identifier 10.1109/TCAD.2003.818374

Fig. 1. High-level analog synthesis flow.

maximum output impedance are also produced as a byproduct of
high-level synthesis. A circuit synthesis tool (such as [5], [19], and
[21]) can be further employed for finding op-amp topologies and
sizing their transistors.

The main benefits of the presented high-level synthesis methodology
are designing analog circuits at a low cost and in a short time. This
is important for the redesign, reengineering, and upgrade of analog
legacy systems, which are part of products with very long life cycles
such as airplanes, ships, and missiles [36]. Obsolete analog systems
need to be rapidly redesigned at affordable costs to address disconti-
nuities in their manufacturing process or improvements in their fabri-
cation technology. Redesign starts from technology-independent spec-
ifications [36]. High-level synthesis tools can take these specifications
as inputs and automatically produce optimized implementations. Rapid
prototyping for upgrading obsolete parts is another possible usage of
synthesis. Further, the discussed methods can be used for designing the
analog interfaces of digital embedded systems, such as the interfaces to
microphones, wire lines, sensors, etc. [13], [17]. Designers with a re-
duced experience in analog circuits can generate these interfaces by
using high-level synthesis tools. Finally, analog implementations of
consumer electronics such as headphones, hearing aids, hearing protec-
tion gears, amplifiers, etc. offer lower costs and energy consumptions
as compared to digital signal processor (DSP)-based solutions, which
are currently popular [17], [22], [27].

Functional specificationsare mathematical relationships between
input, output, and state variables of a design [9], [13]. Conservation
laws at the ports of the connected blocks are not necessarily satisfied
in the specification [13]. Various performance requirements annotate
the blocks of a system [9]. Functional specifications do not explic-
itly indicate the kind, interconnection and parameters of analog cir-
cuits in the final implementation. Hence, a high-level synthesis flow
must generate different implementation architectures for a specifica-
tion, and then search for the architecture parameters (like circuit gains,
poles, etc.) that optimize system performance such as ac and transient
behavior, power consumption, and area. To achieve its goal, high-level
analog synthesis performs three tasks [18]:

1) architecture generationfor producing system topologies and ar-
chitectures from specifications;

2) performance model generationfor relating architecture parame-
ters to circuit parameters;

0278-0070/03$17.00 © 2003 IEEE



IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

3) optimizationof system parameters using the obtained perfor-
mance models.

This paper focuses on an originalarchitecture generationmethod.
Using tabu search (TS) [34], the architecture generator incrementally
changes signal types from currents to voltages and vice versa, and then
applies a set of rules to build alternative, specification-oriented archi-
tectures for a system. This method is different from traditional ap-
proaches based on pattern libraries and pattern-matching algorithms
[6], [10], [12]. Patterns describe mappings of block clusters to cir-
cuits, and are partially specific to an application. As a result, pattern-
matching-based methods are limited to a given class of applications like
filters and decimators [2], [10]. New patterns have to be added to tackle
different applications. Also, setting up pattern libraries is tedious, as
hundreds of patterns are needed. The suggested algorithm considers a
lower level of granularity than traditional techniques. It handles basic
building blocks (such as op-amps, resistors, and capacitors) and not
clusters of such blocks. As a result, new designs can be synthesized
without requiring application-specific knowledge. The task of setting
up large pattern libraries is also avoided. Finally, the proposed approach
uses the simple and efficient TS algorithm instead of more complex pat-
tern-matching methods.

The paper also presents thehierarchical parameter optimization
method used for optimizing the ac behavior and overall silicon area of
a system architecture. As shown in Fig. 1, its outputs guide the explo-
ration loop of the architecture generator. More details on parameter op-
timization are given in [7]. The technique used for producingsymbolic
performance modelsfor ac gain and phase of a system is discussed in
[8].

This work is part of the VHDL-AMS synthesis environment (VASE)
developed at the University of Cincinnati, Cincinnati, OH. The goal
of the VASE tools is to reduce design cost of mixed-signal and analog
circuits by performing an integrated, top-down synthesis process from
high-level specifications. This paper presents the high-level front end,
which creates op-amp-level architectures from abstract specifications.
Next, topologies and transistor sizes of the op-amps are optimized
using a hierarchical genetic algorithm and equation-based performance
estimation [5]. Performance such as gain, power, unity-gain frequency,
and slew rate are tackled during op-amp synthesis.

The paper is organized as seven sections. Section II discusses related
work. Section III introduces the specification notation for synthesis.
Section IV describes the architecture generation algorithm. Parameter
optimization is detailed in Section V. Section VI provides experimental
results and discussion of the suggested synthesis methods. Finally, Sec-
tion VII offers our conclusions.

II. RELATED WORK

Most of the analog synthesis work focuses on optimizing the param-
eters of a given architecture. An efficient method is to analyze (using
a simulator) a large number of parameter values inside an optimiza-
tion loop [20], [30], [32]. Optimization loops implement heuristic al-
gorithms such as simulated annealing [30] or genetic algorithms [5],
[19], [21]. The main limitation is the large synthesis time required
for bigger circuits [20]. An alternative is to use exact algorithms, e.g.,
branch-and-bound [25] or geometric programming [24], to solve an
equational formulation of the synthesis problem. Besides computa-
tional complexity, the difficulty also consists in the tedious process of
calculating the equations for the solvers.

Several techniques are proposed for architecture generation. The in-
tuitive solution is to consider a library of block structures and their map-
pings to analog circuits, and then use the identity of connected blocks
in a specification to find architectures. This is a technology-mapping
problem and pattern-matching algorithms can be applied [2], [6], [10],

[12]. Antaoet al. [2] propose ARCHGEN, a filter synthesis tool. Ar-
chitectures in controllable, observable, and ladder forms are obtained
for the state-space description of a filter. There is no performance op-
timization phase in ARCHGEN. Block parameters in the specification
are directly mapped to the corresponding circuits. Finoet al. [10] de-
scribe a greedy pattern-matching method that uses a library of circuits
described as signal-flow graphs (SFG) to find an implementation for a
specification also expressed as an SFG. A similar approach is proposed
by Ganesanet al. [12]. The limitation of pattern-matching methods is
that a library does not optimally address the block structure of a system,
as it enforces implementations only in terms of its predefined circuits.
Addressing new system types might need introducing of new patterns
into the library to accommodate new block structures. Very large pat-
tern libraries are required. Veselinovicet al. [41] present an approach
that selects architectures by applying filters to a static library of archi-
tectures. Given the constraints for an application, the feasibility of a
topology is studied by analytical filtering based on boundary checking,
interval analysis, and rule-based filtering. A similar approach is studied
by Konczykowskaet al. [18]. A very interesting method is suggested
by Kozaet al.for circuit synthesis [19]. The method employs a genetic
algorithm that evolves hardware structures built of transistors, resis-
tors, and capacitors connected in a limited number of ways. This paper
proposes a new exploration-based architecture generation method. It
can handle new systems without setting up a pattern library or adding
application-specific patterns.

Synthesis tools are widely employed for designing continuous-time
and switched capacitor filters [16]. Filter synthesis tools include the
following steps [16]:

1) approximation of the overall transfer function;
2) decomposition of the transfer function into a sequence of cas-

caded, low-order stages (such as biquad, ladder, etc.);
3) mapping the stages to given circuit implementations;
4) computing the circuit parameters to meet imposed specifications.

The very large number of possible decompositions is handled by ap-
plying designer knowledge to prune low-quality decomposition alter-
natives. However, in the general case, it is difficult to relate different
decompositions [16]. Optimal implementations are proposed for low-
order stages using different implementation styles. Muraltet al. [29]
and Sanchez-Sinencioet al. [35], among others, discuss the imple-
mentation of switched capacitor filters out of biquad and ladder stages.
Wu and Elmasry [43] present the design of current mode ladder filters.
Recently, Rayet al. [33] proposed a method for realizing operational
transconductance amplifier (OTA)-based filters starting from a filter
decomposition into cascaded first- and second-order stages. Guaran-
teeing the optimality of the overall filter design is difficult, provided
that strong electrical interactions exist between stages. Also, the ana-
lytical formulas have to be recalculated whenever the implementation
technology is changed. The methodology presented in the paper can
be used for continuous-time filter synthesis. The proposed architecture
generator is general, and does not assume a certain decomposition of
the transfer function. This allows exploring more filter structures to find
a better solution for a specification.

III. SYNTHESIS-ORIENTED SPECIFICATION

An important paradigm of our synthesis method is that analog system
functionality is expressed by describinghow continuous-time analog
behavior is achieved in terms of signal flow and processing. SFGs
[31] accommodate well this description style, and they are specified as
aBloxprograms [9] in our environment. If system functionality is pre-
sented at a higher level of abstraction such as transfer functions or dif-
ferential and algebraic equations, then techniques discussed by Antao



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 3

Fig. 2. Synthesis-oriented specification of an analog system.

et al.[2] can be used to obtain SFG system descriptions. The case study
in Section VI exemplifies this process.

We refer to a simplified version of the receiver module of a telephone
set [38] for illustrating our specification notation for synthesis. More
details about the specification notation are given in [9]. The function-
ality of the receiver is described by the block diagram in Fig. 2(a). The
receiver provides an audible output signal to the earphone of the tele-
phone set. It amplifies with different gains the signal transmitted from
the calling part (signalline) and that produced locally by its own mi-
crophone amplifier (signallocal). The specification imposes that port
signalsline, local, andearphare voltages and that their value ranges
are [0.0, 1.0] V for inputs and [0.0, 1.5] V for the output. The output
load is 280
.

Fig. 2(b) depicts the aBlox program for the receiver module. aBlox
programs consist ofmacrodefinitions having associated an architecture
description through constructsarch-end arch. Next are the defining el-
ements of aBlox notation.

• aBlox variables indicate either thevoltage or the current
facet of analog signals. Variables can be of three types:
voltage—when they only correspond to voltages in implementa-
tions, current—when they are “realized” only as currents, and
unspecified—when both voltage and current alternatives are
acceptable in an implementation. In order to maintain a higher
level of abstraction, only one of the facets (voltage or current)
can be used for a variable in a specification. Otherwise, the
variable corresponds to a physical point, hence eliminating the
possibility for architecture generation.

• Statements such as assignments, if-statements, and macro calls
describe how macro outputs relate to macro inputs. The following
arithmetic operations are available: addition, subtraction, multi-
plication by a constant, and integration. This is a complete op-
erator set for a linear system [31], and can be implemented with
electronic circuits.

• Macro calls permit hierarchical specifications. This is useful for
improving the effectiveness of specification and synthesis (such
as Performance Model Generation) [8].

• System port signals are denoted as voltages or currents. Value
ranges or impedances for ports can be described. These attributes
are useful for sizing interface circuits.

• Attributesconstructions fix constraints for macro implementa-
tions (like noise level or bandwidth) or any equational perfor-
mance model that can be used for synthesis (for example, op-amp
models for area). This is important as system components have
heterogeneous performance. For example, the analog part of the
telephone set includes two modules, a receiver and a transmitter,
with different noise constraints [38]. In this example,noiseand
bandwidthare keywords for the tool, even though aBlox has a
flexible mechanism to define attributes [9].

• Generic parametersare used for indicating the generic elements
of a macro such as constant values, operators (i.e., addition,
subtraction, etc.), block identities, and performance attributes.
Generic parameters are useful for expressing regular and hier-
archical macro structures. Each macro call instantiates concrete
values for the generics. The two stages of the fourth-order filter
in Fig. 3(a) are distinguished only by different filter constants
that are specified as generics in the aBlox program in Fig. 3(b).
Operators can be passed as arguments to macro calls for de-
scribing stages built of distinct blocks but connected in similar
connection patterns.

For accepting inputs in a standard mixed-signal modeling language,
we proposed a VHDL-AMS [1] subset for synthesis. The subset in-
cludesquantitiesfor describing abstract analog signals,simple simulta-
neous, simultaneous if/case, andproceduralstatements for expressing
functionality andportannotations to denote attributes of the interfacing
signals. Compiling rules were developed to translate VHDL-AMS pro-
grams into aBlox descriptions. Details on the VHDL-AMS subset and
the compiling rules are offered in [6].

IV. A UTOMATED ARCHITECTUREGENERATION

The proposed architecture generation technique exploits the obser-
vation that analog signal processing can be obtained with signals that
are either currents or voltages. If the input and output signals of an
SFG block have their type fixed (as current or voltage), then networks
(RCor circuit networks) that realize the block operation can be easily
identified. This straightforward observation is important for architec-
ture generation, as different net lists simply result by changing SFG
signal types. Basically, in its exploration loop, the architecture gener-
ator incrementally changes signal types from voltage to current and
vice versa, and applies a set of conversion rules to generate architec-
tures specific for a system. Types of the system input and output signals
are assumed to be known.

If all input/output signals of an aBlox block have known types (cur-
rents or voltages), then aconversion ruleindicates the corresponding
hardware for implementing the operation of the block. Hardware struc-
tures can be op-amp-based active circuit (i.e., gain stage, summing am-
plifier, etc.), passiveR or RCnetwork, or even a common connection
point of two wires. Fig. 4 exemplifies two of our conversion rules, and
illustrates how two distinct architectures result for the SFG depicted in
Fig. 4(a). We assume that inputsv1andv2and outputoutare voltages.
Inferring architectures for the SFG means deciding the type of signal
aux, asauxcan be either current or voltage.

1) If signal aux is a current, then the structure in Fig. 4(b) is ob-
tained by applying conversion rules for the specific signal types
and block operations. The summing operation ofblock1 is ob-
tained by first “converting” voltagesv1andv2 into currents and
then connecting them to the same pointA. Because of Kirch-
hoff’s current law, the summation operator implicitly results, if
the voltage of pointA is 0 (otherwise currentsi1 andi2 are not
dependent only on voltagesv1andv2). The need of pointA being
virtual ground is satisfied byblock 2.



IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 3. aBlox specification of a fourth-order filter.

Fig. 4. Example of a conversion rule.

2) If signalauxis a voltage then the architecture in Fig. 4(c) results.
For these signal types,block1 has to be a summing amplifier
andblock 2an integrator. No special constraints are needed, e.g.,
pointA being virtual ground.

Fig. 5(a) and (b) illustrates two implementations for the receiver
module obtained by our method.

Table I exemplifies some of the conversion rules embedded in the
architecture generation method. The first four columns indicate the
operation of an aBlox block and the types of block inputs and out-
puts. Column 5 describes required conditions for connecting the circuit
output, such as the output must be connected to the ground. Column
6 presents circuit characteristics exploited for circuit interconnection
(like inputs with virtual ground). Interconnection constraints (Columns
5 and 6) are useful for speeding up the architecture generation process.
They eliminate architectures that are infeasible for getting the SFG
functionality or are redundant, as they are equivalent with other pro-
duced architectures. These constraints are set up based on designer
knowledge. Architecture generation is still valid without interconnec-
tion constraints, if the resultant behavior is verified by the parameter
optimization step, and infeasible architectures are discarded. Never-
theless, it involves a cumbersome analysis to detect some obviously

Fig. 5. Samples of architectures generated for the receiver module.

incorrect solutions. Finally, the last column presents the corresponding
circuit for a block.

The exploration strategy embedded in the architecture generator is
TS [34]. We decided to use TS because it is a deterministic algorithm
with a short convergence time. The pseudocode of the TS algorithm is
depicted in Fig. 6. It starts from an initial architecture solution where
each of the aBlox blocks is mapped to a distinct op-amp-based circuit.
Then, for each iteration, subroutineFind BestMove(Line 5 in Fig. 6)



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 5

TABLE I
CONVERSIONRULES FORARCHITECTUREGENERATION

Fig. 6. TS heuristic for architecture generation.

individually considers all signals in the SFG, and attempts to change
their type to the opposite one. For example, if a signal is a current, then
its type is modified to voltage. Changing a signal type also implies mod-
ifying the circuits for realizing the operations of the source and target
blocks. A new architecture results by applying appropriate conversion
rules for the new situation. Area and ac behavior of the resulting archi-
tecture are found with the parameter optimization modulePar Optim.
The signal with the best performance improvement is returned. Subrou-
tineExecuteMove(Line 12) performs the best signal-type change, and
the resulting architecture is the current solution for the next iteration. If
a signal type is modified, the signal enters atabustatus, meaning that
its change is prohibited for a precise number of iterations (tabu tenure).
This avoids repeated changes of the same signal. For converging to a
local optima, the algorithm first accepts only moves that improve the
quality of the current solution. However, if a tabu move results in a so-
lution better than the best so far, then it is accepted as atabu aspiration.
The exploration algorithm ends after performing a number ofNmax it-
erations, or ifNbest

max iterations passed since the best solution was found.
The algorithm uses three strategies for escaping from local optima.

First, it attempts to keep the search locally by selecting the move that
previously was improving, and offers the least performance degrada-
tion (subroutineAspiration Criteria1 at Line 7). If this does not work,
then the search attempts a local diversification by trying to move to a

structurally distinct solution point, but which does not worsen the solu-
tion quality too much. RoutineAspiration Criteria2 in Line 9 uses the
following cost function to decide the signal to be changed:

Cost= �[(Areanew � Areacurrent) � (N=Niter)
2]

whereN is the number of iterations the signal was of type current
andNiter is the total number of iterations so far. Structural changes
of the explored solutions are encouraged by squaringN=Niter. If still
no signal is selected, then the signal closest to its tabu status expiration
is chosen (subroutineFind ClosestTabu Expiration in Line 11).

This approach to architecture generation is different from pattern-
matching-based methods [6], [10], [12], where possible structures are
always selected using the fixed set of patterns in a library. A pattern in-
dicates how a group of connected SFG blocks is mapped to electronic
circuits [6]. Therefore, a pattern reflects not only the kind of involved
SFG blocks but also their connection structure. Instead, the proposed
architecture generation technique considers a lower level of granularity.
Conversion rules show how individual SFG blocks are mapped to elec-
tronic circuits; thus, they correspond to the possible building blocks in
an architecture. Rules do not incorporate any information on the con-
nection structure of blocks. Predefined interconnection constraints pro-
hibit the creation of incorrect structures. As a result, the number of con-
version rules is much smaller than the number of patterns in traditional



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 7. Gain distribution algorithm.

Fig. 8. Rules for gain distribution.

methods. Also, conversion rules are application independent as op-
posed to the need to define application-specific patterns (specific to the
block structure of the current design) for the pattern-matching-based
methods. Finally, the proposed formulation of the architecture gener-
ation problem is similar to the bipartitioning problem for which exist
simple and effective algorithms [4]. Pattern-matching algorithms are
much more cumbersome.

The current implementation of the architecture generator allows only
one circuit implementation for one SFG block with known signal types
at its ports. In reality, multiple implementations are possible for a block.
The architecture generation algorithm can be extended to incorporate
this capability. Then, for each SFG block with known signal types, sub-
routineFind BestMoveexplores all possible implementations and se-
lects the one with the best performance. The method also assumes that
any internal signal can be either voltage or current. To address certain
applications such as phase-locked loops, the algorithm can be adapted
to handle signals with a fixed type. RoutineFind BestMovewill avoid
exploring these signals.

V. PARAMETER OPTIMIZATION

The parameter optimization module finds values for the block pa-
rameters such that: 1) the obtained ac behavior is within an acceptable
error margin from the ideal behavior and 2) the overall system area is
minimized. The ideal ac behavior assumes ideal blocks (with infinite
gain, bandwidth, and input impedance and zero output impedance), and
can be found with well-known simulation tools like MATLAB. Using
proper evaluation methods [39], [40], the proposed parameter optimiza-
tion method can be extended to incorporate other important perfor-
mance such as power and noise. Parameter optimization was organized
as a two-step task (gain distribution followed by the actual param-
eter optimization) to address the huge solution spaces characteristic to
analog synthesis [7].

1) Gain Distribution: Fig. 7 presents the gain distribution algo-
rithm for an architecture. The algorithm conducts gain–bandwidth

(BW) and BW-slew rate (SR) tradeoff explorations [23]. Using
equational models, it decides the dc gains for each circuit so that
overall gains on different signal paths are met (as specified in the
aBlox programs), no saturation occurs, and the resulting area is
potentially the smallest. In a fast process, constraints are set for some
of the external resistors and capacitors in an architecture. This reduces
the exploration space by eliminating about 20% of the free variables.

The gain distribution algorithm traverses an architecture, and ex-
haustively tries out possible gain allocations. It first handles the paths
with a higher gain per active circuit because these will impose tighter
constraints on gain distribution. The assigned gains are in the range
[1:0; Go], whereGo is the overall gain of the path the circuit belongs
to. Fig. 8 depicts gain distribution for different structures. For example,
in Fig. 8(a), if the first circuit gets its gain multiplied byx, the next cir-
cuit will have its gain divided byx. Then, op-amp output voltages are
calculated for each gain distribution based on the allocated gains and
the peak values of the input signals. Depending on the used technology,
the algorithm checks that no op-amp saturates. BW requirements are
deduced for each op-amp depending on the architecture structure and
circuit types. Knowing the 3-dB bandwidth for a nonfeedback sequence
of n circuits, the 3-dB bandwidth of a circuit is evaluated as

3-dB frequency
circuit

= 3-dB frequency
overall

� 2 � 1:

This formula captures the cumulative influences of circuits in a se-
quence. It holds if all circuits have the same 3-dB frequency. If an
overall 3-dB bandwidth is imposed for a feedback structure, the algo-
rithm assumes that: 1) the direct path has the same 3-dB bandwidth as
the feedback structure and 2) the feedback path has one decade more.
This assumption avoids the introduction of zeros in the transfer func-
tion so that pole-zero cancellation is needed. However, it overestimates
the areas of the op-amps in the direct paths. This overestimation is
less important for analog designs [40]. Next, minimum op-amp SRs
are evaluated using the previously calculated BWs and output voltages



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 7

Fig. 9. Block and SFG structure of the optimized filter.

(BW–SR tradeoff [23]). Finally, using regression models for op-amps
[7], the circuit area is estimated as a function of gain (Gain), unity-gain
frequency (UGF), and SR.

2) Parameter Optimization for ac Behavior and Area:The second
step sizes the external resistors and capacitors and finds feasible bounds
for op-amp parameters (input and output impedance, open-loop gain,
and dominant pole) so that: 1) the ac behavior of the system at any con-
sidered frequency is within an acceptable relative error from the ideal
behavior and 2) the total area is minimized. Values for the free design
parameters are searched in their feasibility range for CMOS technology
[15]. This step considers the previously set dc gains. The parameter op-
timization module was developed as a TS algorithm, similar to the one
depicted in Fig. 6. Following cost function models the two optimiza-
tion criteria

Cost=
all resistors

resistor area+
all capacitors

capacitor area

+

all op amps

op amp area+ �

all frequency values

error

The term error indicates the amount by which the real ac behavior
differs from the ideal behavior.� is a scaling factor. The ac behavior of
the system output is calculated for each frequency using automatically
produced symbolic models [8]. System stability is checked by verifying
that the phase margin is lower than 60� when the gain value is 1.0 [23].

The main advantage of the two-step parameter optimization tech-
nique is finding good solutions in an acceptable length of time. In con-
trast, a flat optimization needs long optimization times [5] or involves

expensive computing resources [20]. The total silicon area might be
higher for the two-step method than for flat optimization. Silicon area
is, however, less important for analog designs [40]. The two-step ap-
proach is also useful in tackling constraint-satisfying design scenarios,
where performance must be met and not optimized.

A different optimization alternative is to model the system as a set
of analytical equations and inequalities, and to optimize it using exact
techniques such as the steepest descendent method [26]. This is dif-
ficult because symbolic expressions are large, involving around 100
variables. Such large models approach or exceed the capacity of the
optimization tools. Before solving, the symbolic models can be approx-
imated to reduce their sizes. This introduces inaccuracies in the design.
Other difficulties relate to finding local and not global optima, the Hes-
sian matrix may be indefinite or singular, and poor convergence of the
methods [26].

VI. EXPERIMENTAL RESULTS, DISCUSSION, AND LIMITATIONS

The proposed algorithms were implemented in 9500 lines of C/C++
code. Experiments were run on a SUN Sparc5 workstation running at
170 MHz. First, we discussed a real-life inspired case study designed
with the proposed synthesis method. It shows that the methodology
is useful in reducing the designer effort. A second set of experiments
studied the computational aspects of the techniques. Limitations of the
approach are discussed at the end.



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 10. Architectures of filter stages.

A. Experiments and Discussion

1) Case Study:The considered application is the optimized filter
(OF) of the Eartalk system [11]. The top part of Fig. 9 presents the
block structure of the OF. The OF consists of the following parts.

• The low-frequency band filter for transmitting a portion of the
spoken signal (Stage 1in Fig. 9).

• The high-frequency band filter for transmitting a second portion
of the spoken signal (Stage 2in Fig. 9).

• The signal mixing circuitry combines the signals from the two
filters (Stage 3in Fig. 9).

The first step was to simulate in MATLAB the transfer functions of
Stage 1andStage 2, and the entire OF, and collect sample points (for
gain and phase) for the ideal ac behavior at different frequencies. The
second step was to convert the transfer functions ofStage 1andStage
2 into their SFGs in controllable forms [2], [31]. We applied transfor-
mations techniques described by Ogataet al. [31] and Antaoet al. [2].
The bottom part of Fig. 9 depicts the resulting SFG structure for the OF.
Using the observable or ladder forms [2] for the two stages could have
been other possibilities for obtaining different SFG structures. Then,
the SFG in controllable form was used to develop the aBlox descrip-
tion of the OF. This description together with the sampled ac points
constituted the inputs for the high-level synthesis tools.



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 9

Each of the stagesStage 1, Stage 2-1, Stage 2-2, andStage 3was
separately synthesized using the proposed synthesis methodology. As
Stage 1, Stage 2, andStage 3have similar SFG structures, the same kind
of architectures were generated by the architecture generator for each
stage. Fig. 10 depicts some of the automatically created architectures.

After producing each architecture, automated gain distribution was
performed. Parameter optimization ended the high-level synthesis step.
Optimization criteria were that: 1) the error of the real ac behavior is
within 10% from the ideal ac behavior obtained with MATLAB and 2)
the filter area is minimized. Based on the synthesis results, we decided
to useArchitecture 3for Stage 1, as it had the smallest area, and its error
was larger only by an insignificant amount as compared toArchitecture
1, which provided the smallest error from the ideal ac behavior. Solu-
tion Architecture 5was selected forStage 2-1, as it had the smallest
area and its ac output error was small. Finally, solutionArchitecture 1
was chosen forStage 2-2, as it was the only one with a small ac error.
Note that even though the SFG structure of the three stages is identical,
different architectures are the best for each stage.

The next step was circuit synthesis. Op-amp constraints for gain,
dominant pole, input, and output impedance were given as input to a
circuit synthesis tool [5] that decided the topologies and sized the tran-
sistors of the op-amps. The SPICE description of the optimized filter
was given as input to KOAN/ANAGRAM placement and routing tools
[3]. After layout design and parasitic extraction, the circuit was simu-
lated again. Resulting SPICE simulations for ideal (MATLAB), tran-
sistor, and layout level are provided in Fig. 11. Simulations show that
the ac behavior of the OF design including layout parasitics satisfies
the imposed constraints. This happens because the influence of para-
sitic capacitances was negligible for the considered frequency range.

2) Experiments Based On Synthetic Examples:The second set of
experiments observed the following computational aspects of the pro-
posed architecture generation and parameter optimization techniques:
solution-space complexity, variety of explored solutions, memory, and
time overhead. Nine synthetic examples were used. Examples differ by
their number of blocks and signals, number of signal paths, and struc-
tural topology. According to their topology, we categorized systems
into three classes: nonfeedback systems, pure feedback systems, and
mixed nonfeedback/feedback systems. No cyclic signal paths occur in
a nonfeedback system. Such systems are employed for data acquisi-
tion, signal processing [17], and telecommunication [38]. Pure feed-
back systems have only cyclic signal paths. They refer to filters [37]
and control systems [31]. Mixed nonfeedback/feedback systems in-
clude both acyclic and cyclic signal paths. They are used for applica-
tions like analog computers [42].

Table II describes the nine examples and their characteristics. The
first three examples are the nonfeedback systems. Examples tl, tl1, tl2
correspond to the telephone receiver module [38] and two scaled ver-
sions of it. Block descriptions for examples tl1 and tl2 are provided in
Fig. 12(a) and (b). Examples f2s, f3s, f5s, and f5o are second-, third-,
and fifth-order filters. The first three filters are in cascaded form, and
the last one is in observable form [2]. Examples chem and auto are
analog computers for solving differential equations [42]. Fig. 12(c) and
(d) show their descriptions.

Fig. 13 illustrates the variety of architectures produced for the
second-order filter f2s. All implementations were built only with
gain stages, inverting summing amplifiers, integrators, and external
resistors and capacitors. Architectures for the other examples were
generated in a similar way. Fig. 13(a) depicts the SFG representation
of the filter. Fig. 13(b), (c), and (d) present three different architectures
and the corresponding signal types for inferring these architectures.
Note that Fig. 13(d) actually represents the well-known Tow–Thomas
biquad implementation [37]. If a difference circuit were also used,
then the architecture in Fig. 13(c) can be further refined into the

Fig. 11. Transistor and layout level simulation of the optimized filter.

TABLE II
EXAMPLE SET

Kelwin–Huelsman–Newcomb implementation [37]. This example
shows that distinct implementations result for a system by exploring
for possible signal types (voltages or currents) and circuit kinds for
realizing the operations in an SFG. No pattern libraries are required.

Table III offers experimental results for architecture generation
and gain distribution. Column 2 indicates the number of different
architectures generated. Columns 3 and 4 describe the convergence of
architecture generation: Column 3 shows the total number of moves
and Column 4 the move where the best solution was encountered.1

Column 5 presents an estimated number of patterns needed in a
pattern-matching-based method to produce the same architectures as
the suggested technique. Columns 6 and 7 express the complexity of
the gain distribution process as the minimum and maximum number
of gain distributions for all architectures of a system. The last column
presents the CPU time for gain distribution alone, as it is much longer
than architecture generation.

The experiments demonstrate that a significant number of architec-
tures can be produced for an SFG specification. This is due to the
many alternatives of implementing the operations in an SFG and to the
many circuit variants for achieving the same operation (such as using
inverting and noninverting summing amplifiers, inverting and nonin-
verting gain stages). Table III shows that the architecture generation
technique tends to produce more architectures for systems including
more gain and summing operations, i.e., examples tl1 and tl2 than for
systems having more integration blocks, i.e., examples f3s and f5s. The
reason is that systems of the first kind allow more alternatives for signal
types as voltages and currents (thus, more architectures) than the latter.
Some of the produced architectures are incorrect because the resulting
signals do not have the same sign as in the input specification. This is
crucial for feedback systems where failing to realize the correct sign

1By best solution we mean the best solution found by the algorithm and not
the optimal solution.



IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 12. Example set.

Fig. 13. Architecture generation for second-order filter.

for a signal path leads to instability. Such incorrect solutions can be
filtered out by the architecture generator. For keeping architecture gen-
eration simple, we decided to shift the filtering task to the parameter op-
timization module. Columns 3 and 4 indicate that the TS-based archi-
tecture generator rapidly converges toward the best solutions. Columns
5 shows that the proposed method saves the considerable effort needed
for setting up the pattern library for pattern-matching-based architec-
ture generation. A limitation of our architecture generation technique
is that it does not perform any restructuring of the SFG representa-
tion. As a consequence, the architecture generator could not produce

for example tl1 the implementation with the minimum op-amp number.
This solution does not correspond to the input SFG. SFG restructuring
can be incorporated into our technique by moving, swapping, and clus-
tering blocks in an SFG.

Results on architecture generation also show that it is hard to decide
a priori what architecture is the best for a system. This decision is pos-
sible only after optimizing parameters of the system architecture and
analyzing the resulting performance attributes. For example, it rarely
happened in our experiments that a solution with a minimum op-amp



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 11

TABLE III
ARCHITECTUREGENERATION AND GAIN DISTRIBUTION ALGORITHMS

number was found the best. Design parameters of such solutions are
more constrained, and, thus, have less opportunities for optimization.

Columns 6 and 7 in Table III explain that gain distribution is a very
complex task due to the many ways of allocating gains to the circuits.
Accordingly, Column 8 shows that high execution times result for gain
distribution. Solution alternatives exponentially grow with the number
of active circuits in an implementation and the number of signal paths
in a system. Thus, it is worthwhile to separate gain distribution from
the rest of the parameter optimization process.

Fig. 14 presents results for the actual parameter optimization task
of a fifth-order low-pass Chebyshev filter with the cutoff frequency
of 100 kHz (example f5s). For the filter architecture with a maximum
number of op-amps, the figure depicts the ideal ac behavior and the
transfer functions at different moves. We decided to present results for
this architecture, as it had the largest solution space (highest number
of free variables) among all architectural alternatives. The filter was
optimized in 1647 moves, and the best solution corresponded to move
number 1587. The optimized response almost overlaps with the ideal
ac behavior.

B. Limitations

The following limitations need to be addressed to extend the appli-
cability of the proposed methodology and algorithms to other types of
continuous-time systems.

• Extend the variety of system architectures: The architecture gen-
erator produces architectures with the same signal flow and pro-
cessing as that in the abstract specification. For filters, the method
creates state-variable architectures (like the KHN filter [37]) and
biquad filters (such as the Tow–Thomas filter [37]). State-vari-
able architectures produce simultaneously multiple outputs (high
pass, low pass, and band pass). They offer independent control
over gain and good-quality factors. However, their total harmonic
distortion and noise characteristics are not very good [37]. Other
structures such as KRC circuits [37] or two op-amp filter stages
are not produced by the method, as they do not directly cor-
respond to the SFG description. A pattern-matching-based ap-
proach can produce such architectures by expressing them as
patterns. For high-performance applications, the designer knowl-
edge and experience is critical in finding the best implementation.
Architecture generation can be also used for producing architec-
tural alternatives for the linear part of some nonlinear systems
like analog-to-digital converters (ADC). We created multiple im-
plementations for the linear part of a second-order sigma–delta
ADC [28]. Modulator architectures resulted by connecting the
linear architectures with a quantizer and a digital-to-analog con-
verter.

• Address different implementation styles: Generating OTA [23]
based implementations is also a possible continuation of this
work. OTAs offer a simple design and an inherent wide band

capacity. To produce OTA-based architectures, the conversion
rules for the architecture generator need to be replaced. Using
the parameter optimization module, we designed a third-order
elliptic filter [33] having its 3-db bandwidth around 12 MHz. We
had to change all modeling aspects such as the OTA models for
gain distribution and feasibility ranges.

• Synthesis of systems with tight electrical interactions: Certain ar-
chitectures (like the winner-takes-it-all circuit in [17]) do not re-
alize their functionality by composition of operations of op-amp-
based circuits. Instead, they rely on the tight interaction of lower
level blocks, such as current sources, and gain stages. To ad-
dress such architectures, the interconnection constraints and cir-
cuit characteristics aspects of the conversion rules (see Table I)
need to be extended. Genetic programming-based techniques are
also a promising approach [19].

• Parameter optimization for systems with tight electrical interac-
tions: Parameter optimization assumes that system performance
can be expressed using circuit parameters (like gain and domi-
nant pole) that are independent of the circuit connections. This
assumption is valid for systems such as filters and converters.
For sigma–delta converters, Medeiroet al. [28] present expres-
sions for signal-to-noise ratio (SNR) and dynamic range (DR) as
functions of integrator dc gains. These expressions can be used
to allocate dc gains such that SNR and DR meet specifications.
Then, the rest of the parameters are optimized to meet constraints
like harmonic distortion and overloading [28]. If tight electrical
interactions characterize a system then a flat optimization has to
be conducted instead. Due to its computational complexity, flat
optimization is reasonable for small/medium-sized circuits.

• Reduced modeling of layout parasitics (including resistive, ca-
pacitive, and inductive parasitics): Improving the modeling of
layout parasitics for system and circuit-level design is considered
to be a timely topic [14]. Current research efforts concentrate on
building models and techniques that predict parasitic values to
accommodate them early in the design process. This will permit
increasing the frequency range of the designs.

• Limited capability to evaluate transient and nonlinear perfor-
mance attributes: Using symbolic modeling for gain and phase
offered fast performance evaluation. However, it restricted the
application domain to linear systems described in the frequency
domain. Using numeric simulators like MATLAB and SPICE
would allow to contemplate transient and nonlinear performance
attributes during high-level synthesis. However, the optimization
process would be cumbersome. Alternatives are to extend sym-
bolic performance model generation to transient and nonlinear
analysis by using piecewise linear modeling or Pade approxima-
tions [13]. Noise evaluation (white noise,1=f noise, etc.) has
to be also considered. Then, other types of applications such as
ADCs and phase-locked loops can be synthesized using the pro-
posed methodology.

VII. CONCLUSION

This paper presents a methodology for high-level synthesis of con-
tinuous-time analog systems from functional HDL specifications. Syn-
thesis results are architectures that consist of op-amps and sized resis-
tors and capacitors such that their ac behavior and total silicon area are
optimized. The proposed methodology is used in conjunction with a
circuit synthesis tool, as bounds for op-amp dc gains, UGFs, input, and
output impedances are found as a byproduct of synthesis.

The paper focuses on architecture generation, one of the main high-
level synthesis tasks. Architecture generation explores distinct archi-
tectures for a system using the TS heuristic. Compared to traditional



IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 14. Parameter optimization for filter examples.

pattern-matching-based methods, the proposed technique is applica-
tion-type independent, and does not require the setup of a large pat-
tern library with hundreds of patterns. The TS exploration is simple
to implement and has short execution times. The paper also discusses
a hierarchical, two-step parameter optimization to optimize the ac be-
havior and area of an architecture. Parameter optimization guides the
exploration loop of architecture generation. A significant number of op-
timized architectures were produced for each experimented example,
including some well-known solutions.

Experiments showed that linear analog systems operating at
low/medium frequencies can be automatically synthesized in a
reasonably long time and with reduced designer effort. Because of
a linear ac performance modeling without any layout parasitics, the
synthesized designs can correctly operate at low/medium frequencies
up to several hundreds of kilohertz.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the anony-
mous reviewers for their very useful comments and suggestions that
have helped improve this paper.

REFERENCES

[1] IEEE Standard VHDL Language Reference Manual (Integrated With
VHDL-AMS Changes), IEEE Std. 1076.1.

[2] B. Antao and A. Brodersen, “ARCHGEN: Automated synthesis of
analog systems,”IEEE Trans. VLSI Syst., vol. 3, pp. 231–244, June
1995.

[3] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, “KOAN/ANAGRAM
II: New tools for device-level analog placement and routing,”IEEE J.
Solid-State Circuits, vol. 26, pp. 330–342, Mar. 1991.

[4] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[5] N. R. Dhanwadaet al., “Hierarchical constraint transformation using
directed interval search for analog system synthesis,” inProc. Design,
Automation and Test Eur. Conf., 1999, pp. 328–335.

[6] A. Doboli and R. Vemuri, “A VHDL-AMS compiler and architecture
generator for behavioral synthesis of analog systems,” inProc. Design,
Automation and Test Eur. Conf., 1999, pp. 338–345.

[7] , “Hierarchical optimization for synthesis of linear analog systems,”
presented at the Int. Symp. Circuits and Systems, 2001.

[8] , “A regularity-based hierarchical symbolic analysis method for
large-scale analog networks,”IEEE Trans. Circuits Syst. II, vol. 48, pp.
1054–1068, 2001.

[9] , “A functional specification notation for co-design of mixed
analog-digital systems,” presented at the Design, Automation and Test
Eur. Conf., 2002.

[10] H. Fino, J. Franca, and A. S. Garcao, “Symbolic signal flow graph
methods in switched-capacitor design,” inSymbolic Analysis Tech-
niques, F. Fernandez, A. Rodriguez-Vazquez, J. Huertas, and G. Gielen,
Eds. New York: IEEE–Wiley, 1997.

[11] J. Franks, C. Sizemore, and D. Dunn, “Ear based hearing protector/com-
munication system,” U.S. Patent 5 426 719, June 20, 1995.

[12] S. Ganesan and R. Vemuri, “Technology mapping and retargeting for
field programmable analog arrays,” inProc. Design, Automation and
Test Eur. Conf., 2000, pp. 58–64.

[13] G. Gielen and R. Rutenbar, “Computer-aided design of analog and
mixed-signal integrated circuits,”Proc. IEEE, vol. 88, pp. 1825–1852,
Dec. 2000.

[14] G. Gielen, “Panel: When will the analog design flow catch up with dig-
ital methodologies,” presented at the Design Automation Conference,
2001.

[15] R. Gregorian and G. Temes,Analog MOS Integrated Circuits for Signal
Processing. New York: Wiley, 1986.

[16] R. K. Henderson, L. Ping, and J. I. Sewell, “Analog integrated filter com-
pilation,” Analog Integr. Circuits Signal Process., vol. 3, pp. 217–218,
1993.

[17] M. Ismail and T. Fiez,Analog VLSI. Signal and Information Pro-
cessing. New York: McGraw-Hill, 1994.

[18] A. Konczykowska and M. Bon, “Structural synthesis and optimization
of analog circuits,” inSymbolic Analysis Techniques, F. Fernandez,
A. Rodriguez-Vazquez, J. Huertas, and G. Gielen, Eds. New York:
IEEE–Wiley, 1997.

[19] J. Kozaet al., “Automated synthesis of analog electrical circuits by
means of genetic programming,”IEEE Trans. Evol. Comput., vol. 1, pp.
109–128, July 1997.

[20] M. Krasnicki, R. Phelps, R. Rutenbar, and L. Carley, “MAELSTROM:
Efficient simulation-based synthesis for custom analog cells,” inProc.
Design Automation Conf., 1999, pp. 945–950.

[21] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS opamp synthesis
by means of a genetic algorithm,” inProc. Design Automation Conf.,
1995, pp. 433–438.

[22] M. Kucic, A. Low, and P. Hasler, “A programmable continuous-time
floating-gate fourier processor,”IEEE Trans. Circuits Syst. II, vol. 48,
pp. 90–99, Jan. 2001.

[23] K. Laker and W. Sansen,Design of Analog Integrated Circuits and Sys-
tems. New York: Mc-Graw Hill, 1994.



IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 13

[24] M. del Mar Hershenson, S. Boyd, and T. Lee, “GPCAD: A tool for
CMOS op-amp synthesis,” inProc. Int. Conf. Computer-Aided Design,
1998, pp. 296–303.

[25] P. Maulik, R. Carley, and R. Rutenbar, “A Mixed-integer nonlinear pro-
gramming approach to analog circuit synthesis,” inProc. Design Au-
tomation Conf., 1992, pp. 698–703.

[26] G. McCormick,Nonlinear Programming. New York: Wiley, 1983.
[27] L. McIlrath, “A low-power analog correlation processor for real-time

camera alignment and motion computation,”IEEE Trans. Circuits Syst.,
vol. 47, pp. 1353–1364, Dec. 2000.

[28] F. Medeiro, A. Perez-Verdu, and A. Rodriguez-Vazquez,Top-Down
Design of High-Performance Sigma-Delta Modulators. Norwell,
MA: Kluwer, 1999.

[29] A. Muralt, P. Zbinden, and G. Moschytz, “CAD tools for synthesis
and layout of SC filters and networks,”Analog Integr. Circuits Signal
Process., vol. 3, pp. 229–242, 1993.

[30] E. Ochotta, R. Rutenbar, and R. Carley, “Synthesis of high-performance
analog circuits in ASTRX/OBLX,”IEEE Trans. Computer-Aided De-
sign, vol. 15, pp. 273–294, Mar. 1996.

[31] K. Ogata,Modern Control Engineering. Englewood Cliffs, NJ: Pren-
tice-Hall, 1990.

[32] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, “Ana-
conda: Simulation-based synthesis of analog circuits via stochastic pat-
tern search,”IEEE Trans. Computer-Aided Design, vol. 19, pp. 703–717,
June 2000.

[33] B. N. Ray, P. P. Chaudhuri, and P. K. Nandi, “Efficient synthesis of OTA
network for linear analog functions,”IEEE Trans. Computer-Aided De-
sign, vol. 21, pp. 517–533, May 2002.

[34] C. Reeves,Modern Heuristic Techniques for Combinatorial Prob-
lems. New York: Wiley, 1993.

[35] E. Sanchez-Sinencio and J. Ramirez-Angulo, “AROMA: An area opti-
mized CAD program for cascade SC filter design,”IEEE Trans. Com-
puter-Aided Design, vol. CAS-14, pp. 296–303, 1985.

[36] R. Stogdill, “Dealing with obsolete parts,”IEEE Des. Test Comput., pp.
17–25, Apr.–June 1999.

[37] K. Su,Analog Filters. London, U.K.: Chapman & Hall, 1996.
[38] J. Trontely, L. Trontelj, and G. Shenton,Analog Digital ASIC De-

sign. New York: McGraw-Hill, 1989.
[39] G. Van Der Paset al., “EsteMate: A tool for automated power and

area estimation in analog top-down design and synthesis,”Proc. IEEE
Custom Integrated Circuits Conf., pp. 139–142, 1997.

[40] G. Van Der Plaset al., “AMGIE—A synthesis environment for CMOS
analog integrated circuits,”IEEE Trans. Computer-Aided Design, vol.
20, pp. 1037–1058, Sept. 2001.

[41] P. Veselinovicet al., “A flexible topology selection program as part of an
analog synthesis system,” presented at the Eur. Design and Test Conf.,
1995.

[42] R. Weyrick,Fundamentals of Analog Computers. Englewood Cliffs,
NJ: Prentice-Hall, 1969.

[43] J. Wu and E. El-Masry, “Design of current-mode linear filters using cou-
pled-biquads,”IEEE Trans. Circuits Syst. II, vol. 45, pp. 1445–1454,
Nov. 1998.


