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Abstract

Unmanned Autonomous Vehicles (UAVs) are emerging
as a breakthrough concept in technology. A main challenge
related to UAV control is devising flexible strategies with
predictable performance in hard-to-predict conditions. This
paper proposes an approach to performance predictive col-
laborative control of UAVs operating in environments with
fixed targets. The paper offers detailed experimental insight
on the quality, scalability and computational complexity of
the proposed method.

1 Introduction

Unmanned Autonomous Vehicles (UAVs) are emerging
as a breakthrough concept for numerous applications in en-
vironment and infrastructure monitoring, defense, manu-
facturing, transportation, and so on [6, 7, 8]. The related
applications involve a functionality (behavior) that mustbe
achieved under strict constraints (e.g., deadlines, precision,
safety, energy resources, etc.) while optimizing costs, like
the value (utility) of the achieved objectives, the time re-
quired to meet the objectives, and the spent energy. In ad-
dition, UAVs must safely operate in hard-to-predict or even
unknown environments and conditions, including moving
obstacles and dynamically emerging threats [16, 13]. This
poses interesting new challenges for the development of de-
cision making (control) systems, which ought to offer op-
timized and reliable response in both predictable and hard-
to-predict conditions.

UAVs sense the environment through a rich set of sensors
and compute a response that is delivered through various ac-
tuators, including those used for moving. UAVs perform a
large set of activities, including the computation of trajec-
tories and identification of the control values for traveling
along a trajectory, signal sampling and processing (includ-

ing image processing), communication with other UAVs as
well as specific activities, such as target detection and han-
dling, and assessment of the results [1, 4, 5, 8].

In many instances, UAVs must operate collaboratively,
so that complex activities can be tackled jointly by a group
of UAVs [6, 7, 8, 12, 23]. The nature of collaboration is
often decided dynamically at run time, depending on the
context-specific situations. For example, an UAV might not
be unable to meet the deadlines set for its tasks due to un-
foreseen overheads, such as the time required to avoid mov-
ing obstacles. In this case, the UAV might inquire neighbor-
ing UAVs whether they can collaborate for jointly perform-
ing the tasks. UAVs with more flexible deadlines might de-
cide to satisfy the request, and participate to collaboration.

An important challenge relates to the need to offer pre-
dictable and reliable operation in hard-to-predict environ-
ments and situations. Traditionally, reactive control has
been thede factosolution for situations that cannot be char-
acterized off-line. Depending on conditions identified on-
line, the controller selects the most suitable response from a
set of predefined strategies. Each response strategy is char-
acterized by specific outcomes and performance, like exe-
cution time, energy consumption, and so on. While certain
“fixed-point” properties can be proven for reactive behav-
ior (like stability and reachability) [12, 18, 19], properties,
which depend on dynamic attributes (e.g., the frequency of
being in a state), are harder to prove unless restrictive func-
tioning conditions are assumed. Thus, important perfor-
mance attributes, i.e. execution time and resource (energy)
consumption, are hard to correctly estimate and guarantee
for reactive control procedures. The alternative to reactive
procedures are off-line static control methods [7, 15]. These
methods work very well if the operation conditions and the
environment are fully known, and hence the UAV behav-
ior is deterministic. The performance of the control meth-
ods can be precisely estimated in this case. However, static
methods have little or no flexibility in adapting to unknown



situations. In conclusion, it is challenging to devise gen-
eral, performance-predictable control strategies for efficient
operation in dynamic conditions.

This paper proposes an approach to devising perfor-
mance predictive methods for collaborative control of UAVs
operating in environments with fixed targets. The control
strategy allocates targets to UAVs and schedules in time the
handling of the targets assigned to the same UAV, so that
the associated deadlines are all met. The second optimiza-
tion criterion is to maximize the flexibility of UAVs in par-
ticipating to collaborative actions in which multiple UAVs
jointly handle the same target. This goal is tackled by com-
puting the slack time margins that can be used by an UAV
in collaborative actions while still meeting the deadlinesof
its assigned tasks. Note that the approach does not select
statically the UAVs, which participate in collaboration as
this would limit their flexibility of operating in unknown
situations. Instead, each UAV decides on-line whether it re-
sponds or not to a request for collaboration depending on
its available slack time at that precise moment. If the slack
time is less than the computed margin then the UAV can
participate without violating the deadlines.

The proposed decision making approach assumes a two-
level control hierarchy: the upper level strategy is a static
procedure which decides the allocation and scheduling of
the fixed targets to individual UAVs. The lower level strat-
egy is reactive, and controls a UAV’s responses to requests
for collaborative activities. The reactive components de-
cides based on inputs from the UAV’s sensors as well as
the slack time constraints allocated to the UAV through the
static decision making process. This paper describes an In-
teger Linear Programming (ILP) based model for assigning
and scheduling the fixed targets to UAVs and computing the
slack time intervals used for collaborative actions. The ILP
model was used the basis for developing an heuristic algo-
rithm for task management. The experimental results for
the heuristics are discussed in the paper.

The paper is organized in six sections. Section two sum-
marizes the related work. Section three defines the ad-
dressed problem, and presents the modeling solution used
for assigning and scheduling tasks to UAVs. Section four
discusses the ILP modeling of the problem, and Section
five offers experimental results. Finally, conclusions areput
forth.

2 Related Work

This section summarizes existing work on decision mak-
ing and control for autonomous systems.

Reynolds [14] proposes the concept of distributed con-
trol through aggregation of interacting actors. The pur-
pose of control is to avoid actor collisions, velocity match-
ing, and flock centering in computer animation. Brogan

and Hodgins [3] present distributed control techniques for
groups with significant dynamics. Similar to the method
by Reynolds, there are only simple interactions between
neighboring individuals. Interactions include communica-
tion, cooperation, and coordination strategies. Individuals
have inertia, which introduces restrictions on the gradients
for position and velocity. Therefore, the computed trajecto-
ries and velocity control rules must not only address colli-
sion avoidance and flocking but also prevent steep changes
in direction and velocity.

Brock and Khatib [2] describe a method for distributed
control through superposition of global and local require-
ments. Global requirements are static (e.g., the starting
and ending points of a trajectory), and are modeled simi-
lar to virtual elastic strips that would span the two points.
Any changes from the trajectory, i.e. to avoid an obsta-
cle, introduces an elastic force that attempts to pull back
the robot to the planned trajectory. Local requirements, like
obstacle avoidance, are expressed through local interactions
by repulsive forces between the obstacles and the moving
robots. Then, the elastic and repulsive forces are used for
velocity tuning and trajectory modification. In addition, the
method relies on global information, e.g., robot priorities,
and global trajectory re-planning to avoid any collisions.
The method by Yamaguchi [23] uses attraction forces to tar-
gets and neighbors, and repulsive forces to obstacles for co-
ordinated pattern formation. The author proves stability of
the control rule, but does not suggest a general method for
finding the local behavior rules for any global requirements.

Leonard and Fiorelli [9] suggest 2D distributed vehicle
control based on artificial potentials and virtual leaders.Ve-
hicles interact following potential fields following a loga-
rithmic law. There is an attraction force to distant neigh-
bors, so that group forming is encouraged, and there are
repulsive forces and velocity matching with the close neigh-
bors. In addition, virtual leaders define an additional local
potential, which aids group formation. Finally, dissipative
forces aim at matching a vehicles velocity to a desired ve-
locity value. Vehicle control is guided by forces defined by
the logarithmic laws of the four potential fields. The authors
also indicate the mathematical rules that lead to certain for-
mations, like equilateral triangle and hexagonal lattice.

Another artificial field based approach is described by
Mamei, Zambonelli, and Leonardi [10]. Distributed con-
trol is based on computational fields (called Co-Fields),
which act as an enabling global infrastructure between mo-
bile agents. Co-fields are dynamic, and are influenced by
moving actors. Actors move along the field waveforms, fol-
lowing either downhill, uphill, or equipotential lines. The
goal of vehicle control is avoiding collisions, forming pre-
defined patterns, and vehicle meeting. The authors indicate
that finding the Co-Fields required for a certain goal is still
an open research problem. The method presented in [16]



combines nonlinear model predictive control with poten-
tial field concept for conflict-free trajectory planning. Other
field based control methods are discussed in [20, 18].

Schouwenaars, Valenti, Feron, How, and Roche [15] dis-
cuss UAV trajectory generation for cooperative missions be-
tween manned and unmanned vehicles. A MILP (mixed
integer linear programming) method is proposed for opti-
mized real-time trajectory planning to avoid obstacles and
threats in a partially known environment. A cooperative
task scheduling method is presented in [6].

Rathbunet al. [13] propose path planning algorithms for
UAV navigation in uncertain environments. The position of
obstructions is known only with a limited accuracy. Tra-
jectories are found using evolutionary algorithms (EA) that
implement the following operators, (i) mutate and propa-
gate, (ii) crossover, (iii) go to goal, and (iv) mutate and
match. The obstacle intersection probability is defined for
both moving and fixed obstacles. As optimization is car-
ried out, more information is gathered about the position of
the obstacles, which improves the accuracy of the probabil-
ity functions. The cost function expresses the goal to reach
the desired target, minimizing the amount of used fuel, and
minimizing the probability of UAV collision with an obsta-
cle. As the position of the obstacles becomes known, tra-
jectories are re-planned such that they maximize the prob-
ability of success, and minimize the change in trajectory
(as compared to the already existing trajectory). Other EA
based approaches are presented in [5, 4].

Trajectory planning based on graph search methods us-
ing A* and D* methods are discussed in [11, 17].

Similar to the technique in [15], the proposed method
uses ILP to find the task scheduling for UAVs. However, it
considers a group of UAVs which can cooperate to meet the
requirements of the application. The described algorithm
finds the optimal path for handling the geographically-
distributed tasks in addition to resource allocation and task
scheduling. Producing flexible solutions is also a novelty of
the proposed method as compared to similar work.

3 Problem Description and Modeling

This section defines the studied problem and presents the
proposed modeling method.

Figure 1 summarizes the UAV behavior scenario. Multi-
ple UAVs must cooperatively tackle targets located in a 3D
environment. Each UAV moves along a non-linear trajec-
tory at a variable speed using a trajectory computing algo-
rithm similar to [22, 21]. UAVs are heterogeneous, and they
might have different dynamic characteristics (e.g., speed
and acceleration). The speed magnitude and speed gradi-
ents are bounded.

Fixed targets are positioned at known locations, and must
be tackled before a predefined time limit. Otherwise, the en-
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Figure 1. Cooperative operation of multiple UAVs

tire mission is considered to be compromised. The group of
UAVs must tackle all fixed targets before their time limit
expires. The flexibility requirement states that the solu-
tion should maximize the chances of completing the mis-
sion in case UAVs experience unexpected conditions that
delay their activities. Fixed obstacles are present in the 3D
environment, and must be avoided by the moving UAVs.

The tackling of targets comprises of the following se-
quence of activities: (i) flying to the target, (ii) detecting
the target (e.g., through different sensors), (iii) handling the
target (such as taking the picture of the target), and (iv) as-
sessing the results of the activity [7, 15]. The three latterac-
tivities have known execution times, but the first step might
take variable durations, depending on the position and flight
characteristics of the UAV. Each UAV can handle multiple
targets.

UAVs can collaboratively handle the same fixed target.
For example, one UAV might detect and handle the target,
and then transmit all the information to another UAV, which
will do the assessment of the results. This scenario is use-
ful considering that UAVs have different capabilities (e.g.,
achievable speed), and resources (such as amounts of fuel).
A slower UAV positioned nearby can do the assessment,
while the more powerful UAV moves towards tackling the
next target. As a trade-off, the collaborative scenario in-
volves communication overhead for information transmis-
sion between the UAVs, and also additional distances to be
traveled (thus, higher fuel consumption) by the UAVs in-
volved in collaboration.

In summary, the addressed problem is as follows. An
algorithm must be developed for tacklingN fixed targets
by M UAVs with known but different characteristics. Each
fixed target must be tackled before its predefined time limit
expires. In addition, the flexibility of tackling new targets
(known only at execution time) must be maximized.

3.1 Collaborative Approach

Figure 2 presents the decision making approach that we
are proposing in this paper for controlling the behavior of
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operation

UAV groups. The approach represents a trade-off between
centralized decision making, which is efficient and offers
predictable performance (e.g., satisfaction of the predefined
deadlines), and decentralized control, which is more scal-
able and flexible in tackling new situations. Centralized de-
cision making is at the level of the entire UAV group, and
decentralized control is at the level of each individual UAV.

The approach uses an off-line, centralized decision mak-
ing step to compute the allocation of fixed targets to each
UAV, and the scheduling in time of the activities related to
the handling of a target. In addition, the centralized step also
calculates the constraints that encompass the collaborative
behavior of each UAV. During operation, each UAV decides
dynamically (after a collaboration request has been formu-
lated) whether it will participate to the collaboration, ornot.
The decision is made depending on its current status and
geographical position so that the deadlines of its allocated
targets are not violated. As collaboration requests are for-
mulated dynamically and cannot be predicted off-line, the
optimization goal is to maximize the chances of an UAV
to participate to collaborations by computing the allocation
and scheduling solution that maximizes the flexibility of an
UAV to participate to collaborations.

Each UAV executes its own decentralized controller,
which implements a reactive behavior expressed through
a Finite State Machine (FSM). The controller decides the
specific actions of an UAV, e.g., pursuing a fixed targets, or
satisfying a request for collaboration. Figure 3 shows the
structure of a simplified reactive controller. In normal oper-
ation mode, the UAV is tackling a fixed target following the
allocation and scheduling decisions of the centralized step.

finished

Request
collaboration

Participate to
collaborative

activities

Tackle fixed
targets

Deadlines not
met

collaboration
Request for

finished

Figure 3. Decentralized controller for UAV oper-
ation

If the controller detects that the deadlines fixed for the target
currently being handled cannot be met, it formulates a re-
quest for collaboration. If the request is granted by another
UAV then the UAV moves on to handling the next assigned
target. If the request is not granted then the UAV might de-
cide to continue with the current activity even though this
results in violating the target’s deadline, or leaving the task
unfinished in order to move on to the next assigned target.

The focus of the paper is on the centralized decision
making algorithm, including target allocation and schedul-
ing, and computing of constraints related to the collabora-
tive actions of the decentralized controller. The next subsec-
tion presents UAV behavior modeling for centralized deci-
sion making.

3.2 Problem Modeling

Figure 4 illustrates the task graph for tacklingN fixed
targets. Each target tackling activity is an independent
thread of tasks consisting of separate tasks for flying, de-
tection, handling, and assignment. Task dependencies ex-
press the required order of performing the tasks. As theN

targets are known, the times for detection, handling, and as-
signment are fixed for a given UAV type. Please note that
these times are different for UAVs with different character-
istics. In contrast, the flight time is not known in advance
because the time required for reaching a target depends on
the computed UAV trajectory. Moreover, the UAV trajec-
tory depends on the position of the fixed target previously
tackled by the UAV, and therefore on the previous decisions
on target allocation and scheduling.

Fixed targets. The task graph includes tasks that can rep-
resent a collaborative behavior between multiple UAVs in
tackling the same fixed target. For example, after the tar-
get was detected by an UAV, the method allows that other
UAVs handle and/or assess the target. These actions are rep-
resented by conditional blocks (the blocks labeled as “same
UAV?” in the figure), which continue with the tasks for
communication and flight, if a different UAV is involved.
The communication time is fixed (as the amount of data to
be transferred is given), but the flight time is variable as it
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Figure 4. Task graphs for target tackling

varies with the position of the UAV entering the collabo-
ration. The flight time includes the total time spent by a
UAV for moving for a new activity as well as the time for
accomplishing that activity. Since the nature of the collab-
orative activity is decided on-line, the actual flight time is
not known during the step of off-line centralized decision
making, and instead the methodology should maximize the
overall capability of a UAV group for collaborative activity.

4 Proposed Algorithm

This section describes the centralized task assignment
and scheduling problem as an Integer Linear Program-
ming (ILP) problem. The model can then be solved using
an existing ILP solver or an heuristic algorithm to obtain the
centralized controller of an UAV group. Figure 4 is used to
explain the ILP expressions. The following equations are
used to build the ILP model:

1. Task start time
The start time of taski is larger than the end time of its

preceding taskj:

ti,start ≥ tj,end (1)

2. Task end time

ti,end = ti,start + x1,i T1 + x2,i T2 + ... + xM,i TM(2)

The end time for executing taski (e.g., detection, handling,
and assessment) is equal to the start time of the task plus

the timeTi required for UAVi (i = 1, ...,M ) to perform the
task. ValuesTi are constants for a set of UAVs. Variablexi

is one, if the the task is performed by UAVi, otherwise it is
zero.

3. Task allocation to UAVs
Each task pertaining to a fixed target must be allocated

to exactly one UAV, which performs the task. For taskk,
this requirement is expressed as follows:

∑

i∈UAV s

xi,k = 1 (3)

4. Task scheduling to UAVs
Each UAV can handle multiple fixed targets, one target

at a time. The set of ILP equations must include relation-
ships that constraint the UAV to execute a single task at a
time. For the tasks pertaining to the same fixed target, these
constraints are implicitly introduced by the equations (1),
which represent the sequencing constraints of the tasks.

For the tasks related to different fixed targets allocated
to the same UAV, the constraint is that the UAV tackles a
new target only after it finished tackling the current target.
Allowing the UAV to intertwine the tackling of the two tar-
gets would result in unnecessary time overhead due to the
extra distance the UAV must travel between the two fixed
target. The overhead obviously affects the optimality of the
scheduling result.

A 0/1 variable zi,j is defined for each pair of fixed
targetsi andj. If both targets are tackled by the same UAV,
then the variable being one indicates that taski is tackled
before taskj, and after taskj, if the variable is zero. This
constraint is captured as follows:

Ti,end ≤ Tj,start zi,j

∑
k∈UAV s xk,i xk,j

+T∞ (2 − zi,j −
∑

k∈UAV s

xk,i xk,j) (4)

Tj,end ≤ Ti,start (1 − zi,j)
∑

k∈UAV s xk,i xk,j

+T∞ (zi,j + 1 −
∑

k∈UAV s

xk,i xk,j) (5)

T∞ is a very large value.

5. UAV flight time to fixed targets
The flight timeTfly to a fixed target depends on the

UAV’s previous position, which results from the fixed target
allocation and scheduling. Target allocation and scheduling
is computed by solving the ILP equation, and the alloca-
tion and scheduling variables are obviously unknown at the
time of setting-up the ILP equations. The proposed solu-
tion is to introduce a 0/1 variablewi,j for each pairi andj

of fixed targets to describe that the same UAV successively
tackles the two targets (one immediately after the other). If
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the variable is one then targeti is handled right beforej.
Otherwise, the variable is zero. In addition, the sameUAV

must tackle both tasks.
The flight time Tfly to a fixed targetj is defined as

follows:

Tj,fly =
∑

∀targeti
wi,j Dist(targeti, targetj)×

(
∑

∀k∈UAV s

xi,k xj,k) (6)

The next constraint expresses that each taski is tackled
by one UAV after the UAV handles exactly one task (with
the exception of the “dummy” start node):

∑

∀targetj

wi,j = 1 (7)

6. UAV collaboration
In collaboration, the identity of the collaborating UAVs

and the nature of the activities involved in collaboration is
not known for centralized decision making, but instead is
decided during UAV operation. The centralized decision
making assigns and schedules tasks so that the flexibility of
collaboration (if needed) is maximized.

As shown in Figure 5, a UAV might decide to collaborate
after each of the activities related to a task, such as the fly,
detect, and handle activities. The flexibility for collabora-
tion depends on the time slack between the end of the cur-
rent activity and the beginning of the next activity, and the
deadline of the target handling for which the collaborative
action is requested. The more overlapping exists between
the slack time and the deadline the more flexibility exists
in collaborating to meet the deadline. If there is no slack
time or no overlapping with the deadline (e.g., the deadline
is before the starting of the slack time, or after the end of
the slack time) then there is no possibility of the UAV to
participate in handling the target.

Figure 6 is used to explain the ILP equations for col-
laboration. For each targetk, we defineSetCk as the set

x
i,end Tj,start

Deadline kDeadline k Tk− Σ
x x

x

T

Figure 6. Flexibility for collaboration

of targets for which the assigned UAVs are candidates for
collaboration.SetCk can be identified statically based on
the geographical proximity of the targets (this information
is known), or can be decided dynamically (at run time) de-
pending on the current slack time of an UAV, hence its flex-
ibility to fly to more distant targets without violating the
deadlines of its assigned targets. In this paper, we have as-
sumed thatSetCk is static.

The flexibility for participating to a collaborative han-
dling of targetk between activitiesi and j (scheduled in
this order) is proportional to the following value:

Fli,j,k = [Activityi,end, Activityj,start]∩

[deadlinek −
∑

Tk, deadlinek] (8)

VariablesActivityi,end andActivityj,start are the end
time of Activity i and the start time of Activityj.
[Activityi,end, Activityj,start] represents the time interval
defined by the two moments,deadlinek is the deadline set
for targetk, and

∑
Tk is the time required to perform all

activities related to targetk, e.g., detect, handle, and assess.
Figure 6 illustrates the definition of the flexibility con-

straint for UAVs collaborating on the handling of targetk.
Targetsi andj are allocated to the UAV. The condition for
collaboration is defined by the following equations:

Ti,end ≤ deadlinek −
∑

Tk (9)

deadlinek ≤ Tj,start (10)

The equation for the flexibility for UAVm is then:

Fli,j,k = xm,ixm,j(1 − xm,k)

(deadlinek − Ti,end)(Tj,start − deadlinek) (11)

The total flexibility of an UAV to participate to collabo-
rative activities is as follows:

Fli,j =
∑

k∈SetCk

Fli,j,k (12)

The overall cost function includes a term to maximize the
flexibility of UAVs participating to collaborative activities.

7. Cost function
The cost function is a weighted sum that express the

goals of (i) minimizing the cumulated penalties for ex-
ceeding the predefined deadlines for the static targets,
(ii) minimizing the total distance traveled by the UAVs, and
(ii) maximizing the flexibility of the solution:



Ex. # Total Best at Total Exec. time
nodes time (#) # (sec.)

SN 1 11 64 23,244 43,244 49
SN 2 14 89 13,664 33,664 37
SN 3 20 164 26,874 46,874 84
SN 4 38 337 9,954 29,954 205
SN 5 50 649 100 20,100 151

Table 1. Optimization for minimum total time

Cost = α ×
∑

∀targetsi
(Ti,end − Ti,deadline)+

β ×
∑

∀UAVk
distancek − γ ×

∑
∀ targets i,j Fli,j

5 Experimental Results

This section presents the experimental results for the pro-
posed algorithms. An heuristic algorithm was developed
for solving the ILP model presented in Section IV. The al-
gorithm is based on Simulated Annealing. It minimizes
the cost function while satisfying all the constraints of the
ILP model. Using an heuristic algorithm instead of an ILP
solver offers two important advantages: it scales better than
solvers for large ILP problems, and it does not have con-
vergence problems, which is important for the reliability of
the method. The algorithm was implemented in C language
and run on a SUN Sparc workstation.

The experimental set-up varied the number of the tar-
gets to be tackled, the number and characteristics of the
UAVs, and the geographical position of the targets. Three
different cost functions were optimized: (i) minimize the to-
tal execution time needed for tackling all targets, (ii) mini-
mize the total distance traveled by the UAVs, and (iii) maxi-
mize the flexibility of the solution for collaboration between
the UAVs. In addition to the quality of the solutions, ex-
periments observed the computational characteristics of the
heuristic algorithms, such as the execution time, the itera-
tion at which the best solution was found, and the total num-
ber of iterations performed by Simulated Annealing. The
scalability of the algorithm with the number of targets was
also observed.

Table I presents the characteristics of the different exper-
iments as well as the results obtained for minimizing the
total time required for tackling all targets. This experiment
was used as a reference for comparing the optimization re-
sults for minimizing the total distance traveled by UAVs and
maximizing the flexibility, respectively. The second column
indicates the number of nodes in the task graphs for target
tackling (similar to Figure 4). The third column presents the
minimum execution time for tackling all targets as found
by the algorithm. Column four shows the iteration number
at which the best solution was found. Column five indi-
cates the total number of iterations performed by Simulated
Annealing, and Column six presents the execution time of
Simulated Annealing. As expected for an heuristic algo-
rithm, the convergence does not increase with the problem

Ex. Min.dist. Min.time Improv. (%)
Total Total Total Total Total Total

distance time distance time distance time
SN 1 56 81 64 70 12.5 13.5
SN 2 89 104 73 91 19.2 12.5
SN 3 200 256 280 164 28.5 35.9
SN 4 586 395 619 337 5.3 14.6
SN 5 601 356 650 349 7.5 1.9

Table 2. Optimization for minimum total distance

Ex. Max. Init. Improv. Total Total
flex. flex. (%) time dist.

SN 1 78 66 15 71 101
SN 2 112 16 85 99 155
SN 3 148 30 79 197 368
SN 4 272 76 72 408 873
SN 5 436 274 37 540 943

Table 3. Optimization for maximum flexibility

size as the total number of iterations depends mainly on the
stochastic dynamics of Simulated Annealing. The execu-
tion time increases with the problem size, however it re-
mains reasonably large even for the larger examples. This
indicates that the algorithm scales fairly well with the size
of the problem. For the two smaller examples, we manually
verified that the found results are optimal.

Table II presents the optimization results for minimiz-
ing the total length traveled by UAVs. Columns two and
three indicate the total distance and the total time resulting
for this cost function. For comparison purposes, Columns
four and five show the total distance and total time found
for the cost function minimizing the total time (also shown
in Table I). Finally, Columns six and seven indicate the
relative improvements in terms of total distance and total
time between the two optimization requirements. Column
six shows that the optimized paths can be 5.3% to 28.5%
shorter than the total paths for solutions optimized for time.
However, the paid penalty is in longer total time, which can
be larger by values between 1.9% to 35.9%.

Table III offers results for resource allocation and
scheduling optimized for flexibility. Column two presents
the maximum flexibility. Column three gives the flexibil-
ity produced by a simple list scheduling algorithm. Column
four shows the relative improvement. For comparison pur-
poses, Columns five and six indicate the total time and total
distance of the solutions optimized for flexibility. The ex-
periments show significant improvement in the flexibility,
between 15% and 85%. However, increased flexibility re-
sults at the penalty of longer times and traveled distances as
compared to the previous two cost functions.

Figure 7 illustrates the nature of the solutions found for
exampleSN 1 and two UAVs. Similar results were ob-
tained also for the larger examples. Time minimizations
always distribute targets to UAVs such that there is an equal
loading of the two UAVs. The loading includes the execu-
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Figure 7. Results for different optimization crite-
ria

tion times of the tasks as well as the distance traveled by the
UAVs. Distance optimizations tends to assign clusters of
neighboring targets to UAVs even though this might result
in unequal loading of the UAVs. Finally, flexibility opti-
mization encourages a scheduling such that the two UAVs
perform as much as possible their assigned task in parallel.

6 Conclusions

Unmanned Autonomous Vehicles (UAVs) are emerging
as a breakthrough concept in technology. A main challenge
related to UAV control is devising flexible strategies with
predictable performance in hard-to-predict conditions. This
paper proposes an approach to performance predictive col-
laborative control of UAVs operating in environments with
fixed targets.

Experimental results show that the proposed algorithm
scales fairly well for large problems, has a reasonably long
execution time, and can significantly improve the quality of
the produced solutions, such as up to 28.5% reductions of
the total path traveled by UAVs and up to 85% improvement
in the flexibility of the solution.

References

[1] J. Borenstein and Y. Koren. Real-time obstacle avoidance
for fast mobile robots.IEEE Transactions on Systems, Man,
and Cybernetics, 19(5):1179–1187, Sept/Oct. 1989.

[2] O. Brock and O. Khatib.Real-Time Obstacle Avoidance and
Motion Coordination in a Multi-Robot Workcell. Proc. of
IEEE International Symposium on Assembly and Task Plan-
ning, 1999, pp. 274–279.

[3] D. Brogan and J. Hodgins. Group behaviors for systems with
significant dynamics.Autonomous Robots, Kluwer(4):135–
153, 1997.

[4] B. Capozzi and J. Vagners.Evolving (Semi) Autonomous
Vehicles. Proc. of AIAA Guidance, Navigation and Control
Conference, 2001.

[5] D. Fogel and L. Fogel.Optimal Routing of Multiple Au-
tonomous Underwater Vehicles through Evolutionary Pro-
gramming. Proc. of Symposium on Autonomous Underwa-
ter Vehicle Technology, 1990, pp.44–47.

[6] A. Gil, K. Passino, and S. Ganapathy. Cooperative task
scheduling for networked uninhabited air vehicles.IEEE
Transactions on Aerospace and Electronic Systems, 2007.

[7] J. How, E. King, and Y. Kuwata.Flight Demonstrations
of Cooperative Control for UAV Teams. AIAA “Unmanned
Unlimited” Technical Conference, Workshop and Exhibit,
2004.

[8] I. Kaminer and O. Yakimenko.Cooperative control of small
UAVs for Naval Applications. 43rd IEEE Conference on
Eecision and Control, 2004.

[9] N. Leonard and E. Fiorelli.Virtual Leaders, Artificial Po-
tentials and Coordinated Control of Groups. Proc. of IEEE
Conference on Decision and Control, 2001, pp. 2968–2973.

[10] M. Mamei, F. Zambonelli, and L. Leonardi.Distributed
Motion Coordination with Co-Fields: a Case Study in Ur-
ban Traffic Management. Proc. International Symposium on
Autonomous Decentralized Systems, 2003.

[11] J. Mitchell and D. Keirsey.Planning Strategic Paths through
Variable Terrain Data. Proc. of SPIE Conference on Appli-
cations of Artificial Intelligence, 1984, Vol. 4, pp. 172-179.

[12] B. Moore and K. Passino. Decentralized redistributionfor
cooperative patrol.International Journal on Nonlinear and
Robust Control, 2007.

[13] D. Rathbun and B. Capozzi.Evolutionary Approaches to
Path Planning Through Uncertain Environments. Proc. of
American Institute of Aeronautics and Astronautics, 2002.

[14] C. Reynolds. Flocks, herds and schools: A distributed be-
havioral model.Computer Graphics, 21(4):25–43, 1987.

[15] T. Schouwenaars, M. Valenti, E. Feron, and J. How.
Linear programming and language processing for
human/unmanned-aerial-vehicle team missions.Jour-
nal of Guidance, Control, and Dynamics, 29(2):303–313,
March-April 2006.

[16] D. Shim, H. Chung, H. Kim, and S. Sastry.Autonomous Ex-
ploration in Unknown Urban Environments for Unmanned
Aerial Vehicles. Proc. of AIAA GN & C Conference, 2005.

[17] A. Stentz.Optimal and Efficient Path Planning for Partially-
Known Environemnts. Proc. of International Conference on
Robotics and Automation, 1994, Vol. 4, pp. 3310-3317.

[18] H. Tanner, A. Jadbabaie, and G. Pappas.Stable Flocking
of Mobile Agents, Part I: Fixed Topology. Proc. of IEEE
Conference on Decision and Control, 2003, pp. 2010-2015.

[19] H. Tanner, A. Jadbabaie, and G. Pappas.Stable Flocking of
Mobile Agents, Part I: Dynamic Topology. Proc. of IEEE
Conference on Decision and Control, 2003, pp. 2016-2021.

[20] H. Van Dyke Parunak, S. Brueckner, and J. Sauter.Digi-
tal Pheromone Mechanisms for Coordination of Unmanned
Vehicles. AAMAS, 2002.

[21] O. Yakimenko. Direct method for rapid prototyping of near-
optimal aircraft trajectories. AIAA Journal of Guidance,
Control, and Dynamics, 23(5):865–875, 2000.

[22] O. Yakimenko and V. Dobrokhodov.Airplane trajectory
control at the stage of rendezvous with maveuvering boject
algorithms syntheses. IEEE, 1998.

[23] H. Yamaguchi. A distributed motion coordination strat-
egy for multiple nonholonomic mobile robots in coopera-
tive hunting operations.Robotics and Autonomous Systems,
Elsevier:257–282, 2003.


