
A Continuous Time Markov Decision Process based
On-Chip Buffer Allocation Methodology

S. Kallakuri,N. Thepayasuwan, A. Doboli
ECE Department

Stony Brook University
Stony Brook , NY 11794

contact email: elsanky@ece.sunysb.edu

E. A. Feinberg
AMS Department

Stony Brook University
Stony Brook , NY 11794

email: Eugene.Feinberg@stonybrook.edu

ABSTRACT
We have presented an optimal on-chip buffer allocation and
buffer insertion methodology which uses stochastic models of
the architecture. This methodology uses finite buffer space
and presents a method to distribute this finite space in an
optimal fashion. Such a methodology is useful in managing
the scarce buffer resources available on chip as compared
to network based data communication which can have large
buffer space. The methodology also uses Continuous Time
Markov Decision Processes CTMDPs. The modeling of this
problem in terms of a CTMDP framework lead to a nonlin-
ear formulation due to usage of bridges in the bus architec-
ture. We present a methodology to split the problem into
several smaller, though linear systems and we then solve
these subsystems.

1. INTRODUCTION
We have applied CTMDP (Continuous Time Markov De-

cision Processes) to optimise the buffer space used in SoC
architectures. This involves using continuous time queueing
models for the architectures. The use of such continuous
time stochastic models is necessary due to the continuous
time nature of tasks when they are executed on the IP cores
and the shift from RTL level design to system level design.
A finite amount of buffer space has to be distributed among
a set of processors talking to a bus and the continuous time
modeling allows incorporating how long certain amounts of
buffer space have to be allotted as well as how much of the
space should be allotted to processor. The division of the
finite buffer space by certain stochastic policies generated
through the CTMDP based solutions [2] could lead to an op-
timal division of the buffer resources. We found this optimal
distribution of buffer space different from simple division of
the space depending on traffic ratios.

While attempting to solve the buffer sizing problem we en-
countered a problem when there were bridges between buses.
A typical example of such an architecture has been shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’05, April 17–19, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

in Figure 1 where buses b,f and g talk to each other apart
from processors. The architectures in which two buses are
connected by a bridge which is a typical example in the
AMBA and CoreConnect systems. For such a scenario with
bridges the model developed for CTMDPs was nonlinear
and the system of quadratic equations were not solvable for
a test example shown in Figure 1. We solved this problem
by splitting the system to smaller subsystems and solving
linear equations obtained from CTMDP based methods for
the subsystems.

In stochastic control methods probabilities are defined
over the states of the system as well as the possible actions
that can be taken in these states [7]. In general policies
implemented have actions which could depend on a history
of states and actions [2]. We have attempted to use similar
stochastic modeling for optimal buffer sizing as well as dis-
tribution of the finite buffer space. he novelty of our method
is an optimal buffer sizing scheme which isn’t available with
the other on chip communication system design methods as
well as the modeling of bridges and insertion of buffers in
order to allow communication without loss through them.
The use of CTMDPs in general and the Kswitching policy
[2] in particular to get optimal buffer allocation as well as the
buffer insertion for bridges to split the communication sys-
tem into linear subsystems are the novel ideas presented in
this paper. The design of communications architectures has
been dealt with in [6] and [5],in which, the bus architectures
have been designed but the insertion and sizing of buffers has
not been attempted. Once the bus architecture is obtained
it is possible to know where these buffers will be inserted
into the bus architecture. Tuning of on chip resources in
[4] has also encompassed the idea of managing buffer space
among other on-chip resources. The buffer management is
based on deadlines of tasks whereas we are concentrating on
the optimal distribution of a finite amount of buffer space
rather than analysing the buffer requirements to meet hard
timing requirements or loss based QoS requirements. The
experiments that we have conducted have observed the ef-
fect of varying constraints on total on-chip buffer size on
this distribution methodology.

The effect of packet drops and communication faults on
latency requirements and energy dissipation has been stud-
ied by [1]. These methods were developed for tile based
SoC which have a dedicated FIFO channel between any two
neighbouring IP cores that communicate. The use of con-
tinuous time modeling has been exploited in these methods
and CTMDPs have been used for the optimisation of the

policies for transmitting packets. One of the methods for
reducing buffer size based on data shaping was developed
by Taylor et al [8]. This methodology called Orbit, exploits
the varying information content in video frames and selects
a few important frames which could be used to reconstruct
the video stream rather than decoding the entire output of
the video encoder thus allowing some reduction in buffer
size.

The paper is organised in the following manner. The sec-
ond section is a discussion of the modeling and the formu-
lation of the CTMDP . The third section is an explanation
of how we tackled bridges by inserting buffers. The fourth
section is a set of experiments and discussion of the results
followed by the conclusion in section five.

2. MATHEMATICAL MODELING OF THE
COMMUNICATION SYSTEM

For convenience in comprehension of the following equa-
tions we present the definition of a CTMDP. As per [3] a
continuous-time Markov Decision Process can be defined by
a set {I,A,A(.),q,K,r} where I is a finite state space;A is a
finite action set;A(i) is a set of actions available at state i ∈
I ; q(i,j,a) is a transition rate from state i ∈ I to state j ∈
J, if an action a ∈ A(i) is selected ,where q(i,j,a) ≥ 0 for i
�= j and

P
j∈I q(i, j, a) = 0 for all i ∈ I , K =0,1.... is the

number of criteria; rk(i, a) is a reward rate for criterion k
=0,..,K, if an action a is selected in a state i.

The manner in which we have formulated the optimal
buffer sizing problem in a CTMDP framework is as follows.
The state of the system is given by a set of processors for
every bus in the system. Thus an action would be to give
a certain processor control over the bus. The rates q(i,a)
are the request rates of the processors and the rates q(i,j,a)
are the rates of a certain processor i giving up a bus a for
another processor j. The rewards associated with each state
action pair are the loss rates obtained from presimulation of
the queueing model with a certain arbitration policy.

We are using LP based methods for solving the CTMDP
and this involves setting up the following sets of equations.
The equations can be split into 5 categories equality con-
straints, inequality constraints, cost function, lower bounds
and upper bounds. The constraints in this set of equations
physically relate to the finite buffer space available for a bus
and the optimal distribution of this space as well as insertion
of extra buffer space would be obtained from the solution of
this LP. The solution would essentially be state action pair
probabilities which could then be translated into meaning-
ful physical quantities; in our case for this paper it would be
buffer space. The rewards ro(i, a) are infact costs and are
basically the average loss rates obtained from the simulation
of the architecture with constant amount of buffer space al-
lotted to every processor bus pair. The traffic rates q(i,j,a)
and q(i,a) were obtained from the simulation too. The ar-
rival rates used in the simulation were obtained from the
core graph in [6] and the service rates were related to the
bus bandwidth. The inequality constraints on the system
are used to ensure the used buffer space is less than certain
fixed quantity the coefficients rk(i, a) are the average queue
lengths encountered in the preliminary simulation .

The different actions will be associated with different re-
ward rates due to the different rates available to the Markov
chain when a separate action is chosen . These rewards as
well as the transitions rates with constraints obtained from

the first simulation run will be given to a set of equations
shown below [2]. The reward function is made up of the
possible expected rewards that can be obtained by choosing
an action as well as the rewards that are earned while in
that particular state. The constraints are on the time spent
by requests in the queues and the queue lengths that will
occur while the buses serve the processors.

maximize
X

i∈I

X

a∈A(i)

ro(i, a)xi,a (1)

The rewards in this case are the loss rates obtained from
initial simulation of the arbitration policy on the queue-
ing model of the architecture. These quantities are actually
costs hence we assign negative values to them and then try
to maximise the total expected reward [3].

S.T
X

a∈A(j)

q(j, a)xj,a−
X

i∈I

X

a∈A(i)

q(i, j, a)xi,a = 0, j ∈ I, (2)

The set of LP equations has a set of equality constraints de-
rived from the steady state equations of the Markov chains
and a concept called uniformisation which is a method to re-
duce the continuous time Markov process to a discrete time
Markov process which is equivalent to the continuous time
process in terms of the rewards or reward rates associated
with the states as explained in [3] [2].

X

i∈I

X

a∈A(i)

rk(i, a)xi,a ≤ Ck, k = 1, ..., K, (3)

There is also a set of inequality constraints as shown below,
its coefficients are obtained from the simulations exploration
loop and bounds on the space the LP can find a solution in.

X

i∈I

X

a∈A(i)

xi,a = 1, (4)

xi,a ≥ 0, i ∈ I, a ∈ A(i), (5)

The output of the LP is a set of state action pair prob-
abilities which are the long run probabilities of choosing a
certain action given that the system is in a particular state.

The probabilities obtained from the LP can be converted
to lengths of space using Kswitching policy [2] over which
the system will perform a particular action while in a partic-
ular state. Thus the processors will get alloted the lengths of
buffer space which depend upon the state action pair prob-
abilities i.e which bus it is talking to. After fixing a certain
ordering of the actions, the policy will cycle through the
whole set actions.

snl(i, x) =
ln(1 − q(i, a(i, l))xi,a(i,l)

Pn(i,x)
m=l q(i, a(i, m))xi,a(i,m))

(6)

sl(i, x) = − snl(i, x)

q(i, a(i, l))
(7)

ψ(i, t) = a(i, l), ifAx(i) �= andSl−1(i, x) ≤ t < Sl(i, x)

a, where a is an arbitrary element ofA(i)ifAx(i) = φ

In our system this would mean that the buffer space will
get divided into certain ratio in proportion with the prob-
abilities which are given from the LP. The above equation
signifies that between the epochs Sl−1(i, x) and Sl(i, x) the
system will always choose action a(i,l) given it is in state i.
The Kswitching strategy hence will have the same average

rewards as the randomised stochastic policy. The reason
for using a Kswitching strategy is that LP may return a
deterministic stochastic policy which isn’t optimal and in
case the LP can return only deterministic policies then it is
an NP hard problem to find an optimal policy among the
deterministic policies. In other words a stationary optimal
policy may not exist for a certain problem as in our case to
have a constant division of the buffer space is not the best
policy. In such cases the task of finding the best sub opti-
mal policy is an NP hard problem. In order to avoid solving
this problem we use Kswitching policy which is a piecewise
linear approach towards solving this problem and does give
us the best sub optimal policy. To get more insight into this
problem we would recommend reading [2].

3. BUFFER INSERTION AND SPLITTING
OF COMMUNICATION SYSTEM

In Figure 1 the architecture has buses that are connected
only to processors like bus a, as well as buses b,f and g which
are connected to other buses too. Thus communication be-
tween processors 2,3 and 5 will involve insertion of buffers
and will require the controller to take into account traffic
from all three processors while making arbitration decisions
for any of these three buses. One of the problems with de-
signing such an arbiter is that it would require equations
which would be quadratic in nature due to the interaction
between two buses. In case the buses talk to each other
through bridges the equality constraints and the cost func-
tion have quadratic terms. The number of quadratic terms
depend on how many points in the bus topology are there
in which buses are connected to each other and an equation
may have more than one quadratic term. An attempt was
made to solve the nonlinear equations by using the nonlin-
ear solver from Matlab ver. 6.1. but we were not able to get
solutions for them.

Example :In order to illustrate what kind of equations
would exist in case the buses talk to buses we present below
examples of the equations for the bus b in the architecture
in Figure 1.

The equations for bus b in architecture 1 are:
Maximise

r2,bx2,b + r3,bx3,b (8)

Equality Constraints
q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b (9)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b (10)

The equations for bus b in architecture 2 which have
quadratic terms are:

Maximise

r2,bx2,b + r3,bx3,b + r5,fx5,fx5,b + r5,fx5,gx5,b (11)

Equality Constraints

q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b + q5,2,bx5,fx5,b

+q5,2,bx5,gx5,b (12)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b + q5,3,bx5,fx5,b

+q5,3,bx5,gx5,b (13)

The solution we propose for this problem is to split the bus
architecture into a set of linear systems which are separated
from each other by buffers and solve a set of equations for

f

g

Buffers inserted

Buffers inserted

1 2

3

b1

b4

a

b

c

e

b3

b2

5

4

d

Figure 1: Bus Architecture splitting and buffer in-
sertion

buffers

(1)

1 2

3

b1

b4

a

e

b

c

d

b

b
4

(2)

b1 b2
f

g

(3)

f

g

(4)

b3

b2

b3b4

5

Figure 2: Subsystem 1

each one of the independent linear modules. The fashion in
which the system could be split is as shown in Figure 1and
2. In order to find the optima for the entire system all the
equations shall be solved in one go and not sequentially for
each subsystem. In Figure 2 for subsystem 1 initially the
buses b,f and g were communicating but after the split bus
b becomes a shared resource between buffer b1, buffer b2,
and processors 2 and 3 isolating it from buses f and g thus
enabling us to write a set of linear equations for it.

Maximise

r2,bx2,b + r3,bx3,b + rb1,bxb1,b + rb4,bxb4,b (14)

Equality Constraints
q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b + qb1,2,bxb1,b

+qb4,2,bxb4,b (15)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b + qb1,3,bxb1,b

+qb4,3,bxb4,b (16)

qb1,bxb1,b = qb1,b1,bxb1,b + q2,b1,bx2,b + q3,b1,bx3,b

+qb4,b1,bxb4,b (17)

This set of equations is for bus b in figure 2. In this set of
equations bus b is a shared resource between the two pro-
cessors Proc. 2 and Proc. 3 as well as two buffers b1 and
b4. The state of the system is actually given by a bus and
processor pair but since we are writing equations only for
bus b we use only the processor using bus b as the state
of the system. On solving the CTMDP for this system of
equations and translating the state action pair probabilities
into buffer space requirements by using the Kswitching pol-
icy for a certain processor bus pair the system is resimulated
with the new buffer lengths and the losses are compared.

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

LOSS

PROCESSORS

Figure 3: Loss rates before and after sizing

4. EXPERIMENTS
The experiments used a network processor as a test archi-

tecture for the buffer insertion and buffer space distribution.
The network processors bus architecture was obtained from
[6]. It provides opportunity to explore the different scenarios
of buses talking to other buses as well as buses that talk only
to processors and do not need explicit insertion of buffers.
The bridges are essentially connections between buses and
would need buffers to be inserted apart from all buses which
would have buffers to handle the traffic coming in from the
processors. We initially deviced a queueing model for the
architecture and initialised with with the appropriate dis-
tributions for arrival rates obtained from [6]. The different
policies were then simulated on the model to observe the
loss that occurred from the resultant distribution of buffer
space. The Kswitching policy provides thresholds for the
buffer space based on the state action pair probabilities ob-
tained from the LP. These thresholds are encoded into a
buffer space controller as shown below.

Buffer Space Controller
Initialise

for: every processor i
for: every bus j talking to procesor i

.set threshold buffer space
end

end
While(true)

for: every processor i
for: every bus j talking to procesor i

.check for requests}
if: space is available

.service the request
end

.update buffer space usage
end

end
if: traffic pattern changes

.break and

.reinitialise thresholds
end

end

In Figure 3 we have plotted the loss rates at the processors
before and after the buffer sizing as the first and second bars
of Figure 3. We found that though the loss rates decrease
drastically for some processors for example processor 16 in
Figure 3 they increase slightly for some processors for ex-
ample processor 1 in case of the the 160 units case as shown
in Table 1. The third bar in Figure 3 are the loss rates for
a timeout based policy, in which the processors request is
not served if the data in the buffer timeout i.e. reaches a
threshold time. The threshold time chosen was the average
time spent by a request in a buffer. We repeated these ex-
periments for 10 iterations and found that though the loss
may increase for some processors if the total buffer space is

Table 1: Loss under varying total buffer size
PROCESSOR Buf 160 Buf 320 Buf 640

pre post pre post pre post
1 70 83 41 40 48 0
4 80 100 78 55 74 0
15 107 90 99 12 88 0
16 96 82 84 0 93 0

a very tight bound on the LP, the overall loss of the sys-
tem decreases by atleast 20% as compared to the constant
buffer sizing policy and 50% for the timeout policy. This
was true for the case with 160 buffer units where the bound
was tight and the loss increased in some processors after the
redistribution but the overall loss reduced ,which was our
goal. We feel the difference before and after resizing could
be improved with better profiling and weighing of the loss
at processors i.e. allowing some losses to be more important
than the others.

In Table 1 we present the variation in the loss rates before
and after sizing the buffers. We have presented the results
only for a few processors which show significant variation but
a similar trend was observed for the rest of the processors.
We observed that some processors loss rates may increase
when the buffer space is very limited as in the 160 units case
and the redistribution does not provide much improvement
as discussed in the previous paragraph. We increased the
total buffer space from 160 to 320 and 640. The loss rates
after resizing decreased with the increase in buffer space and
fell to zero for the total buffer space of 640 units.

5. CONCLUSION
We have presented a methodology to efficiently distribute

buffer space by using CTMDPs and stochastic models of
the architecture. The use of CTMDP based methods gives
us the optimal redistribution of the finite amount of buffer
space so that loss is minimised, as seen in the experiments.
The use of buffers for bridges can lead to efficient communi-
cation between two buses and buses can talk through them
with reduced or no loss to other buses used by a different
set of processors.

6. REFERENCES
[1] T. Dumitras, S. Kerner, and R. Marculescu. Towards on-chip

fault-tolerant communication. Proc. of ASPDAC), pages
225–232, 2003.

[2] E. Feinberg. Optimal control of average reward constrained
continuous time finite markov decision processes. Proceedings of
the IEEE Conference on Decision and Control, pages
3805–3810, 2002.

[3] E. Feinberg and A. Shwartz. Handbook of Markov Decision
Processes methods and applications. Kluwer, 2002.

[4] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of
the soc communication architecture design space. Proc. of
ICCAD, pages 424–430, 2000.

[5] K. Lahiri, A. Raghunathan, and G. Lakshminarayana.
Lotterybus: A new high-performance communication
architecture for systems-on-chip designs. Proc. of ICCAD, pages
424–430, 2000.

[6] A. N.Thepayasuwan, V.Damle. Bus architecture synthesis for
hardware-software co-design of deep submicron systems on chip.
Proc. of ICCD, pages 126–133, 2003.

[7] Q.Qiu, Q.Wu, and M.Pedram. Dynamic power management of
complex systems using generalised stochastic petri nets. Proc. of
the 37th Design Automation Conference, pages 108–119, 2000.

[8] C. Taylor and S. Dey. Orbit: An adaptive data shaping
technique for robust wireless video clip communication. Proc. of
Asilomar Conference on Signals,Systems and Computers,
pages 3081–3085, 2003.

