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ABSTRACT 
This paper presents a method for dynamic adaptation of sensor node 
architectures to improve the scalability of a sensor network. The 
method aids producing control algorithms for on-line adaptation, so 
that the node’s architecture effectively addresses continuously 
changing operation conditions, like variable data rates and changing 
latency constraints. To illustrate the method, we discuss a case study 
for a camera based smart sensor node.  

 

1. INTRODUCTION  
Wireless sensor networks are receiving an increasing amount of 
attention from researchers in universities, government and 
industry because of their promise to become a revolutionary 
technology [Estrin,2002; Jones,2001; Kahn,2000]. Besides 
capabilities specific to any computer network, like connectivity, 
ubiquity, and trustworthiness, sensor networks require the 
“ intelligence”  for scalable, autonomic, and evolvable behavior. 
Scalability is the quality of a network to optimally address 
(during execution) the dynamics of operation conditions, 
including variable input data rates and continuously changing 
performance requirements. Scalability originates new research 
problems, as the static concept of optimizing the 
implementation must be replaced by the more flexible notion of 
adapting the implementation.  
 

Traditionally, system implementations are optimized for the 
worst-case operation scenario described by fixed attributes and 
performance needs. For sensor networks, this design paradigm 
is quite unsatisfactory, given the scarcity of resources and the 
difficulty to re-optimize a deployed sensor node for new 
requirements. Instead, the system must continuously monitor 
the functioning conditions, and correspondingly react by 
modifying the sensor node architectures through adding or 
removing of hardware resources. The algorithm controlling 
architectural adaptation is embedded either in the middleware 
of each sensor node, or realized in hardware for having higher 
speed or lower energy consumption.          
  

This paper proposes a methodology for dynamic adaptation of 
sensor node architectures to improve the scalability of sensor 
networks. The method aids designing control algorithms for on-
line adaptation, so that node architectures effectively address 
continuously changing operation conditions, like input data of 
modifying sizes or latency constraints of variable lengths. 
Adaptation is obtained through architectural reconfiguration by 
adding or removing hardware resources.  
 

We focus on a specific application type, in which the 
switching between operation modes is accurately modeled 
by a chain of transitions. We present an original technique 
for finding reconfiguration conditions. To illustrate the 
method, we discuss a case study for a camera based sensor 
node. We show that architecture adaptation is capable of 
employing the minimal set of resources needed for a task, 
thus reducing the energy consumption of a node.  

The paper is organized in five sections. Section 2 describes 
the problem, and Section 3 presents the proposed design 
methodology. Section 4 discusses the case study, and 
finally conclusions are offered  
 
2. PROBLEM DESCRIPTION 
Reconfiguration is an important way in developing autono-
mic, evolvable and scalable behavior to a sensor network. 
We identified two kinds of reconfiguration, functional 
reconfiguration and architectural reconfiguration. 

• Functional reconfiguration implies the modification 
of a node's connectivity to neighbors or of the 
algorithms locally executed by a node, like 
algorithms for data processing, profiling, and 
identification.  

• Architectural reconfiguration involves adaptation of 
the sensor node architecture to changing condition of 
operation, such as varying data rates and energy 
levels, new real-time constraints, and so on. 
Hardware resources are dynamically allocated 
(through reconfiguration) to the execution threads to 
meet new performance requirements.  

In this paper, we focus on architectural reconfiguration.  

Architectural reconfiguration is needed for adapting the 
architecture of a sensor node to the changing conditions of 
operation, like variable amounts of input data, decreasing 
energy levels, modifying latency constraints, different 
quality of service needs, and so on. For example, for the 
camera based smart sensor discussed in Section 4, the 
image processing algorithm might have to process images 
of different sizes. Also, as the energy level goes down, the 
processing will be conducted at slower clock frequencies in 
order to reduce power consumption. The architecture 
parallelism will have to be increased for meeting the 
desired latency constraint.  
 



In general, from the application point of view, varying 
operation conditions cause the change of task execution 
times, data communication quantity and communication time 
between tasks, and memory requirements. For example, if 
input data rates change dynamically then the overall latency 
for the application has to be also permanently modified. This 
could happen, if suddenly events of interest occur for the 
camera based smart sensor node [Brooks,2003]. Photos will 
have to be taken at higher rates. A naive design solution 
would dimension the architecture for the worst-case scenario, 
such as the highest rate at which pictures are taken. This 
solution will keep many resources unused, which obviously 
will unnecessarily consume energy. Energy consumption is a 
significant problem, as the node energy is difficult to 
replenish [Jones, 2001; Kahn, 2000]. 
 

To optimally address the dynamic characteristics of an 
application, the sensor architecture will have to continuously 
adapt to the new attributes. Resources will be added or 
removed from the individual task depending on the task 
attributes' variations and the criticality of tasks. After usage, 
hardware resources are allocated to other tasks, so that the 
amount of unused resources remains low. This is important 
considering that sensor nodes tend to have scarce amounts of 
resources (including energy). From design point of view, this 
type of reconfiguration poses two interesting questions: (1) 
finding the conditions that trigger resource re-allocation to 
tasks, and (2) identifying the actual amount of resources 
assigned to each task.  
 

We have to stress that architectural reconfiguration is quite 
different from reconfigurable computing [Borgatti,2003]. 
Reconfigurable computing involves static, off-line synthesis 
and optimization, whereas architectural reconfiguration 
involves synthesis for dynamic operating conditions. In 
reconfigurable computing, the attributes of the application 
(like task execution times and latency requirements) are 
static. Synthesis customizes the architecture for the static 
attributes of the application. In contrast, architectural 
reconfiguration involves continuous adaptation of the 
architecture through adding or removing of resources to 
address the varying conditions of operations. Adaptation is 
on-line, thus the amount of architectural modification has to 
be minimal across contiguous conditions of operations.  

3. DESIGN METHODOLOGY 
We suggest an architectural reconfiguration approach, in 
which each task has allocated a static set of resources and a 
dynamic set of resources. In this section, we present the 
application characteristics and the specifics of the sensor 
node architecture, and enumerate the steps that compose the 
design flow for architectural reconfiguration.  
 

During operation, there is a gradual modification of the 
sensor network behavior (thus of the sensor nodes also), 

when an event of interest happens. For example, the 
sensors that detect the vehicle will start collecting images 
at a continuously higher pace. Once the event disappeared, 
images will be collected at lower rates. Hence, sensor 
nodes transit from operation modes for the lower data 
acquisition rates to the operation modes for higher rates, 
and then back to those with lower rates. This behavior can 
be modeled as a chain of transitions.  

 
 

Figure 1: Design flow for architectural reconfiguration 
 

We consider that the total amount of resources is given. 
Figure 1 shows the hardware-software co-design flow for 
architectural reconfiguration. The flow first decides the 
static set of resources assigned to each task. For this, it 
uses the most optimistic set of task attributes, such as the 
shortest execution time for each task or the longest latency 
constraint. Then, using traditional partitioning and 
scheduling techniques (e.g., the one in [Doboli,2001]), 
tasks are mapped and scheduled on the allocated resources.  
 

Next, keeping the resource set unchanged, as well as the 
mapping and scheduling of tasks and communications, the 
design flow identifies the maximum amount of attribute 
variations (in our case execution time variations) that are 
tolerable without exceeding the required performance, like 
latency. At the end of this step, reconfiguration conditions 
are identified that will keep the resource set unmodified as 
long as these conditions are not violated. Whenever 
conditions are not met, an event is generated, so that the 
operation mode of the architecture is modified. Then, for 
the next set of resources in the sequence, starting from the 
more critical paths, resources are added (or deleted) to 
tasks, so that the increased (decreased) task execution 
times can be accommodated without exceeding the fixed 
latency. The resources contemplated at this step define the 
dynamic resource set to be shared across tasks. The 
algorithm will first tackle the critical paths. This process 
continues until all operation and performance conditions 
are fully addressed.  
 



The discussion of the design methodology concludes that, 
besides traditional partitioning and scheduling algorithms, the 
synthesis flow ought to include algorithms for calculating the 
conditions that will trigger modification of the current set of 
architectural resources, as well as a procedure for finding the 
dynamic set of resources for each task. 
 

To tackle the problem of identifying the conditions that 
control architectural reconfigurations, we started by (i) 
finding closed-formed symbolic expressions for the system 
performance requirements, followed by (ii) using the 
symbolic expressions and interval operators in searching for 
the task execution time intervals that still meet the latency 
performance needs. If we limit ourselves to conditions that 
are relations, like thresholdL ≤ execution time ≤ thresholdR, 
then the problem of identifying the reconfiguration condition 
is equivalent to finding ranges [thresholdL, thresholdR] for 
task execution times that still satisfy the fixed latency 
requirement. This originates an interesting theoretical 
problem, not tackled - to the best of our knowledge - by the 
interval arithmetic community [Stolfi,1997]. Typically, 
interval arithmetic copes with the dual of our problem: 
finding the tightest range for the result of an expression with 
intervals as parameters. Interval analysis defines interval 
operators, like addition, subtraction, multiplication, division, 
trigonometric functions etc.   

 

 
Figure 2: (a) Task graph and (b) Performance Model for the 

face detection algorithm 
 
The procedure for finding the conditions that trigger 
architectural reconfiguration identifies execution time 
variations that are tolerable for a given architecture without 
exceeding the overall latency requirement. During 
execution, if execution time variations are larger than the 
found ranges, then architectural reconfiguration is initiated. 
The proposed algorithm analyzes different range values for 
the task execution times, and for each range it checks 
whether the overall system latency is still satisfied. Interval 
arithmetic is used to find the resulting ranges for system 
latency. 

4. CASE STUDY 
To illustrate the methodology, we refer to the face 
detection algorithm shown in Figure 2(a). This algorithm is 
part of a camera-based sensor architecture that we recently 
proposed for tracking applications [Weng,2004]. 
 

For the face detection algorithm, Figure 2(b) shows the PM 
for latency. The figure assumes that tasks 5, 6, 7 and 8 are 
executed in this order on a shared processor. The constant 
part of the PM includes all nodes and solid edges in Figure 
2(b). max and addition nodes express constraints between 
start and end times of each task. For example, the outputs 
of max nodes define the start time of the corresponding 
task. The start time of a task has to be larger than the 
maximum of the end times of all its predecessors. Addition 
nodes express that the end time Tend

i of task i is the sum of 
its start time Tstart

i and its execution time Ti. The variable 
part presents the relationship between latency and the 
design decisions taken during architectural optimization, 
like task partitioning to processors and task scheduling. In 
Figure 2(b), the variable part includes dashed arcs between 
the addition nodes for the end times of tasks, and the max 
nodes for their start times. Note that task execution times 
are expressed as Ti + ∆Ti (Ti being the minimal execution 
time and ∆Ti is the execution time variation). Intervals ∆Ti 
will be used to find reconfiguration conditions.   

Table 1: Sequence of resource sets 
 Adders Multiplier

s 
Active 
area 
(mm2) 

Implementations 

Set 
1 

128 128 70 Tasks 13-16 in  
HW; rest in SW 

Set 
2 

512 128 76 Tasks 12-16 in  
HW; rest in SW 

Set 
3 

128 512 129 Tasks 12-16 in  
HW; rest in SW 

Set 
4 

512 512 136 Tasks 12-16 in  
HW; rest in SW 

Set 
5 

1024 1024 268 Tasks 12-16 in  
HW; rest in SW 

Table 2: Reconfiguration conditions 
Taks Set 1 Set 2 Set 3 Set 4 Set 5 
Cr < 588 < 425 < 365 < 365 < 

192 
Crth < 440 151-513 61-151 32-61 < 32 
Cb < 320 320-365 365-425 192-365 < 192 
Cbth < 440 440-513 61-151 32-61 < 32 

Gmean < 155 155-180 41-52 52-78 < 52 
Gfmean < 17 < 20 < 17 < 21 < 22 

Cov < 301,500 < 
218,000 

< 255,590 < 24,518 < 
65,536 

Sum < 245,000 < 
218,000 

< 255,590 255,590-
311,296 

311,296
-

327,680 
Th < 147 < 170 < 50 < 61 < 32 

Pick < 282,600 282,600-
326,860 

282,,600-
326,860 

326,860-
373,555 

373,555
-

393,216 

 



We used five resource sets in the case study. Table 1 presents 
the characteristics of the resources sets, the type and number 
functional units, and the corresponding ASIC area that is active 
for each set. Active area is used to qualitatively model the 
consumed energy, as lesser active hardware resources will 
decrease energy consumption. The last column presents the 
hardware-software partitioning results for the five different 
resource sets. Tasks 13, 14, 14 and 16 are placed in hardware 
considering their high execution times. 
 

Set 1 represents the minimal resource set, and the task 
execution times are shown in Column 2 of Table 2.   It shows 
that for certain task execution ranges, the architecture for Set 1 
meets the fixed system latency constraint of 840k clock cycles. 
Note that this architecture allows a flexibility of about 11.5% 
meaning that the cumulative task execution time variations on 
the critical path should be percentage-wise less than the 
computed flexibility. Resource set 1 is not very flexible due to 
the fact that the usage of hardware resources is high. The 
second resource set corresponds to tighter timing constraints. In 
this case the task execution time belongs to the intervals shown 
in the third column of Table 2. The flexibility of the resources 
set is higher than for the previous case being around 1.33. 
Larger task execution time ranges can be accommodated in this 
case. Similarly, Table 2 shows the execution time ranges for 
resource sets 3, 4 and 5. Highest flexibility is achieved for Set 
5, which also includes the most hardware resources.  
 

During functioning, if any of the task execution time ranges is 
exceeded than an event is triggered, which is handled by the 
reconfiguration controller by activating 384 more adders 
when switching to the second resource set. Similarly, if any of 
the execution time ranges is exceeded then 384 multipliers are 
added to the architecture, while 384 of the adders are de-
activated. The reconfigured architecture corresponds to 
resource set 3, which accommodates the execution time 
ranges shown in Column 4 of Table 2. Similar transitions 
exist from resource set 3 to resource set 4, and resource set 4 
to resource set 5. Whenever execution times are relaxed 
below the specified time ranges, the controller switches the 
architecture back to the immediately "lower" resource set, 
such as from resource set 5 to resource set 4, and so on.  
 

For example, resource set 1 is used as long as the execution 
time for task Cr is below the limit of 588 clocks, that of task 
Cb below the limit of 320 clocks, and so on. If the input data 
size increases (like due to larger images of interest that need 
to be processed) the execution time of Task Pick might go up 
beyond the limit of 282,600 clocks. In this situation, resource 
set 1 cannot meet the imposed latency constraint of 840k 
clock cycles. The reconfiguration controller detects this 
situations, and triggers a reconfiguration to resource set 2. 
Now, if the execution time of Task Cov is beyond 218,000 
then depending on the value of Task Pick, the controller 
might select Set 1 or Set 3. If the time for Pick is below the 

limit of  282,600 clock cycles then set 1 is chosen, otherwise 
reconfiguration will correspond to set 3.    
 

From the experimental result it is shown that Set 4 only takes 
around half of the hardware area as Set 5, whereas the 
flexibility remains almost the same (1.9 for set 4 compared to 
2.0 for set 5). Therefore, it can be concluded that an upper 
limit exists for the flexibility: as the hardware area increases 
above the limit, the hardware area increment stops to gain 
performance enhancement. Comparing Set 2 and Set 3, it can 
been seen that the number of adders contributes more to the 
flexibility than the number of multipliers. This is due to the 
fact that the tasks in the face detection application have more 
additions than multiplications. Therefore, allocating more 
adders results in higher flexibility. The other advantage of 
adders is the much smaller area it has over the multipliers. 
 
5. CONCLUSIONS 

This paper presents a methodology for dynamic adaptation of 
sensor node architectures to improve the scalability of a 
sensor network. The method aids producing control 
algorithms for on-line adaptation, so that the node’s 
architecture effectively addresses continuously changing 
operation conditions, like variable data rates and changing 
latency constraints. To illustrate the method, we discuss a 
case study on a camera based smart sensor node. We show 
that architecture adaptation is capable of employing the 
minimal set of resources needed for a given task, thus 
reducing the energy consumption of a node.  
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