
Dynamic Architecture Adaptation to Improve Scalability of Sensor Networks:
A Case Study for a Smart Sensor for Face Recognition

Yulei Weng, Sankalp Kallakuri, Xiaoyao Liang,

Alex Doboli, Sangjin Hong, Tom Robertazzi, Simona Doboli†
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, 11794-2350

† Department of Computer Science, Hofstra University, Hempstead, NY
Email: adoboli@ece.sunysb.edu

ABSTRACT
This paper presents a method for dynamic adaptation of sensor node
architectures to improve the scalability of a sensor network. The
method aids producing control algorithms for on-line adaptation, so
that the node’s architecture effectively addresses continuously
changing operation conditions, like variable data rates and changing
latency constraints. To illustrate the method, we discuss a case study
for a camera based smart sensor node.

1. INTRODUCTION
Wireless sensor networks are receiving an increasing amount of
attention from researchers in universities, government and
industry because of their promise to become a revolutionary
technology [Estrin,2002; Jones,2001; Kahn,2000]. Besides
capabilities specific to any computer network, like connectivity,
ubiquity, and trustworthiness, sensor networks require the
“ intelligence” for scalable, autonomic, and evolvable behavior.
Scalability is the quality of a network to optimally address
(during execution) the dynamics of operation conditions,
including variable input data rates and continuously changing
performance requirements. Scalability originates new research
problems, as the static concept of optimizing the
implementation must be replaced by the more flexible notion of
adapting the implementation.

Traditionally, system implementations are optimized for the
worst-case operation scenario described by fixed attributes and
performance needs. For sensor networks, this design paradigm
is quite unsatisfactory, given the scarcity of resources and the
difficulty to re-optimize a deployed sensor node for new
requirements. Instead, the system must continuously monitor
the functioning conditions, and correspondingly react by
modifying the sensor node architectures through adding or
removing of hardware resources. The algorithm controlling
architectural adaptation is embedded either in the middleware
of each sensor node, or realized in hardware for having higher
speed or lower energy consumption.

This paper proposes a methodology for dynamic adaptation of
sensor node architectures to improve the scalability of sensor
networks. The method aids designing control algorithms for on-
line adaptation, so that node architectures effectively address
continuously changing operation conditions, like input data of
modifying sizes or latency constraints of variable lengths.
Adaptation is obtained through architectural reconfiguration by
adding or removing hardware resources.

We focus on a specific application type, in which the
switching between operation modes is accurately modeled
by a chain of transitions. We present an original technique
for finding reconfiguration conditions. To illustrate the
method, we discuss a case study for a camera based sensor
node. We show that architecture adaptation is capable of
employing the minimal set of resources needed for a task,
thus reducing the energy consumption of a node.

The paper is organized in five sections. Section 2 describes
the problem, and Section 3 presents the proposed design
methodology. Section 4 discusses the case study, and
finally conclusions are offered

2. PROBLEM DESCRIPTION
Reconfiguration is an important way in developing autono-
mic, evolvable and scalable behavior to a sensor network.
We identified two kinds of reconfiguration, functional
reconfiguration and architectural reconfiguration.

• Functional reconfiguration implies the modification
of a node's connectivity to neighbors or of the
algorithms locally executed by a node, like
algorithms for data processing, profiling, and
identification.

• Architectural reconfiguration involves adaptation of
the sensor node architecture to changing condition of
operation, such as varying data rates and energy
levels, new real-time constraints, and so on.
Hardware resources are dynamically allocated
(through reconfiguration) to the execution threads to
meet new performance requirements.

In this paper, we focus on architectural reconfiguration.

Architectural reconfiguration is needed for adapting the
architecture of a sensor node to the changing conditions of
operation, like variable amounts of input data, decreasing
energy levels, modifying latency constraints, different
quality of service needs, and so on. For example, for the
camera based smart sensor discussed in Section 4, the
image processing algorithm might have to process images
of different sizes. Also, as the energy level goes down, the
processing will be conducted at slower clock frequencies in
order to reduce power consumption. The architecture
parallelism will have to be increased for meeting the
desired latency constraint.

In general, from the application point of view, varying
operation conditions cause the change of task execution
times, data communication quantity and communication time
between tasks, and memory requirements. For example, if
input data rates change dynamically then the overall latency
for the application has to be also permanently modified. This
could happen, if suddenly events of interest occur for the
camera based smart sensor node [Brooks,2003]. Photos will
have to be taken at higher rates. A naive design solution
would dimension the architecture for the worst-case scenario,
such as the highest rate at which pictures are taken. This
solution will keep many resources unused, which obviously
will unnecessarily consume energy. Energy consumption is a
significant problem, as the node energy is difficult to
replenish [Jones, 2001; Kahn, 2000].

To optimally address the dynamic characteristics of an
application, the sensor architecture will have to continuously
adapt to the new attributes. Resources will be added or
removed from the individual task depending on the task
attributes' variations and the criticality of tasks. After usage,
hardware resources are allocated to other tasks, so that the
amount of unused resources remains low. This is important
considering that sensor nodes tend to have scarce amounts of
resources (including energy). From design point of view, this
type of reconfiguration poses two interesting questions: (1)
finding the conditions that trigger resource re-allocation to
tasks, and (2) identifying the actual amount of resources
assigned to each task.

We have to stress that architectural reconfiguration is quite
different from reconfigurable computing [Borgatti,2003].
Reconfigurable computing involves static, off-line synthesis
and optimization, whereas architectural reconfiguration
involves synthesis for dynamic operating conditions. In
reconfigurable computing, the attributes of the application
(like task execution times and latency requirements) are
static. Synthesis customizes the architecture for the static
attributes of the application. In contrast, architectural
reconfiguration involves continuous adaptation of the
architecture through adding or removing of resources to
address the varying conditions of operations. Adaptation is
on-line, thus the amount of architectural modification has to
be minimal across contiguous conditions of operations.

3. DESIGN METHODOLOGY
We suggest an architectural reconfiguration approach, in
which each task has allocated a static set of resources and a
dynamic set of resources. In this section, we present the
application characteristics and the specifics of the sensor
node architecture, and enumerate the steps that compose the
design flow for architectural reconfiguration.

During operation, there is a gradual modification of the
sensor network behavior (thus of the sensor nodes also),

when an event of interest happens. For example, the
sensors that detect the vehicle will start collecting images
at a continuously higher pace. Once the event disappeared,
images will be collected at lower rates. Hence, sensor
nodes transit from operation modes for the lower data
acquisition rates to the operation modes for higher rates,
and then back to those with lower rates. This behavior can
be modeled as a chain of transitions.

Figure 1: Design flow for architectural reconfiguration

We consider that the total amount of resources is given.
Figure 1 shows the hardware-software co-design flow for
architectural reconfiguration. The flow first decides the
static set of resources assigned to each task. For this, it
uses the most optimistic set of task attributes, such as the
shortest execution time for each task or the longest latency
constraint. Then, using traditional partitioning and
scheduling techniques (e.g., the one in [Doboli,2001]),
tasks are mapped and scheduled on the allocated resources.

Next, keeping the resource set unchanged, as well as the
mapping and scheduling of tasks and communications, the
design flow identifies the maximum amount of attribute
variations (in our case execution time variations) that are
tolerable without exceeding the required performance, like
latency. At the end of this step, reconfiguration conditions
are identified that will keep the resource set unmodified as
long as these conditions are not violated. Whenever
conditions are not met, an event is generated, so that the
operation mode of the architecture is modified. Then, for
the next set of resources in the sequence, starting from the
more critical paths, resources are added (or deleted) to
tasks, so that the increased (decreased) task execution
times can be accommodated without exceeding the fixed
latency. The resources contemplated at this step define the
dynamic resource set to be shared across tasks. The
algorithm will first tackle the critical paths. This process
continues until all operation and performance conditions
are fully addressed.

The discussion of the design methodology concludes that,
besides traditional partitioning and scheduling algorithms, the
synthesis flow ought to include algorithms for calculating the
conditions that will trigger modification of the current set of
architectural resources, as well as a procedure for finding the
dynamic set of resources for each task.

To tackle the problem of identifying the conditions that
control architectural reconfigurations, we started by (i)
finding closed-formed symbolic expressions for the system
performance requirements, followed by (ii) using the
symbolic expressions and interval operators in searching for
the task execution time intervals that still meet the latency
performance needs. If we limit ourselves to conditions that
are relations, like thresholdL ≤ execution time ≤ thresholdR,
then the problem of identifying the reconfiguration condition
is equivalent to finding ranges [thresholdL, thresholdR] for
task execution times that still satisfy the fixed latency
requirement. This originates an interesting theoretical
problem, not tackled - to the best of our knowledge - by the
interval arithmetic community [Stolfi,1997]. Typically,
interval arithmetic copes with the dual of our problem:
finding the tightest range for the result of an expression with
intervals as parameters. Interval analysis defines interval
operators, like addition, subtraction, multiplication, division,
trigonometric functions etc.

Figure 2: (a) Task graph and (b) Performance Model for the

face detection algorithm

The procedure for finding the conditions that trigger
architectural reconfiguration identifies execution time
variations that are tolerable for a given architecture without
exceeding the overall latency requirement. During
execution, if execution time variations are larger than the
found ranges, then architectural reconfiguration is initiated.
The proposed algorithm analyzes different range values for
the task execution times, and for each range it checks
whether the overall system latency is still satisfied. Interval
arithmetic is used to find the resulting ranges for system
latency.

4. CASE STUDY
To illustrate the methodology, we refer to the face
detection algorithm shown in Figure 2(a). This algorithm is
part of a camera-based sensor architecture that we recently
proposed for tracking applications [Weng,2004].

For the face detection algorithm, Figure 2(b) shows the PM
for latency. The figure assumes that tasks 5, 6, 7 and 8 are
executed in this order on a shared processor. The constant
part of the PM includes all nodes and solid edges in Figure
2(b). max and addition nodes express constraints between
start and end times of each task. For example, the outputs
of max nodes define the start time of the corresponding
task. The start time of a task has to be larger than the
maximum of the end times of all its predecessors. Addition
nodes express that the end time Tend

i of task i is the sum of
its start time Tstart

i and its execution time Ti. The variable
part presents the relationship between latency and the
design decisions taken during architectural optimization,
like task partitioning to processors and task scheduling. In
Figure 2(b), the variable part includes dashed arcs between
the addition nodes for the end times of tasks, and the max
nodes for their start times. Note that task execution times
are expressed as Ti + ∆Ti (Ti being the minimal execution
time and ∆Ti is the execution time variation). Intervals ∆Ti
will be used to find reconfiguration conditions.

Table 1: Sequence of resource sets
 Adders Multiplier

s
Active
area
(mm2)

Implementations

Set
1

128 128 70 Tasks 13-16 in
HW; rest in SW

Set
2

512 128 76 Tasks 12-16 in
HW; rest in SW

Set
3

128 512 129 Tasks 12-16 in
HW; rest in SW

Set
4

512 512 136 Tasks 12-16 in
HW; rest in SW

Set
5

1024 1024 268 Tasks 12-16 in
HW; rest in SW

Table 2: Reconfiguration conditions
Taks Set 1 Set 2 Set 3 Set 4 Set 5
Cr < 588 < 425 < 365 < 365 <

192
Crth < 440 151-513 61-151 32-61 < 32
Cb < 320 320-365 365-425 192-365 < 192
Cbth < 440 440-513 61-151 32-61 < 32

Gmean < 155 155-180 41-52 52-78 < 52
Gfmean < 17 < 20 < 17 < 21 < 22

Cov < 301,500 <
218,000

< 255,590 < 24,518 <
65,536

Sum < 245,000 <
218,000

< 255,590 255,590-
311,296

311,296
-

327,680
Th < 147 < 170 < 50 < 61 < 32

Pick < 282,600 282,600-
326,860

282,,600-
326,860

326,860-
373,555

373,555
-

393,216

We used five resource sets in the case study. Table 1 presents
the characteristics of the resources sets, the type and number
functional units, and the corresponding ASIC area that is active
for each set. Active area is used to qualitatively model the
consumed energy, as lesser active hardware resources will
decrease energy consumption. The last column presents the
hardware-software partitioning results for the five different
resource sets. Tasks 13, 14, 14 and 16 are placed in hardware
considering their high execution times.

Set 1 represents the minimal resource set, and the task
execution times are shown in Column 2 of Table 2. It shows
that for certain task execution ranges, the architecture for Set 1
meets the fixed system latency constraint of 840k clock cycles.
Note that this architecture allows a flexibility of about 11.5%
meaning that the cumulative task execution time variations on
the critical path should be percentage-wise less than the
computed flexibility. Resource set 1 is not very flexible due to
the fact that the usage of hardware resources is high. The
second resource set corresponds to tighter timing constraints. In
this case the task execution time belongs to the intervals shown
in the third column of Table 2. The flexibility of the resources
set is higher than for the previous case being around 1.33.
Larger task execution time ranges can be accommodated in this
case. Similarly, Table 2 shows the execution time ranges for
resource sets 3, 4 and 5. Highest flexibility is achieved for Set
5, which also includes the most hardware resources.

During functioning, if any of the task execution time ranges is
exceeded than an event is triggered, which is handled by the
reconfiguration controller by activating 384 more adders
when switching to the second resource set. Similarly, if any of
the execution time ranges is exceeded then 384 multipliers are
added to the architecture, while 384 of the adders are de-
activated. The reconfigured architecture corresponds to
resource set 3, which accommodates the execution time
ranges shown in Column 4 of Table 2. Similar transitions
exist from resource set 3 to resource set 4, and resource set 4
to resource set 5. Whenever execution times are relaxed
below the specified time ranges, the controller switches the
architecture back to the immediately "lower" resource set,
such as from resource set 5 to resource set 4, and so on.

For example, resource set 1 is used as long as the execution
time for task Cr is below the limit of 588 clocks, that of task
Cb below the limit of 320 clocks, and so on. If the input data
size increases (like due to larger images of interest that need
to be processed) the execution time of Task Pick might go up
beyond the limit of 282,600 clocks. In this situation, resource
set 1 cannot meet the imposed latency constraint of 840k
clock cycles. The reconfiguration controller detects this
situations, and triggers a reconfiguration to resource set 2.
Now, if the execution time of Task Cov is beyond 218,000
then depending on the value of Task Pick, the controller
might select Set 1 or Set 3. If the time for Pick is below the

limit of 282,600 clock cycles then set 1 is chosen, otherwise
reconfiguration will correspond to set 3.

From the experimental result it is shown that Set 4 only takes
around half of the hardware area as Set 5, whereas the
flexibility remains almost the same (1.9 for set 4 compared to
2.0 for set 5). Therefore, it can be concluded that an upper
limit exists for the flexibility: as the hardware area increases
above the limit, the hardware area increment stops to gain
performance enhancement. Comparing Set 2 and Set 3, it can
been seen that the number of adders contributes more to the
flexibility than the number of multipliers. This is due to the
fact that the tasks in the face detection application have more
additions than multiplications. Therefore, allocating more
adders results in higher flexibility. The other advantage of
adders is the much smaller area it has over the multipliers.

5. CONCLUSIONS

This paper presents a methodology for dynamic adaptation of
sensor node architectures to improve the scalability of a
sensor network. The method aids producing control
algorithms for on-line adaptation, so that the node’s
architecture effectively addresses continuously changing
operation conditions, like variable data rates and changing
latency constraints. To illustrate the method, we discuss a
case study on a camera based smart sensor node. We show
that architecture adaptation is capable of employing the
minimal set of resources needed for a given task, thus
reducing the energy consumption of a node.

REFERENCES

[Brooks,2003] R. R. Brooks, P. Ramanathan, A. M. Sayeed, “Distributed
Target Classification and Tracking in Sensor Networks” , January 2003.
[Borgatti,2003] M. Borgatti, F. Lertora, et al, “A Reconfigurable System
Featuring Dynamically Extensible Embdded Microprocessor, FPGA, and
Customizable I/O” , IEEE Journal Solid-State Circuits, Vol. 38, No. 3, pp.
521-529, March 2003.
[Doboli,2001] A. Doboli, “ Integrated Hardware-Software Co-Synthesis and
High-Level Synthesis for Design of Embedded Systems under Power and
Latency Constraints” , Proc. Design, Automation and Test in Europe
Conference, 2001.
[Estrin,2002] D. Estrin, D. Culler, K. Pister, G. Sukhatme, ``Connecting the
Physical World with Pervasive Networks” , IEEE Pervasive Computing, Vol.
1, No. 1, pp. 59-69, January-March 2002.
[Haubelt,2002] C. Haubelt, J. Teich, K. Richter, R. Ernst, “System Design
for Flexibility” , Proc. of the Design, Automation and Test in Europe
Conference, 2002, pp. 854-861.
[Jones,2001] Jones, C.E., Sivalingam, K.M., Agrawal, P. and Chgen, J.C.,
“A Surevy of Eneregy Efficient Network Protocols for Wireless Networks” ,
Wireless Networks, Vol,. 7, 2001, pp. 343-358.
[Kahn,2000] Kahn, J.M., Katz, R.H. and Pister, K.S.J., “Emerging
Challenges: Mobile Networking for "Smart Dust'', Journal of
Communication Networks, vol. 2, no. 3, Sept. 2000.
[Stolfi,1997] J. Stolfi, H. de Figueiredo, “Self-Validated Numerical Methods
and Applications” , Proc. of the 21st Brazilian Mathematics Colloquium,
July 1997.
[Weng,2004] Y. Weng, A. Doboli, “Smart Sensor Architecture Customized
for Image Processing Applications” , Proc. of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, 2004.

