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Fig. 5. Output voltage waveform in the closed-loop dc-ac power inverter.
Horizontal scale: 5 ms/div.; vertical scale: 0.2 V/div.

Fig. 6. Bode plots of the closed-loop power inverter.

Packard 4194A Network Analyzer, Bode plots were measured for the
closed-loop system. The results are depicted in Fig. 6. It can be seen
that the−3-dB frequency was 205 Hz.

IV. CONCLUSION

This study demonstrates that a low-frequency dc-ac power inverter
constructed from a�-� modulator and a half-bridge inverter is ca-
pable of reproducing a very high-quality sine wave. Although this tech-
nique was demonstrated using low-power devices, a high-power circuit
would behave identically. However, a design of such an inverter is cur-
rently impaired by the fact that the switching frequency varies by an,
as of yet, unpredictable way. This potentially weak point requires more
research.

The most obvious application of this technique is inversion to operate
ac devices from dc sources, such as cars or recreational vehicles, or in
uninterruptible power supplies and motor drives. Additionally, this cir-
cuit could easily be extended to provide amplification for self-powered
subwoofers. dc-dc conversion is also possible.

Further work should include a digital implementation of a�-�mod-
ulator control circuit and an increased system bandwidth. A digital
implementation would allow direct digital-to-high-power applications,
such as programmable inverters with variable frequency and variable
amplitude or three-phase regulation. Increasing the bandwidth of the
system would allow the technique to be used for audio amplification.
Fair comparison of the performance of this technique and other con-
trol schemes requires more research. In addition, characterization of
behavior with nonlinear loads is recommended for further research.
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Information Transmission using Chaotic Discrete-Time
Filter

Adrian Leuciuc

Abstract—In this brief an adaptive approach for transmitting informa-
tion hidden in a chaotic carrier is presented. The proposed method uses as
a chaotic generator a discrete time nonlinear filter with a sawtooth non-
linearity induced by the two's complement overflow in digital filters. The
synchronization at the receiving end is ensured by an adaptive slave system.
Two different methods for hiding the information in the chaotic carrier are
analyzed: direct chaos modulation and parameter modulation.

Index Terms—Adaptive filters, chaos synchronization, information
transmission using chaos.

I. INTRODUCTION

Since Pecora and Carrol [1]–[3] published their results on chaos syn-
chronization, the scientific community has manifested an increased in-
terest in studying the many different aspects of using these principles
in practical applications. A considerable effort has been made in ap-
plying synchronization of chaos in secure communications and data
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encryption [4]–[9]. At the beginning, the influence of the communi-
cation channel (frequency response and additive noise) and parameter
mismatch between transmitter and receiver were not taken into account,
or in a very small part. As practical communication schemes have been
tried, the effect of these nonidealities, especially that of the noise on the
channel, has proven to be destructive for the synchronization process.
On the other hand, by increasing the robustness of the communication
system, the confidentiality of the transmitted information can be lost.
Efforts to improve the performances of the communication systems
using chaos have been made. Several channel equalization methods
were proposed in [10] and [11]; the differential chaos shift keying mod-
ulation reported in [12] has good noise performances; multiuser com-
munication techniques were proposed in [13]–[15].

The results reported in this paper confirm the contrary requirements
of a secure communication system using chaos and give an insight
on how to design such a system in order to make a compromise be-
tween the desired confidentiality and robustness of the transmission.
A particular discrete-time continuous-value chaotic system is consid-
ered. It consists of the all-pole IIR filter with a sawtooth nonlinearity
in the feedback path shown in the left side of Fig. 1. Its simplicity
and the possibility of easily extending it to a higher order make it a
convenient chaotic generator. The statistical properties for the nonau-
tonomous case and several methods for implementing it have been
previously presented in the literature [9], [16]–[18]. In the previous
analyses of this system, the nonlinearity was chosen to be the two's
complement overflow one, as in digital filters, but as it will be pointed
out in the next section, only the sawtooth shape is important for satis-
fying all its properties.

II. ERRORPERFORMANCESURFACE OF THEADAPTIVE SLAVE SYSTEM

In this section we will consider the chaos synchronization setup de-
picted in Fig. 1. The nonlinearity is given by

f(x) = x� 2 round
x

2
(1)

where round(x) stands for the nearest integer ofx and the filter
transfer function is an FIR type one

H(z) =

N

i=1

aiz
�i: (2)

It has been proven [18] that such a nonlinear system exhibits chaotic
behavior if the linearized IIR filter is unstable. Furthermore, the output
y[k] has anN -dimensional uniform distribution ifaN 2 Z; jaN j > 1
[9]. We must note that the exact two's complement overflow nonlin-
earity (1) is not a must, the system containing a general sawtooth shape
nonlinear function exhibits similar properties. If the derivative of piece-
wise linear segments off(�) has the valueK 6= 1, this is equivalent
with the introduction of a gain blockK in front of the initial two's com-
plement overflow nonlinear operator. This gain can be introduced in the
transfer function of the feedback FIR filter, its effect being the altering
of all filter coefficients byK. The functioning of the chaotic system
is the same, including theN -dimensional uniform distribution of the
output signal, if the linear subsystem remains unstable andKaN 2 Z,
jKaN j > 1. Furthermore, if the lower and upper limits off(�) are
[�b; b], b 6= 1, this is like a gain block with gainb is added at the
output of the normalized nonlinearity and another one with gain1=b at
its input. Due to the feedback loop, the only effect of this modification
is on the bounds of the output signal. Thus, the generated signaly[k]
remains chaotic, having the same statistical properties with respect to
the new output limit values. In the following, without restricting the

Fig. 1. The autonomous master–slave configuration for chaos
synchronization.

general case, the nonlinearity given by (1) will be considered. In the
second part of this section we will see how the slave system structure
from the right side of Fig. 1 has to be modified to ensure synchroniza-
tion in the case of general sawtooth nonlinearity.

The structure of the slave system of Fig. 1 is a feedforward one en-
suring the synchronization inN clock periods if the nonlinearity and
the filter tap weights are perfectly matched with the master system. If
the FIR filter of the slave system has the parametersai, the synchro-
nization error is

"[k] = f

N

i=1

(ai � ~ai)y[k � i] = f

N

i=1

xiy[k � i] (3)

wherexi = ai � ~ai; i = 1; . . . ; N .
The performances of the adaptive algorithm used to eliminate the

parameter mismatches can be derived from the shape of the error sur-
face� = E["2[k]], whereE[�] denotes the expectation. This error sur-
face is also a measure for the level of confidentiality if we assume that
when such a system is used for information transmission purposes, the
statistics of the output signaly[k] are independent of the information
signal(s) statistics. In the following, we will consider that all the condi-
tions ensuring theN -dimensional uniform distribution and ergodicity
of the chaotic output signaly[k] are met [9]. Analytical results were
obtained for the first- and second-order systems, as well as for theN th
order one in the hypothesis thatN is sufficiently large.

A. First-Order System

The mean square value of the synchronization error can be obtained
in a simple manner and is given by

�(x1) =
x21
3

+
2

3

round(x
2
)

x
1� 3x21 � 4 round

x1
2

2

+ 6x1round
x1
2

(4)

wherex1 = a1 � ~a1. In Fig. 2(a), the plots of the calculated (contin-
uous line) and simulated (dotted line) mean square values of the syn-
chronization error are shown. The simulations have been carried out
usinga1 = 4:5 and the mean has been calculated over 10 000 samples.
Even though the value ofa1 does not ensure the uniform distribution
of y[k], the two curves are very similar. The shape of the error per-
formance surface presents multiple minima, and the convergence of a
gradient-type adaptive algorithm to the correct value ofa1 is ensured
for a maximum mismatchjx1j = ja1 � ~a1j = 1:3473. For integer
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Fig. 2. Error performance surface for (a) first-order system: computed (continuous line) and simulated (dotted line); (b) second-order system; and(c) high-order
systems (shown for = 2).

values ofx1, �(x1) = 1

3
, the variance of a uniform distributed signal

in [�1; 1]. The same value is obtained forx1 !1 and we will call it
the saturation level of the error performance surface.

B. Second-Order System

Starting from (3) and using the uniform distribution and indepen-
dence properties of the random variablesy[k � 1] andy[k � 2], the
following expression of the MSE was obtained:

� =
4M1

3(p+ q)
+

1

6(p2 � q2)
(p� 2M2)

4 � (q � 2M1)
4

+ 8p(M2 �M1)� 8 M
2

2 �M
2

1

(5)

wherep = jx1j + jx2j; q = jjx1j � jx2jj; M1 = round( q
2
); M2 =

round(p
2
); xi = ai�~ai; i = 1; 2. This surface is depicted in Fig. 2(b),

a similar shape being obtained by simulation. For any integer pairs
(x1; x2) and forx1 ! 1 and/orx2 ! 1; �(x1; x2) =

1

3
, the satu-

ration level.

C. N th Order System

The calculus of the performance surface for a system of orderN > 2
is laborious. Nevertheless, if the orderN is large enough, the proba-
bility density function of the random variable N

i=1
(ai � ~ai)y[k � i]

tends to a normal distribution function with variance�2 = 1

3
(x21 +

� � �+ x2N ); xi = ai � ~ai; i = 1; � � � ; N [21]. Thus, after some mathe-
matical manipulations, the mean square error is given by

� = �
2 +

4p
2�

1

�

k=1

k=�1

k
2

2k+1

2k�1

e
�

dz � e
�

:

(6)

An intuitive representation of how this hypersurface in theN + 1
dimensional space looks like can be obtained if we makeN = 2, that
is, �2 = 1

3
(x21 + x22) in (6) and plot the result in Fig. 2(c). The gra-

dient approximately equals zero everywhere, with the exception of a
small neighborhood around the minimum. This makes impossible the

convergence of a gradient-type adaptive algorithm if the initial values
of the slave coefficients are not close enough to the correct values. The
same value is obtained for the saturation level

lim
� !1

� =
1

3
: (7)

If the influence of the additive channel noisen[k] is taken into ac-
count, the synchronization error becomes

"[k] = f n[k] �
N

i=1

(ai + xi)n[k � i] +

N

i=1

xiy[k � i] : (8)

For perfectly matched master and slave systems,xi = 0;
i = 1; � � � ; N , the synchronization error depends only on the channel
noise. The influence of the noise on the synchronization is higher if
the transmitter filter coefficientsai have larger magnitudes. Thus,
given a certain SNR on the channel, the synchronization error can be
minimized if the sumS = N

i=1
a2i is minimum, keeping in mind

that we must fulfill the conditions ensuring the chaotic behavior of the
master system and its statistical properties.

The effect of the channel noise over the shape of the error perfor-
mance surface can be viewed from the plots of Fig. 3. In Fig. 3(a) the
simulated error performances surfaces in the one-dimensional (1-D)
case are depicted for a channel SNR=10 dB (Gaussian white noise)
and different values ofa1. These plots slightly change if the channel
noise has distribution other than normal, but qualitatively the result is
the same. Even the MSE does not null forx1 = 0; the correct value of
the transmitter coefficient can be still retrieved at the receiver using a
gradient-type adaptive algorithm if we start from an initial value close
enough to the exact one and the minimum has not reached a value close
to the saturation level. The mean square value of the error for different
values of SNR andS in the three dimensional (3-D) matched parame-
ters case is plotted in Fig. 3(b). One can see that using a master filter
with coefficients havingS = 20, the same MSE is obtained as in the
caseS = 6 for a 5-dB higher SNR.

From the point of view of transmission secrecy, the presence of the
noise on the channel, within reasonable limits, can be viewed as a pos-
itive fact as well. Indeed, if an unauthorized receiver tries to identify
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(a) (b)

Fig. 3. Effect of channel noise on the synchronization error. (a) Error performance surface for a first order system (SNR= 0 dB-continuous line, SNR= 10
dB-dotted lines). Noninteger even values were considered forto avoid the nulling of [ ] due to the finite binary representation of numbers in computer
simulations. (b) MSE for a third-order synchronization system with matched parameters:
— = = 0 1 = 2 ( = 4 02); ×— = 1 =
1 1 = 2 ( = 6 01); — = 2 = 1 1 = 2 ( = 9 01); ◊— = 2 1 = 2 = 2 ( = 12 01); ∇— =

3 2 = 2 4 = 2 ( = 20).

Fig. 4. The autonomous master–adaptive slave configuration for chaos synchronization.

the chaotic master system when noise is not present, he will always
know if the identification is achieved or not from the value of the MSE.
Different combinations of the parameters can be tried until the correct
values are obtained. In the case of a noisy channel, the value of the
minimum of the error surface is different to zero, comparable to other
local minima, and the task of the intruder is more difficult.

Following all the conclusions from above, the general synchroniza-
tion scheme using an adaptive slave system is depicted in Fig. 4. The
difference, compared to the scheme in Fig. 1, is the supplementary gain
block~a0 in the slave structure. This adaptive gain block is used to com-
pensate for the different slope of the transmitter nonlinearity when this
has a general sawtooth shape, as discussed in the beginning of the sec-
tion. Thus, if the transmitter nonlinearity is characterized by a slopeK
and is bounded within the interval[�b; b], it can be easily verified that
the synchronization is achieved if

K~a0ai = ~ai; i = 1; . . . ; N

~K~a0b
~b

2 Z:
(9)

Even in the case of identical nonlinear characteristics at both ends of
the synchronization configuration(K = K; b = b), there is a infinite,

countable set of receiver parameters for which the synchronization is
achieved:f~a0 = m=K; ~ai = maig; m 2 Z � f0g; i = 1; . . . ; N .
Finally, as it can be seen from Fig. 4, the complete receiver scheme con-
tains an equalizer to compensate the frequency response of the trans-
mission channel, but this aspect will not be addressed here.

III. D IRECT CHAOS MODULATION APPROACH

If we want to use the chaos synchronization configuration in Fig. 4
for confidential information transmission purposes, there are two pos-
sibilities for hiding the signal to be transmitted in the chaotic carrier:
the direct chaos modulation approach and the parameter modulation
approach. In this section, the performances of the former is analyzed.
The modulating signalm[k] is added at the input of chaotic generator
and the synchronizing slave remains unchanged. The output of the slave
system, when ideal channel and perfectly matched parameters are con-
sidered, is equal to the modulating signalm[k] if jm[k]j < 1 [9]. If the
parameter mismatch is taken into account, the output of the receiver is

"[k] = f m[k] +

N

i=1

xiy[k � i] (10)
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(a) (b)

(c) (d)

Fig. 5. Simulation results for direct chaos modulation. (a) Recovered signal for the open loop receiver with matched parameters (continuous line) and closed
adaptive loop (dotted line). (b) Parameter convergence of the adaptive receiver( = 0 1 = 0 2 = 2 ~ [0] = 1 2 ~ [0] = 0 3 ~ [0] =
0 4 ~ [0] = 2 3). (c) SNR of the recovered signal vs. SNR on the channel for the open-loop, matched parameters receiver. (d) SNR of the recovered signal

versus SNR on the channel for the closed-loop adaptive receiver. (
— = 0 2; ∇— = 0 4; ◊— = 0 6; — = 0 8.)

where, for simplicity, the nonlinearityf(�) is given by (1) and con-
sidered throughout the rest of this paper. Equation (10) is similar to
(8), the modulating signalm[k] replacing the noise terms. Thus, taking
into account thatm[k] and the chaotic carriery[k] are uncorrelated, the
adaptive algorithm used at the receiving end will converge toward the
correct values of the parameters if the variance ofm[k] is smaller than
the saturation level. Becausejm[k]j < 1, after the adaptation process
converges"[k] = m[k]. Since the effect of the modulating signal is
similar to that of the additive noise channel, the closer the variance of
m[k] to the saturation level, the higher the level of secrecy of such a
communication system is. In this case the authorized receiving part has
to know exactly the parameter values used at the transmitter. The iden-
tification process is not possible anymore, even if the initial values of
the receiver parameters are very close to the transmitter ones. In Fig. 5

several simulation results for this setup are given, the modulating signal
being a sinusoid and using a third-order system with RLS adaptive al-
gorithm. The results obtained in the case of adaptive receiver are com-
pared to the ones corresponding to an open-loop receiver with matched
parameters.

Similar results have recently been reported in [23] where the iden-
tification of the chaotic transmitter is determined in a noiseless en-
vironment by evaluating the variance of the error signal�2

e
and then

searching for the maximum ofj�2
e
� 1

3
j. This method can identify the

parameters of the transmitter even for modulating signals with variance
larger than the saturation level, performance which cannot be achieved
with our approach withouta priori information aboutm[k]. However,
the method proposed in [23] is timewise and computationally more ex-
pensive than the adaptive approach presented herein.
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(a) (b)

(c) (d)

Fig. 6. Simulation results for parameter modulation. (a) Recovered signals—NLMS adaptive filter. (b) Recovered signals—Kalman filter. (c) SNR of the recovered
signal versus SNR on the channel—NLMS adaptive filter. (d) SNR of the recovered signal versus SNR on the channel—Kalman filter. (
— = 0 1; ∇— =

0 15; ◊— = 0 2; — = 0 25; 4— = 0 3.)

IV. PARAMETER MODULATION APPROACH

Another way to transmit information using chaos is the parameter
modulation technique [13], [24], [25]. One can use several information
signals to modulate the filter coefficients of the master system in Fig. 4.
Using an adaptive receiver and appropriate adaptive algorithms with
good tracking performances, the information can be recovered if the
amplitude and bandwidth of the modulating signals are not too large.
The parameter modulation approach has the main advantage of being
less sensitive to noise compared to direct chaos modulation approach.
At the same time it offers the possibility of multiple parameter modu-
lation, resulting in simultaneous multiple access of a single communi-
cation channel. However, the bandwidth of the modulating signal(s) is
reduced due to the low-pass filtering effect of adaptive algorithms. For

example, in the case of LMS algorithm, the taps of the adaptive FIR
filter are updated using the iteration

~ai[k + 1] = ~ai[k] + �"[k]y[k � i] (11)

where� is the adaptation parameter. The convergence in the mean
square is ensured if� < 2

trace(R)
whereR is theN � N autocorre-

lation matrix ofy[k] [26]. Assuming the conditions for theN -dimen-
sional uniform distribution ofy[k] satisfied, all the eigenvalues ofR
are equal to�2

y andtrace(R) = N�2
y = N

3
. The LMS algorithm is

derived from the steepest descent method for finding the minimum of
the error surface and, consequently, the time constant associated to the
transient of filter coefficients, when all the eigenvalues ofR are equal,
is given by� � 1

��
, being proportional with the filter orderN . It
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follows that we can approximate the�3 dB bandwidth of the adaptive
algorithm byf3 dB = ��2yfclk.

Numerous computer simulations have been carried out using dif-
ferent adaptive algorithms. In Fig. 6, some representative results are
presented. NLMS and Kalman filters were considered, the RLS algo-
rithm being known for its poor tracking performances [26]. Comparing
the results in Fig. 6 to the results in Fig. 5, one can see that the noise per-
formances of the parameter modulation approach are better than those
of the both open and closed loop structures in the case of direct modu-
lation technique.

V. CONCLUSION

In this paper, the possibilities of using the chaotic discrete-time filter
with sawtooth nonlinearity in confidential information transmission are
analyzed. The effects of parameter mismatch and channel noise on
the chaos synchronization are considered. Analytic expressions for the
error performance surface of the adaptive synchronizing inverse system
were derived, showing that the chaotic master system can be identified
if the parameter mismatch is relatively small.

Two different approaches for using the analyzed configuration
for secure information transmission using chaos were compared:
direct chaos modulation and parameter modulation. This comparison
revealed that parameter modulation technique has better noise per-
formances, simultaneously offering the possibility of transmitting
multiple signals hidden within the same chaotic carrier. Nevertheless,
the low-pass filtering effect of adaptive algorithms decrease the
bandwidth of the transmitted signals. It was shown that the channel
noise, if moderate, besides its well-known negative effect on the signal
recovery, can improve the confidentiality of the transmission by low-
ering the identification chances of an unauthorized receiver. As it has
been pointed out in previous publications as well, the performances of
communication systems using chaos are poorer compared to classical
methods. However, the parameter modulation method can be used
with good performances in digital data encryption, the results of this
approach to be published elsewhere.
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