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Figure 1. General single-bit û�
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Nonlinear Stabilization Techniques for û�
Modulators: A Comparison

Adrian LEUCIUC*

Abstract 2 State space description of û� modulators

Three nonlinear stabilization techniques for higher-order, To justify the use of the three nonlinear stabilization
single-loop and single-bit û�  modulators are presented techniques to be presented in section 3, let us write the
in this communication. The performances of the three state equation for the general structure of a discrete-time,
methods are analyzed for the topology with distributednormalized (V =1V), single-bit û� modulator (Figure 1)
feedback [1], but the techniques can be extended to other
single-loop topologies. The stabilization mechanism is
activated only if the modulator overload is detected.
Thus, the  peak SNR achievable with a modulator
without such stabilization circuitry is preserved. The
performances of the presented methods are compared by
measuring the SNDR of the stabilized modulators. 

1 Introduction following only the discrete-time case.

Higher-order, single-loop and single-bit û� modulators
are known for their instability when driven by large input
signals, with amplitudes close to the reference voltage of
the feedback D/A converter. The higher the order of the
modulator, the lower is the maximum admissible input
guaranteeing stability. The lack of rigorous analytical
results on the stability of modulators of order three and
higher determined the designers to use intuitive
techniques for stabilizing them. There are several
nonlinear stabilization methods used for ensuring the
global stability of higher-order modulators: bounding the
state variables values (clipping the output of integrators)
[2], resetting the integrators when oscillations are
detected [3], addition of local feedback signals at the
input of integrators [4, 5]. The first two methods
introduce large distortions in the output modulated
signal, especially when the input signal continuously
overloads the modulator for an extended period of time.
The modulators stabilized using the method presented in
[4, 5] generate a multi-bit output signal, making thus the
subsequent digital filtering more complex. In this
communication we present some new or modified
techniques for stabilizing the higher-order, single-loop
and single-bit û� modulators. The proposed goal to be
achieved is the maximization of the signal to (noise +
distortions) ratio, SNDR, when the modulator is overload
by large amplitude input signals.

ref

where x[k]  is the state vector, A  is the state matrix,Nx1     NxN

b , b , and c are Nx1 vectors, d is a scalar. Since a1  2

continuous-time û� modulator can be transformed into
a discrete-time equivalent [6], we will consider in the

The analysis of the global dynamics of such a
nonlinear system is difficult to perform. It is much easier
to consider the linear maps in the two partitions of the
phase space corresponding to the two possible values of
the output variable v[k]

The difference equation (2) can be easily solved using
the Z transform. Let us consider k=0 the time instant
when the phase orbit crosses the boundary between the
two phase space partitions, and x =x[0] the initial0

condition for the corresponding linear map. We have

where X(z)=[X (z) X (z) ... X (z)] , X (z)=Z{ x [k]},1  2   N  n n
T

n=1,..., N.
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Figure 2. Cascade of integrators with distributed feedback topology

(4)

For simplicity, we will restrict the discussion to the operation bounds. The method is extremely simple to
topology of cascade of integrators with distributed implement, especially in a switched capacitor realization.
feedback (Figure 2), but the results can be extended to However, since there are no parameters to control the
other loop filter configurations. In this case, due to the stabilization mechanism, the generated distortions could
particular form of the state matrix A (lower triangular,
with ones on the main diagonal), the denominator of each
component of the vector X(z) contains factors of the
form (z-1) , i=1, ..., N+1. This means that all the positivei

terms in the numerator of X (z) will determine ann

increase in x [k], whereas the negative terms will tend ton

decrease the state variables. The modulator becomes
overload when the initial condition x  and input u[k]0

have all large values of the same sign, determining a
further increase in the absolute value of the state
variables. The negative feedback is not able anymore to
balance this behavior, but only after a rather long period.
The effect is an output containing long strings of bits 1
or 0, a sign for instability.

From the discussion above we can derive two
procedures for stabilizing the modulator: when overload
is detected, increase  the negative feedback, or decrease
the influence of the forward paths. We can detect when
the modulator is overload looking only at the output of
the loop filter, before the quantizer (global overload
detection), or we can check all integrator outputs (local
overload detection). The numerous simulations that have
been carried out proved that nonlinear stabilization based
on local overload detection has better performances
compared to the one using the global overload detection.

3 Stabilization techniques

3.1. Method 1: zeroing the integrator input

This method consists in switching to ground, when
overload is detected, the integrator inputs connected to
the outputs of previous integrators or to the input signal
(Figure 3a). Thus, the difference equation describing the
functioning of the integrator becomes

and taking into account that during overload the state
variable has the same polarity as the output signal v[k],
the integrator output will return shortly within the normal

be large.

Figure 3. Block diagrams illustrating the nonlinear
stabilization techniques: (a) method 1; (b) method 2; (c)
method 3.
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Figure 4. Root locus at the variation of quantizer
gain

(a)

(b)

3.2. Method 2: adding local feedback signals

This technique, depicted in Figure 3b, was proposed in at the variation of quantizer gain from 1 to zero is plotted
[4] and further improved in [5]. Upon the detection of in the case of a third order modulator.
integrator overload, an additional negative feedback The last two stabilization methods can be seen as
signal is applied at its input, determining the output to introducing controlled leakage in the integrators, upon
return within the normal operation bounds. In [4, 5] the detection of overload. Considering that overload
modulator was augmented with a digital cancellation detection corresponds to the limit of stability (poles on
circuitry, generating a multi-bit output: 9-bit in [4], 4-bit the unit circle), the effect of integrators’ leakage over the
in [5], respectively. The parameters associated with theroot locus is shown in Fig. 5, for the same third order
stabilization blocks were chosen in such a manner to modulator. It can be seen that the poles are moved inside
reduce the complexity of the digital cancellation the unit circle, stabilizing the modulator
circuitry. Without this cancellation, the distortions of the
stabilized, single-bit modulator can be very large.
Furthermore, good matching between the parameters of
the analog and digital blocks is required, as in the case of
cascaded û� modulators. The approach presented in this
communication optimizes the parameters of the
stabilization circuitry, k , in order to achieve then

maximum SNDR. The obtained performances are
comparable with the ones obtained in [4], but worse than
the results reported in the improved modulator of [5].

3.3. Method 3: using nonlinear feedback

This approach can be seen as a generalization of the
nonlinear stabilization method based on bounding the
integrator outputs. Each integrator is augmented with a
nonlinear block in the feedback path, as is shown in
Figure 3c. Instead of using a hard limiter, the slopes of
the feedback nonlinearity are finite, equal to k  for the n-n

th integrator. Again, we have to optimize the parameters
k  in order to maximize the SNDR.n

The efficiency of the last two methods can be also section 3 have been tested in the case of a third order û�

justified if we model the one-bit quantizer using the modulator with the topology of Figure 2. The shaping
description function, associating to it a signal dependent filter has a noise transfer function of Butterworth type
gain [7]. In this case, increasing the level at the input of with a maximum gain of 1.5 [8, 9] that guarantees
the quantizer, its gain will decrease and the poles of the stability for inputs with amplitudes smaller or equal to

noise transfer function may move outside the unit circle.
This behavior is depicted in Fig. 4 where the root locus

Figure 5. Root locus at the variation of integrators
leakage, quantizer gain=0.3: (a) 2  integrator; (b) 3nd   rd

integrator

4 Simulation results and conclusions

The three nonlinear stabilization methods described in



(b)

(a)

approximately 0.75. The integrator gains have been Further work should be performed in this area. In the
scaled to obtain maximum dynamic range. Since we were absence of analytical expressions for computing the
not able to derive a rigorous method for computing the parameters of the stabilization circuitry to maximize
optimum parameters of the stabilization circuitry SNDR, one should derive some numerical algorithms to
ensuring the maximum SNDR, numerous simulations solve this problem. Furthermore, a prediction mechanism
have been carried out in order to determine these values. of possible instability should be developed and the
The results are summarized in Figure 4 where the stabilization circuitry to be activated in a smooth manner.
simulated SNDR for a third order modulator, without
and with stabilization circuitry using the three methods,
is plotted. The oversampling ratio is 64 and the
modulator has been driven by a sinusoidal input  with [1] S. R. Norsworthy, R. Schreier, and G. C. Temes
frequency f /256, f  being the sampling rate. The (Eds.), Delta-Sigma data converters: Theory,s  s

following parameters have been used: method 2: k =0, design, and simulation, IEEE Press, New York1

k =0.08, k =0.6; method 3: k =0, k =1.1, k =0.68. It can 1997.2  3    1  2  3

be easily observed that the peak SNR of the original [2] R. W. Adams, “Design and implementation of an
modulator is preserved by all three stabilization methods. audio 18-bit analog-to-digital converter using
The droop in SNDR for large amplitude input signals is oversampling techniques,” J. Audio Eng. Soc., vol.
larger for method 1 and smaller for the last one. 34, pp. 153-166, March 1986.
Nevertheless, the simplicity of the first method can [3] F. Op’t Eynde, G. M. Yin, and W. Sansen, “A
compensate this disadvantage. CMOS fourth-order 14b 500k-sample/s sigma-delta

Figure 6. SNDR for the original and stabilized third-
order û� modulator: (a) entire plot; (b) detail.
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