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ABSTRACT

Resistive networks can be used as spatial filters to aver-
age the random errors in arrays of analog cells, specifi-
cally for decreasing the offsets in flash and folding A /D
converters. In this communication the critical condi-
tions the averaging networks have to satisfy are pointed
out and the optimal topology, order, and parameters of
the resistive grids are identified for each of the two ADC
architectures.

1. INTRODUCTION

Flash and folding architectures represent two of the imple-

mentation approaches for high-speed A /D converters (ADC).

Flash ADCs do not require front-end sample-and-hold am-
plifiers and this makes them the best approach for high-
speed applications. However, the flash architecture is lim-
ited to low resolutions because of the exponential depen-
dence of the dissipated power and die area on the effective
number of bits. The folding ADCs use analog signal pre-
processing to decrease the number of comparators in a flash-
type converter. The folding operation reduces however the
maximum frequency of the signals that can be converted,
drawback that can be eliminated by a front-end track-and-
hold circuit (with its own limitations and disadvantages).
In both flash and folding architectures there is always a
trade-off between speed and accuracy. Thus, by decreasing
the sizes of the transistors used in the input stages one can
increase the conversion rate, but at the expense of larger
input offsets, therefore reduced accuracy. An effective tech-
nique for decreasing the offsets in an array of amplifiers was
initially proposed in [1] in the case of a flash ADC. Lat-
eral resistors have been inserted between the preamplifier
outputs of adjacent comparators to average their random
offsets while maintaining their speed. This technique has
been used in other subsequently reported implementations
of both flash and folding ADCs [2]-[6]. A complete and
thorough analysis of the averaging mechanism in the case of
flash ADCs has been presented in [7], the authors proposing
also an algorithm to optimally design a flash and averaging
ADC. All the references cited above are using only first-
order resistive networks for averaging. In [8] it has been
shown that improved performance can be achieved with a
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second-order active resistive spatial filter for offset averag-
ing. All the results presented in this communication refer
to the case of second-order resistive networks.

2. FRONT-END STAGES OF FLASH AND FOLDING
A/D CONVERTERS

To better understand the offset averaging technique we need
to correctly identify the problem. Figures 1 and 2 respec-
tively, show the input stages of the flash and folding ADC
architectures, including the offset averaging networks. The
preamplifiers (flash ADC) or folding amplifiers (folding ADC)
inject currents into the averaging resistive network and the
voltage at a specific output node is set by the contribution
of all cells in the array.
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Fig. 1. Input stage of a flash ADC.
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Fig. 2. Input stage of a folding ADC.

The global spatial distribution of the output currents
for both architectures is shown on top of Fig. 3. In the
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same figure the spatial distribution of currents for a spe-
cific value of the input voltage is depicted, the input volt-
age having values in the mid, lower, and respectively upper
range. For the same number of zero crossings the folding
architecture has less cells in the input stage than the flash
ADC, decreased by the folding rate. Whereas this consists
the main advantage of the folding architecture in terms of
power dissipation and die area, it may be a drawback from
the point of view of offset averaging. When mismatches are

(a) Flash ADC (b) Folding ADC

Fig. 3. Current distribution for the flash and folding ADCs.

considered, the ideal current samples shown in Fig. 3 will
be affected by random errors, which can be seen as spatially
distributed white noise. The offset averaging network acts
as a spatial filter that should (i) remove as much as pos-
sible the errors and (ii) preserve the ideal zero-crossings of
the input signal. As it will be shown in the next sections,
depending on the topology of the averaging network, these
two conditions can be opposed to each other. At the same
time, the offset averaging network should not affect (to a
great extent) the gain of the individual amplifiers.

3. OFFSET AVERAGING NETWORKS AS SPATIAL
FILTERS

A section of a second-order offset averaging resistive net-
work is shown in Fig. 4, in a single-ended version. The am-
plifiers are represented by current sources in parallel with
resistors Rp modeling their finite output resistance. A nodal
analysis leads to the following difference equation

yln] = a(yln—1]+yln+1]) +b(yn — 2]+ yln+2]) +
+(1 — 2a — 2b)z[n], (1)
where
Gy Gs

“= Go + 2G1 + 2G>’ b= Go + 2G1 + 2G>

and z[n] = Rol[n] is the voltage at node n in the absence
of lateral resistors. In the case of an infinite network, the
node voltages y[n] are given by the convolution product be-
tween the input z[n] and the symmetrical two-sided impulse
response hing[n] obtained by inverse Z-transform from the
transfer function
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Fig. 4. Second-order resistive spatial filter.

The spatial stability of the infinite resistive network de-
scribed by (1) and the properties of its frequency response
have been analyzed in [9]. It has been shown that a max-
imally flat low-pass filter can be obtained if a = —4b and
0 < a < 2/3. The -3dB spatial bandwidth of the maximally
flat filter is given by

\/(2—\/§)a(2—3a)

2a

cos(w_sqp) =1+

An infinite network will ensure the zero crossings of the
output voltages y[n] correspond to the ones of the input
currents I[n] (odd symmetrical input convoluted with an
even symmetrical impulse response). However, in the case
of finite resistive grids different boundary conditions will
generate more or less, smaller or larger errors in the zero
crossings of the outputs.

4. EFFECT OF BOUNDARY CONDITIONS

There are various approaches of obtaining a finite resistive
grid from an infinite one, corresponding to different bound-
ary conditions imposed on the difference equation (1). One
can terminate the network in open-circuit, in short-circuit,
or using a resistive termination. Another possibility is the
ring connection in which one end of the network is con-
nected to the other end. This last configuration and the re-
sistive termination using an optimal resistive two-port [10]
are the only ones with a shift-invariant convolution kernel
h[n]. However, none of the obtained finite networks will
preserve the correctness of the zero-crossings with the ex-
ception of the center one. This is justified by the fact that,
even in the case of an even symmetrical impulse response,
the input samples are disposed symmetrically only around
the center zero crossing (see Fig. 3). Therefore, depend-
ing on how quickly the impulse response decays, the errors
in the zero crossings introduced by the edge effect will be
smaller or larger. This effect is amplified in the case of the
folding architecture where the number of cells is reduced.
Simulation results showing the errors of the output zero
crossings for various boundary conditions are plotted in Fig.
5. For both the flash and folding architectures a number of
80 zero crossings has been chosen and 16 cells are oper-
ating simultaneously in the linear region. The parameters
(a,b) of the network have been computed to correspond to
a maximally flat second-order spatial filter with bandwidth
of w/32. Obviously, one can always choose the parameters
of the spatial filter in such a way that the errors are below
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an imposed INL value. However, this usually means either
a poor offset averaging or a significant decrease in the gain
of amplifiers. Nevertheless, there is one possible network
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Fig. 5. Effect of boundary conditions: o - short-circuit; x -
open-circuit; A - optimal resistive termination; ¢ - constant;
* - ring; V - Moebius.

configuration which eliminates most of the zero-crossing er-
rors. One can always take advantage of the fully differential
implementation of the input stage to build a Moebius-like
topology in which the ends of the resistive strings connect-
ing the non-inverting outputs of the amplifiers is connected
to the opposite ends of the resistive strings connecting the
inverting inputs, and the other way round. This way, one
obtains a 2M-length ring-connected network with an odd
symmetrical distribution of input samples (excepting the
ends where some amplifiers are not yet in linear region).
The output zero crossings will correspond to the input zero
crossings, except for a finite number which does not depend
on filter parameters, but only on the number of cells which
are simultaneously operating in the linear region. This case
is also depicted in Fig. 5.

5. OPTIMAL OFFSET AVERAGING

In the case of a M-length ring connection the convolution
between the input signal and the finite convolution ker-
nel h[n] is equivalent to the M-length circular convolution
between the input signal and the impulse response of the
infinite network hnf[n]. The Moebius-like resistive grid
will preserve this property with the only difference that the
length of the network connecting M fully differential cells is
2M. In spatial frequency domain, this operation translates
to a multiplication of the 2M-point Discrete Fourier Trans-
forms (DFT) of hing[n] and of the input signal : Y[k] =

H[k]X[k], k = 1..2M. The DFT of the spatial filter impulse
response is obtained by sampling the frequency response (2)
at kr/M, with k = 0..2M — 1.

Moreover, for the Moebius connection the input signal
is odd symmetric because it results from concatenating the
spatial signal distribution (Fig. 3) with its negated version
(z[n] = —z[n + M], n = 1...M). The DFT computed for
odd symmetric signals with a length of 2M yields:

M
X[k = 2> znle T, odd k

X[k = 0, even k

In a real case, offsets are added to the useful signal, and
they are also odd symmetrically distributed over the net-
work. Assuming random and uncorrelated offsets, their
spatial power spectrum density will have equal odd sam-
ples and null even samples and it will sum with the ideal
signal power spectrum. In the following the particular case
of folding ADCs will be discussed, but the results can be
applied with minor changes to flash ADCs.

For a correct functioning of the folding ADCs the in-
put stage linearity is not important, but only the zero-
crossings’ accuracy. Hence, it is acceptable to change the
signal shape as long as the zero-crossings are preserved. The
zero-crossings are generated by the first spectral line X[1]
of the ideal input signal. The rest of the spectral lines do
not provide any useful information and can be eliminated.
This conclusion is particularly important for offset averag-
ing and shows that a spatial filter can be used to reduce
the effect of offsets. However, the offset spectral line over-
lapped over the useful signal cannot be removed, becoming
the fundamental limitation of the spatial filtering.

One should take in account that, in a physical imple-
mentation, the value of the signal at the output of the fold-
ing amplifier cannot be too high due to the finite supply
voltage. Saturation compromises the effect of spatial fil-
tering because the saturated signal does not convey any
information about the amplifier offset. Thus, the filter gain
is inferred from the maximum amplitude attainable by the
output signal without saturating the amplifiers. If the fil-
ter is almost ideal (i.e. the value of the first spectral line
is much larger than the others), the shape of folding signal
will change from triangular to sinusoidal and the filter gain
is given by the amplitude of the first spectral component.
The offsets of the spatial filtered signal (referred to the in-
put) can be derived as a function of the offsets of the signal
before filtering:

2
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where gz, gy, Oiz, Oiy represent the gain around a zero-
crossing and, respectively, the standard deviations of the
input referred offsets of the folding stage before and after
filtering. To find the optimum filter, a cost function is de-
fined as the power of offsets:

Z‘H[QJH%” (4)
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The problem reduces now to minimizing the cost function
C with a constraint. The constraint is given by the filter
gain for the useful signal, set by the value of its first spectral
line:

™

H(3) =6 (5)

Equation (5) generates a family of lines in the (a,b) plane,
all of them passing through the point (ao, bo) corresponding
to:

1 — 2ag — 2bo
1 — 2ag cos(m/M) — 2bg cos(2n/M) = 0

The minimum cost is reached in the point (ao, bo), but the
filter with coeflicients ag and bg is unstable. Around (ag, bo)
the cost function increases with distance (Fig. 6). One
can choose a stable point (a,b) on the line defined by (5)
as close as possible to (ao,bo), trading off a small penalty
in offset rejection for stability and a smaller sensitivity to
coefficient variations. Considering the filter almost ideal the
INL improvement can be derived from (3) as:

Oiz M pr
INLimp = 20 =\ 55
iy
where p = m is the amplitude of the first

spectral component of the normalized triangular folding sig-
nal. The DNL is measured as the difference between two
adjacent quantization levels: DNL[i] = y[i + 1] — y[¢]. In
frequency domain, this yields:

DNL(/*) = 2sin 5 e/ B+ V)

DNL computation corresponds to a supplementary high-
pass filtering of the signal. The ideal filter cancels all the

high-order spectral components and also minimizes the DNL.

Using the same approach as for INL improvement computa-
tion, the DNL improvement can be approximated as follows:

DNLiz = 20i
2 . ™
DNL,, = 2G i sin (m) Cox
DNLipy = DNL;, :&DNLOE :7Tp . v M
DNL;, gsDNL,, 4 sin(n/2M)

The values obtained for DNL improvement are much higher
because the filter introduces a strong correlation between
offsets of the adjacent amplifiers.

6. CONCLUSIONS

The second order resistive grid with a Moebius-like topol-
ogy is shown to be optimal in terms of minimizing the zero-
crossings errors in flash and folding ADCs. Moebius topol-
ogy preserves the correctness of most of the zero-crossings
without limiting the offset averaging. A second order aver-
aging grid can remove the offsets in an optimal manner for
a large range of gains.
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Fig. 6. Normalized cost function around the ideal point
(ao,bo) for M=18
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