Cristian Ferent

RESEARCH INTERESTS

- Computer Aided Design Techniques for Mixed-Signal Design Automation
- Modeling and Characterization Methodologies of Integrated Circuits
- Distributed Data Modeling for Cyber Physical and Embedded Sensing Network Systems
- Hardware-Software Co-design for Systems-on-Chip

TEACHING INTERESTS

- VLSI Design Automation
- Embedded Systems Design
- Integrated Devices and Circuits
- Electrical Circuit Analysis
- VLSI Systems Design
- Hardware-Software Co-design
- Programmable Mixed-Signal Systems-on-Chip
- Data Mining Methods for Electrical Engineering

EDUCATION

Ph.D. in Electrical Engineering

Stony Brook University, Stony Brook, New York

- Dissertation Title: Systematic Integrated Circuit Classification Schemes for Computer Aided Design using Data Mining Techniques
- Advisor: Prof. Alex Doboli

M.S. in Electrical Engineering

Stony Brook University, Stony Brook, New York

B.E. in Telecommunications

Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Curriculum Vitae

December 2008

July 2007

August 2013 (expected)

RESEARCH EXPERIENCE

Research Assistant, Stony Brook University

September 2009 to present

Mentor: Prof. Alex Doboli

- Researched and developed a novel technique for systematically producing comparison models for integrated analog circuits; Several industrial partners expressed their interest in using the methods
 - Utilized dual matching of topologies and symbolic expressions to find nodes with similar behavior among different circuits
 - Characterized how dissimilarities among designs modify the design trade-offs, the achievable performance trends, and the hardness to find solutions
 - Developed an axiomatic model to express concept structures in analog circuit design based on differences and similarities in circuit topology, behavior, and performance
- Explored methods to automatically generate hierarchical classification schemes for sets of integrated analog circuits
 - Served as a systematic way of relating one circuit design to alternatives for topology selection
 - Considered novel circuit linearity models that can highlight the mechanisms through which design performance is enhanced
- Studied and evaluated the uniqueness and variety of the design features present in stateof-the-art analog circuits
 - Studied innovation metrics developed for circuit design to illustrate solution space coverage and suggest directions along which new design features may be found
 - Analyzed the evolution of design uniqueness and variety across time and fabrication process to identify various analog circuit innovation trends
- Investigated methods for optimizing the aggregation of sampled data from geographicallydistributed cyber-physical systems while satisfy timing, precision, and resource constraints

 Applications included real-time gas cloud detection and environment monitoring

Graduate Research, Stony Brook University

September 2007 to September 2009

Mentor: Prof. Alex Doboli

- Developed distributed data aggregation methods for networks of embedded systems
 - Efficiently implemented data cube computation and frequent pattern matching for limited resource network nodes
- Proposed a robust algorithm for mapping virtual communication networks onto partiallyknown physical grid networks of reconfigurable nodes
 - Capable of automatically generating data collection paths while encountering network failures such as broken links or node malfunctions
- Worked on automated selection of the design points used in dynamic reconfiguration of analog-to-digital converters for sensor network applications

 Synthesized Pareto points for different performance trade-offs and implemented online selection of the best candidate

PROFESSIONAL SERVICE

Reviewer for IEEE Transactions on CADICS

Reviewer for Integration – The VLSI Journal

 Reviewed manuscripts on analog and RF circuit synthesis using evolutionary techniques and on automated hierarchical sizing and biasing strategies

TEACHING and MENTORING EXPERIENCE

Graduate Research Supervisor, Stony Brook University

- Coordinated and advised teams of graduate students working to develop optimized implementations of systematic integrated circuit comparison methodologies
 - Investigated techniques included symbolic model and physical layout matching

Teaching Assistant, Stony Brook University

- Embedded Microprocessor Systems Design
 - Assignments included supervising laboratory work, and lecturing
 - Aided in development and verification of laboratory modules using a vast range of peripheral devices
- VLSI Systems Design
 - Supervised students during laboratory and project activities, which includes RISC microprocessor architecture design and realization of the physical design
- Design using Programmable Mixed-Signal Systems-on-Chip
 - Laboratory and project duties for both on-campus and on-line versions of the course
 - Developed on-line submission methodologies for illustrating design functionality
 - Assisted the instructor in developing interesting and challenging course projects
- Electronics
 - Held recitations for the undergraduate level course

LIST of PUBLICATIONS

Journal Papers

[1] **C. Ferent**, A. Doboli, "*Symbolic Matching and Constraint Generation for Systematic Comparison of Analog Circuits*", IEEE Transactions on Computer Aided Design of Integrated Circuits, **2013** (accepted)

Page **3** of **7**

September 2011 to present

Fall 2007 to present

September 2009 to present

January 2013 to present

- [2] C. Ferent, A. Doboli, "An Axiomatic Model for Concept Structure Description and Its Application to Circuit Design", Elsevier Journal on Knowledge-based Systems, 2013 (accepted)
- [3] **C. Ferent**, A. Doboli, "*Measuring the Uniqueness and Variety of Analog Circuit Design Features*", Integration The VLSI Journal, volume 44, January **2011**
- [4] C. Ferent, A. Doboli, "Analog Circuit Design Space Description based on Ordered Clustering of Feature Uniqueness and Similarity", Integration – The VLSI Journal, 2012 (under review)

Book Chapters

[5] C. Ferent, A. Doboli, "Improving Design Feature Reuse in Analog Circuit Design through Topological-Symbolic Comparison and Entropy-based Classification" in "Analog/RF and Mixed-Signal Circuit Systematic Design", M. Fakhfakh, E. Tlelo-Cuautle, R. Castro-Lopez (Eds.), Springer, 2013

Conference and Workshop Papers

- [6] C. Ferent, A. Doboli, "A Prototype Framework for Conceptual Design of Novel Analog Circuits", International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2012
- [7] C. Ferent, A. Doboli, "Systematic Comparison of Two Low-Voltage Amplifiers using Topology Matching and Performance Constraints", IEEE International NEWCAS Conference (NEWCAS), 2012
- [8] **C. Ferent**, A. Doboli, "Systematic Comparison of Analog Circuits through Dual Topological-Symbolic Matching", Design Automation Conference (DAC) WIP, **2012**
- [9] **C. Ferent**, A. Doboli, "A Symbolic Technique for Automated Characterization of the Uniqueness and Similarity of Analog Circuit Design Features", Design, Automation, and Test in Europe Conference (DATE), **2011**
- [10] C. Ferent, A. Doboli, "Towards Creative Analog Synthesis: A Symbolic Representation for Exploring Circuit Operation Principles", Frontiers in Analog Circuit (FAC) Synthesis and Verification, 2011
- [11] C. Ferent, M. Gilberti, A. Doboli, "Real-time Gas Cloud Detection by Data Aggregation in Networks of Embedded Sensors", IEEE International Systems Conference (SysConf), 2010
- [12] C. Ferent, V. Subramanian, M. Gilberti, A. Doboli, "Linear Programming Approach for Performance-Driven Data Aggregation in Networks of Embedded Sensors", Design, Automation, and Test in Europe Conference (DATE), 2010
- [13] C. Ferent, A. Doboli, "PNETMAP: Virtual Network Implementation on a Partially-known Physical Network", International Workshop on Dependable Network Computing and Mobile Systems (DNCMS), 2009
- [14] P. Sun, C. Ferent, M. Gilberti, A. Doboli, "Online AMS Frontend Reconfiguration for Sensor Networks Applications", European Conference on Circuit Theory and Design (ECCTD), 2009
- [15] C. Volosencu, D. Curiac, O. Banias, C. Ferent, D. Pescaru, A. Doboli, "Hierarchical Approach for Lighting Control in Future Urban Environments", IEEE - TTTC International Conference on Automation, Quality and Testing, Robotics (AQTR), 2008

[16] **C. Ferent**, A. Doboli, "*Formal Representation of the Design Feature Variety in Analog Circuits*", Design Automation Conference (DAC) WIP, **2013** (accepted)

LIST of PRESENTATIONS

Conference and Professional Presentations

- [1] A Prototype Framework for Conceptual Design of Novel Analog Circuits
 - Paper presentation at the International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, Seville, Spain, 2012
- [2] Northrop Grumman Corporation Stony Brook University HEALIX Kick-off Meeting
 - Presentation of the collaborative research efforts of Stony Brook University and Northrop Grumman Corporation, Stony Brook, NY, 2012
- [3] Towards Creative Analog Synthesis: A Symbolic Representation for Exploring Circuit Operation Principles
 - Paper presentation at the Frontiers in Analog Circuit Synthesis and Verification Workshop, Snowbird, UT, 2011
- [4] Linear Programming Approach for Performance-Driven Data Aggregation in Networks of Embedded Sensors
 - Paper presentation at the Design, Automation, and Test in Europe Conference, Dresden, Germany, 2010
- [5] PNETMAP: Virtual Network Implementation on a Partially-known Physical Network
 - Paper presentation at the International Workshop on Dependable Network Computing and Mobile Systems, Niagara Falls, NY, 2009

Teaching Presentations

- [6] Data Mining Applications in Analog Circuit Synthesis
 - Lecture at Stony Brook University for the Pattern Recognition graduate level course, Stony Brook, NY, October 2011
- [7] Introduction to Design using PSoC
 - Lecture at Hofstra University for the *Mixed-Signal System-on-Chip Design* undergraduate level course, Hempstead, NY, September **2008**
- [8] JAVA Programming Basics
 - Lecture at Hofstra University for the JAVA Programming Language undergraduate level course, Hempstead, NY, April 2008

AREAS of EXPERTISE and PROFESSIONAL SKILLS

Mixed-Signal Circuit Design Automation and Modeling

• Extensive experience with heuristic optimization, linear programming, hierarchical, knowledge based, and simulation based synthesis methods

- Expert knowledge of automated macromdeling of analog circuits and systems, including linear and nonlinear symbolic approaches
- Expertise with design knowledge representations, focusing on classification schemes to highlight commonalities and differences and their use in circuit synthesis

Distributed Data Mining in Networks of Embedded Systems

- Expert knowledge of data aggregation methods using both monotonic and non-monotonic aggregation functions
- Extensive experience with redundancy elimination, frequent pattern detection, real-time, hierarchical, and regression based distributed data mining schemes
- Expertise on constrained data aggregation path generation, including predictable error modeling for dynamic decision making
- Vast experience with embedded node interfaces, sensors, and peripheral devices

Microprocessor Devices

- Expert knowledge of the Atmel AVR family, including AVR Studio and IAR Embedded Workbench IDE solutions
- Extensive experience with *Cypress Programmable System-on-Chip (PSoC)* and with the *PSoC Designer* and *PSoC Creator* development environments
- Familiar with *Microchip PIC* devices and the *MPLAB* IDE package

Professional Skills

- Teaching and tutoring of undergraduate and graduate students at a university level
- Management and supervision of interdisciplinary projects
- Active collaboration with members of other research laboratories
- Analysis and presentation of data at international scientific conferences
- Assembly and C programming languages, Matlab/Simulink, and Verilog HDL
- Cadence IC design framework usage, setup, and configuration on Linux systems, including design kit integration
- Linux server management and configuration, including user accounts, webpage, SSH remote access, and FTP

AFFILIATIONS

- **IEEE** Institute of Electrical and Electronics Engineers
 - Graduate student member since 2009

MAJOR GRADUATE PROJECTS

Gas Sensor Array Front-end

- Designed the integrated analog read-out circuitry for a resistive gas sensor array
- System included self-calibration for accurately covering a large range of measured sensor resistance
- A low-power segmented current steering DAC, switched capacitor comparator, and $\Delta\Sigma$ ADC were implemented in a 0.6 μ m technology

Modeling of the SPU Architecture

- Used Verilog to implement a model of the SPU Architecture powering the Cell Processor in Sony Playstation-3
- Design was an 8-stage, dual issue pipeline using branch prediction and instruction forwarding mechanisms with a 128-bit data path width incorporating a floating-point ALU
- Instruction set was developed with focus on multimedia extensions

VLSI Design Automation Methods

- Implemented a set of C routines for automated circuit partitioning and placement
- Efficient data structures were developed for handling large circuit complexities
- Optimization algorithm cost functions were derived to minimize cutset size, interconnect length, and circuit area

VLSI Design of RISC Processor

- Designed the data path for a 5-stage pipelined microprocessor
- Used the Cadence IC design framework to implement the full custom design in a 0.6µm CMOS technology

GRADUATE COURSES COMPLETED

- VLSI Physical and Logic Design Automation
- Integrated Analog Circuits
- HW-SW Co-design of Embedded Systems
- MOS Transistor Modeling
- Pattern Recognition
- Auto ID Technologies
- Multi-agent Systems

- Advanced VLSI Design
- Advanced VLSI Signal Processing
- Solid State Electronics
- Bipolar Junction Devices
- Stochastic Systems
- Computer Architecture
- Computational Models

Spring 2008

Spring 2008

Fall 2007

Fall 2007