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An MCMC Sampling Approach to Estimation of
Nonstationary Hidden Markov Models

Petar M. Djurić, Senior Member, IEEE,and Joon-Hwa Chun

Abstract—Hidden Markov models (HMMs) represent a very
important tool for analysis of signals and systems. In the past
two decades, HMMs have attracted the attention of various re-
search communities, including the ones in statistics, engineering,
and mathematics. Their extensive use in signal processing and,
in particular, speech processing is well documented. A major
weakness of conventional HMMs is their inflexibility in modeling
state durations. This weakness can be avoided by adopting a more
complicated class of HMMs known as nonstationary HMMs.
In this paper, we analyze nonstationary HMMs whose state
transition probabilities are functions of time that indirectly model
state durations by a given probability mass function and whose
observation spaces are discrete. The objective of our work is to
estimate all the unknowns of a nonstationary HMM, which include
its parameters and the state sequence. To that end, we construct
a Markov chain Monte Carlo (MCMC) sampling scheme, where
sampling from all the posterior probability distributions is very
easy. The proposed MCMC sampling scheme has been tested in
extensive computer simulations on finite discrete-valued observed
data, and some of the simulation results are presented in the paper.

Index Terms—Gibbs sampling, hidden Markov models, Markov
chain Monte Carlo, nonstationary.

I. INTRODUCTION

H MMs have played a prominent role in many approaches
to statistical analysis of signals and systems. For ex-

ample, in speech processing, they are the ultimate tool for
various tasks including speaker and speech recognition [8],
[16], [21], [24]. They have been exploited in communications
for suppressing narrowband interference of code division
multiple access (CDMA)-spread spectrum signals [17] and
in blind equalization for noisy IIR channels [20]. HMMs
have also been used in target identification [3], [27], [32],
where, for example, the HMMs perform classification using
spatiotemporal sequences of radar range profiles [32]. In [23],
HMMs have been used to process electroencephalogram data
and, in [15], to conduct ion-channel analysis from patch-clamp
recordings. In modern biology, with the emergence of molec-
ular genetics and the work on the Human Genome Project, an
immense amount of data is being produced that require use of
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sequence analysis methods and where the HMMs seem very
well fitted for extracting information from the data [9], [10]. In
addition, current methods for automatic classification of protein
sequences into structure/function groups and DNA sequence
multiple alignment are carried out by HMMs [18], [19]. Other
areas of application include econometrics [7] and finance [28].

A major structural weakness of the conventional HMMs is its
inflexibility to model state durations. Their state durations have
fixed geometric distributions, and they imply a limited range of
applications of the HMMs [24]. In [11], Ferguson introduced
the variable duration HMM (VDHMM), whose state durations
are modeled by various types of probability distributions. These
models are more complex for analysis than the conventional
ones, but they are also considerably more flexible in modeling
signals, which significantly widens the range of their applica-
tions.

Most of the previous work on estimating the unknowns of
VDHMMs is on extending the methods of the conventional
HMMs, that is, on dynamic programming-based algorithms
and maximum likelihood estimators. Later, a different pa-
rameterization of the variable state durations was introduced,
where the state transition probabilities are explicitly modeled
as functions of time [29], [31] and, therefore, are referred to
as nonstationary HMMs (NSHMMs). A more recent article
that addresses NSHMMs is [4]. We show, however, that the
VDHMMs and the NSHMMs are equivalent but that the latter
are often more tractable for use. Recently, a Markov chain
Monte Carlo (MCMC) scheme has been applied for estimation
of conventional HMMs [1], [14], [26]. Here, we propose an
MCMC procedure for estimation of NSHMMs. It is assumed
that the observed sequence can be modeled by a NSHMM with
known number of states and that the state sequence and all the
model parameters are unknown. Although the models in this
paper are with discrete observation spaces, it should be noted
that the proposed methodology can be extended to models with
continuous observations spaces. We construct a Gibbs sampling
scheme where all the posterior distributions of the unknowns
are easy to sample from. From the samples of the posteriors
drawn after convergence, the state sequence and parameter
estimates of the model can straightforwardly be obtained.
Convergence is assessed by running several parallel Markov
chains and by computing thescale reductionof each estimated
unknown based on the between- and within-sequence variances
of the estimates. Simulation results of various experiments
for testing the performance of the approach are presented.
The main contributions of the paper are the extension of
the MCMC-based methods to estimation of NSHMMs (this
includes a variety of original details such as the block-wise
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Gibbs sampling, which we found empirically to improve the
convergence of the Gibbs sampler) and the establishment of
equivalence of the VDHMMs and NSHMMs.

II. REVIEW OF CONVENTIONAL HMMS

First, we provide a very brief review of conventional HMMs
and outline the main modeling problems related to them. Con-
sider a system that is described by a set ofdistinct states

, where , and . The states
of the system may change with time, and at the time instants

, they are denoted by , where . The dy-
namics of the system is described by a Markov chain, that is,
when at time the system is in state , there is a fixed proba-
bility that at time , it will be in state , where the proba-
bility depends only on the state at time. This is expressed by

The complete description of the state transitions is given by the
matrix , where

and

In many modeling scenarios, it is assumed that the state se-
quence is not known, i.e., it is hidden from the observer. Instead,
at every time instant, the system generates an observation
according to a probability distribution that depends on the state

. If the number of distinct observations is and the set of
observation symbols is , the probability
distributions of observed symbols are given by an ma-
trix , whose elements are known as emission probabilities
and are defined according to

where

Finally, to complete the specification of the model,
one needs to provide the initial state distribution defined by

, where ,
with . The three probability distributions de-
scribed by and are, in short, denoted by, or

Typically, a common assumption for an observed sequence
T is that its joint probability mass function

conditioned on the state sequenceT and the
parameters is given by

Fig. 1. Representation of a conventional HMM.

which means conditional independence of the observations. A
graphical representation of a conventional HMM is presented in
Fig. 1.

There are three basic problems related to HMMs [24], and in
order of increasing complexity, they are the following.

1) Given a set of observationsT and the
model parameters , the objective is to find
the probability of the observed sequence .

2) Given a set of observationsT and the
model parameters , the objective is to find
the corresponding state sequence.

3) Given a set of observationsT , the
objective is to find the state sequenceas well as the
model parameters.

The solutions to these three problems are well known [24].
The first problem can be solved efficiently by the forward-back-
ward procedure, the second, by the Viterbi algorithm, and the
third by the iterative method of Baum–Welch.

III. N ONSTATIONARY HMMS

An important weakness of the conventional HMM is its in-
flexibility to model state durations. If is the duration of a par-
ticular state, say , then the probability of is given by

The distribution of is thus geometric, and although in some
practical cases it represents physical reality reasonably well, in
a wide variety of applications, it is completely inappropriate.

One way of modifying the conventional HMM is by way
of introducing state duration probability mass functions ,
where , and , [11], [24]. These
models are known as variable duration HMMs (VDHMMs), and
their state sequences are generated along the following steps.

1) Generate from the initial state distribution .
2) Set .
3) Obtain the duration of the state , by sampling from

, where .
4) Set for for as long as

.
5) Set .
6) If , draw the next state from the transition prob-

abilities , where ,
and go back to 3; otherwise, terminate the procedure.

A graph that represents the generation of a VDHMM is given in
Fig. 2.

It is important to note that the methods used for solving the
three basic problems of conventional HMMs can be extended to
accommodate VDHMMs. The extensions, however, entail work
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Fig. 2. Representation of a VDHMM.

with a more complicated model and with larger number of un-
knowns.

A different parameterization of the state duration can be
achieved by allowing all the transition probabilities to be
functions of , which we denote by . More specifically,

is the probability that the system will switch from to
, given that the system has already been in the statefor

consecutive time units [29], [31], that is

The transitional probabilities are thus functions of time, and
therefore, we refer to these HMMs as nonstationary HMMs
(NSHMMs).

The generation of states according to the NSHMM proceeds
in a different way, and it can be summarized as follows.

1) Generate from the initial state distribution , and set
.

2) Record the duration of the current state.
3) Draw the next state from , where , and

.
4) If , set , and go back to 2; otherwise,

terminate the procedure.
A graphic representation of the generation of an NSHMM is
shown in Fig. 3.

Proposition 1: The relationship between the duration proba-
bility mass functions and the self-transition probabilities

is given by

(1)

Proof: It is straightforward to write

(2)

Since, in (2), is represented by the duration specific
for each , the probabilities can be expressed

...

Fig. 3. Representation of an NSHMM.

or in general

Here, we point out that the self-transition probability is
defined as the ratio of probabilities of two events: the probability
that the state duration is greater thanand the probability that
the state duration is greater than or

duration of
duration of

In [31], the s were expressed in terms of the cumulative
distribution function of the state duration
only, or

(3)

which leads to biased state durations. To verify this, we per-
formed a simple experiment of generating states whose dura-
tion distribution is Poisson with mean 15. For the self-transition
probabilities, we used (1) and (3). The obtained durations are
represented by the histograms given in Fig. 4(b) and (c), respec-
tively, which clearly show that (3) should not be used.

The outward state transition probabilities can be
obtained from , where is the transition
weight for state from , given that the duration ofhas been
. For all and all , the weights have to satisfy

The s do not necessarily have to be functions of. Of
course, there is a tradeoff between using time varying transition
weights and constant weights . With time-varying
weights, one can capture more subtle features of the hidden
stochastic process, but the estimation of these weights is much
more tedious than that of the constant weights. In this paper,
the transition weights are regarded as constant parameters, and
therefore, we write

(4)

Proposition 2: The NSHMM with constant state transition
weights is equivalent to Ferguson’s [11] type VDHMM.

The proof is omitted because it is straightforward, and in-
stead, a simple example is provided. Suppose we have a state
sequence . Its joint probability obtained by
the VDHMM is

(5)
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Fig. 4. (a) Poisson probability mass function of state duration with mean 15.
(b) Histogram of generated durations by using (1). (c) Histogram of generated
durations by using (15).

where denotes the set of parameters of the VDHMM. The
joint probability found by the NSHMM is

where are the parameters of the NSHMM. Using (1) and (4),
we get

After cancellation, we can see that

which is the same as in (5) if we set the s equal to
the s.

In general, although the VDHMMs and NSHMMs are equiv-
alent models, we found that the NSHMMs are more convenient
for use because the description of their data generating seems
more “natural,” and they are more tractable for analysis. In ad-
dition, the implementation of MCMC sampling for estimation
of the parameters and states of the models is then much easier.

IV. ESTIMATION OF NSHMMS BY MCMC SAMPLING

MCMC-based methods are procedures that, in the 1990s,
attracted great interest among researchers in the Bayesian
community [13]. Their advantage over alternative approaches
is in their capacity to work with high-dimensional and complex
models. In brief, MCMC sampling is a methodology for gener-
ating samples from a desired probability distribution function,
which is usually referred to as a target distribution. The sample
generation proceeds by an evolving Markov chain, and the
obtained samples are used for various types of inference. Here,
we do not provide a general description of MCMC procedures,
but we are referred to some excellent textbooks such as [12]
and [13], or, from a signal processing perspective, to [1]
and [22]. Of the several known MCMC schemes, we use the
Gibbs sampler, which effectively reduces the sampling from
high-dimensional distributions to sampling from a series of
low-dimensional distributions.

Let the state sequenceT be a discrete
time Markov chain, where , and

T is a sequence of observations whose
alphabet is . The unknowns are the state
sequence , the initial state probabilities, the state transition
weights , the emission probabilities , and the parameters
of the models that describe the state durations. Thus, now
is defined by . We make the assumption that
the durations of the various states follow truncated Poisson
distributions with different parameters. The truncated Poisson
is used to allow for use of additional information about the state
durations. This assumption, however, is not restrictive by any
means; the procedure that follows can be replicated with minor
modifications with any probability mass function. If we do not
want to assume any parametric distribution, the procedure is still
applicable.

The objective is to estimate the unknowns, which areand
, and for that purpose, we use the Bayesian

methodology applied via MCMC sampling. It should be noted
that all the information about the unknowns is contained in the
posteriors of the unknowns. The MCMC sampling methods
draw samples of the unknowns from their posteriors so that
once the sampling is completed, the posteriors can be approxi-
mated using these samples. Moreover, the samples, can be used
to obtain different types of estimates of the unknowns.

A. Specification of the Priors

Before we proceed with the Gibbs sampling scheme, we
need to specify the prior distributions of all the unknowns.
The likelihoods of the initial state probabilities, the state
transition weights, and the emission parameters are modeled by
multinomial distributions. A standard prior when the likelihood
is a multinomial distribution is the multivariate Dirichlet
distribution [2]; therefore, we model the priors of the initial
state probabilities, the state transition weights, and the emission
parameters by multivariate Dirichlet distributions. In particular,
if is distributed according to the Dirichlet distribution, where

, and , we write

where are the parameters of the distri-
bution, and is the normalizing constant given by

In addition, we assume that the durations of the various states
follow truncated Poisson distributions with different parame-
ters, and for the priors of these parameters, we choose Gamma
distributions. The hyperparameters of all the priors should be
selected using prior knowledge about the problem at hand. In
our simulations, we found that our results were not sensitive to
the choice of the hyperparameters.

More specifically, the priors are defined as follows.

1) The prior of the initial state probabilities
is the multivariate Dirichlet distribution
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of dimension , or

2) The state durations are modeled by truncated Poisson dis-
tributions, i.e., the probability that the duration of state
is is given by

where is a parameter that identifies the Poisson distri-
bution of the th state, and . All the s have Gamma
distributions

The Gamma distributions are convenient because the pos-
terior of given is also Gamma distributed. Note that
the self-transition probabilities and the outward
state transition probabilities can be obtained from
(1) and (4).

3) For a given , the prior distribution of the state tran-
sition weights is a multivariate Dirichlet distri-
bution of dimension . We use the notation

T and write

We represent all the weights by the matrix , whose
size is and which is defined by T

.
4) The emission parameters also have multi-

variate Dirichlet priors ( -dimensional), i.e.,

where .

B. Gibbs Sampling Procedure

With the chosen priors, the Gibbs sampling procedure is
rather simple, and the steps of its implementation are carried
out as follows. At iteration , do the following.

1) Draw from the -dimensional multivariate
Dirichlet distribution according to

(6)

where denotes density, and is the Kronecker
delta function

otherwise.

In (6) and in the sequel, the superscripts in brackets denote
iteration number.

2) Draw , for , using

(7)

where , and is the
number of segments in state at iteration . (A
segment is a subsequence of equal states, where the
first and the last states of the sequence are preceded and
followed, respectively, by different states.)

3) For , draw from a multivariate
Dirichlet distribution, i.e.,

where is the number of transitions from stateto
state at iteration .

4) The s are obtained from (1), where is a trun-
cated Poisson distribution with parameter . Note that
we do not sample from the truncated Poisson distribution
but, rather, use it to compute the probabilities .

5) For , draw from a multivariate
Dirichlet distribution, that is

where is the number of symbols in state .
Note that the emission probabilities can be integrated out
instead of being sampled.

6) Draw from

where , and .

C. Block-Wise Gibbs Sampling

We have found that with the inclusion of an additional
block-wise sampling step, the speed of convergence of
our Gibbs sampler improves considerably. To explain the
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block-wise Gibbs sampling, we define another index set for
, where is the total number of segments. Let

be the th segment of with boundaries and ,
where and . Now, with two types of
indices and , the state sequence can be described by either
the collection of states or the collection of
segments with associated boundaries.

The revised Gibbs sampling procedure now consists of three
main steps

• sampling of ;
• sampling of ;
• sampling of .

The implementation of the steps is carried out sequentially,
where the sampling of and follows the procedure de-
scribed in the previous section. Thes are sampled according
to

The first factor in the last expression accounts for the state
sequence probability of the segment and the second factor
for the emission probabilities of the segment. Therefore, for
example, if the collection of segments after the second step
is , and we want to sample , we do so by
drawing the second segment from the probability mass function

, where and are
the instants that denote the first samples of the second and third
segments, respectively. Note that the block-wise sampling does
not increase the number of segments; it may only remove some
of them, which often induces faster convergence of the chain.

D. Problem of Label-Switching

In our problem, the states of the HMM were labeled as
. It is obvious that this labeling is arbitrary

and that the joint posterior distribution of the unknowns has
modes. The problem is that the likelihood function is the

same for all permutations of the states and their parameters. If
the prior is symmetric for all permutations of the parameters,
the posterior is also symmetric, which creates problems in
summarizing joint posterior distributions by marginal distribu-
tions and estimating unknowns by their posterior means. The
MCMC or any other iterative procedure would usually explore
only one of the modes of the posterior. This implies that a
postprocessing step would be needed in order to interpret the
obtained results. The postprocessing step would, in general, be
problem dependent as the arbitrarily labeled states would have
some specific physical meaning. Here, we do not address this
problem. For recent results on label switching, see [6] and [30].

V. ASSESSMENT OFCONVERGENCE

An important issue in the use of MCMC-based methods is the
assessment of convergence to the target distributions of the used
chains. Namely, it is important to diagnose how long a Markov
chain must be run before the generated samples can be consid-
ered drawn (approximately) from the stationary distribution of

the chain. There are various procedures for assessing conver-
gence, and they can be classified in various ways. For example,
some procedures use one chain to assess convergence and others
use multiple chains, or some can diagnose convergence of full
joint densities, and others cannot, or some methods are compu-
tationally intensive and others are not [5].

In our work, we have adopted a method based on multiple
chains and the use of between-sequence and within sequence
variances. Here, we briefly describe the procedure [12].

Let be a parameter that is being simulated withdifferent
chains, and let be the th sample in the th chain, where

, and . First, we compute the
between- and within- sequence variances and , where
the between-sequence variance is obtained from

with

and

and the within-sequence variance from

Then, the marginal posterior variance ofis evaluated using

Finally, we estimate thepotential scale reductionof by

Note that as declines to 1. A recommendation for
convergence assessment from [12], which is adopted here, is that
the potential scale reduction is computed for every parameter
and that s for each of them is below 1.2.

VI. SIMULATION RESULTS

We performed two experiments where the number of states
was and the number of emission variables was .
The length of the tested sequence was . The parameters
of the true model in the first experiment were

the Poisson parameters were

the transition weights were
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and the emission parameters were set to

In the second experiment, we changed the emission parameters
only to make the problem much more challenging. We used the
same state sequence as in the first experiment and generated the
observations using the following emission parameters:

In the two experiments, the parameters of all the Dirichlet dis-
tributions, the s, s, and s were all set to 1, and the Gamma
distribution in (7) had parameters and . The pa-
rameter of the truncated Poisson distribution was .
The initial state sequence was generated from uniform priors,
and it is shown in Fig. 5(a) (dotted line) together with the true
state sequence (solid line). As already mentioned, we used the
same initial state sequence in the second experiment, and it is
shown in Fig. 6(a). Note that the Dirichlet priors are noninfor-
mative. The Gamma priors of thes have two hyperparameters,
and the final result is robust to the choice of these parameters.
For example, the true values of , and are 10, 20, and 35,
respectively, and since the Gamma distributions have parame-
ters and , the true values of thes are in the tails of
the prior.

For estimation of the state sequence, we used the MAP esti-
mator, which is defined by

where

(8)

where is the prior of evaluated at , and is
the iteration number. The first two factors on the right of the
proportionality sign in (8) are computed according to

and

In Figs. 5(b) and 6(b), we have plotted the MAP estimates
together with the true sequences. In the first experiment, out
of 500 samples, there were only two mismatches, although,

Fig. 5. Experiment 1. (a) Initial state sequence (dotted line) and the true state
sequence (solid line) used in the simulation. (b) MAP state sequence (dotted
line) and the true state sequence (solid line).

Fig. 6. Experiment 2. (a) Initial state sequence (dotted line) and the true state
sequence (solid line) used in the simulation. (b) MAP state sequence (dotted
line) and the true state sequence (solid line). (c) Estimate of the state sequence
(dotted line) obtained by the EM algorithm combined with the Viterbi algorithm
and the true state sequence (solid line).

as can be seen from Fig. 5(a), the starting hidden chain was
completely different from the true one. In the second experi-
ment, we observed 23 mismatches out of 500 samples, and this
increased number is due to the more “ambiguous” values of the
emission parameters in the second experiment. In Fig. 6(c), we
see the results obtained by using the expectation-maximization
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Fig. 7. Experiment 1. Logarithm of the posterior probability of the estimated
state sequence at each iteration.

Fig. 8. Experiment 2. Logarithm of the posterior probability of the estimated
state sequence at each iteration.

method combined with the Viterbi (EMViterbi) algorithm
[24]. When the method was started with the same initial state
sequence as in Fig. 6(a), the method could not converge to a
solution close to the true sequence. After several trials with
modified initial sequences, it converged to the solid line in
Fig. 6(c), and it had 34 mismatches. In general, while running
the experiments, we observed the following: 1) The results
obtained by the EM Viterbi algorithm are not as accurate
as the results of the MCMC method, and 2) the EMViterbi
algorithm is sensitive to initializations.

Fig. 9. Experiment 1. Convergence assessment with five different Markov
chains. The estimated ^R from the last 1500 samples was 1.0026.

Fig. 10. Experiment 2. Convergence assessment with five different Markov
chains. The estimated ^R from the last 2500 samples was 1.0013.

The posterior probabilities of the estimated sequences of the
two experiments as functions of the iteration number are dis-
played in Figs. 7 and 8. It is observed that in the first experiment,
the chain needed about 150 iterations to converge, whereas in
the second, it needed more than 2000 iterations. Again, the con-
vergence depends on the parameters of the nonstationary HMM.

As explained before, the convergence of the MCMC samples
was assessed by using multiple chains. In Figs. 9 and 10, we
show five chains of for each of the two experiments. The es-
timated s of were 1.0026 and 1.0013, respectively. In the
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Fig. 11. Experiment 1. (a) Samples ofb at each iteration. (b) Histogram of
b . (c) Samples ofb at each iteration. (d) Histogram ofb .

Fig. 12. Experiment 2. (a) Samples ofb at each iteration. (b) Histogram of
b . (c) Samples ofb at each iteration. (d) Histogram ofb .

first experiment, the last 1500 samples were used in computing
and, in the second, the last 2500 samples.

Some of the parameter estimates are shown in Figs. 11–13.
The histograms were constructed from drawn samples after con-
vergence was assessed.

We made two additional experiments under identical condi-
tions, except that this time, we did not use block-wise sampling.
Some results are shown in Figs. 14 and 15. In the top figures, we
see the logarithms of the posterior probabilities of the estimated

Fig. 13. Experiment 1. (a) Samples of� at each iteration. (b) Histogram of
� . (c) Samples of� at each iteration. (d) Histogram of� .

Fig. 14. Experiment 1 (without block-wise sampling). (a) Log of the posterior
probability of the estimated state sequence at each iteration. (b) MAP state
sequence (dotted line) and the true state sequence (solid line).

state sequences. In the bottom figures, we observe the results of
the sequence estimates. This time, in the first experiment, there
were 14 mismatches [Fig. 14(b)], and in the second, there were
29 mismatches [Fig. 15(b)].

VII. CONCLUSION

We have presented a Gibbs sampling procedure for param-
eter estimation of NSHMMs. All the parameters of the model,
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Fig. 15. Experiment 2 (without block-wise sampling). (a) Log of the posterior
probability of the estimated state sequence at each iteration. (b) MAP state
sequence (dotted line) and the true state sequence (solid line).

except for the number of states, were unknown. The scheme is
easy to implement because it is straightforward to draw samples
from the conditional distributions that define the scheme. To im-
prove the convergence to the target distribution of the scheme,
a block-wise Gibbs sampling step was added. The experiments
showed quick convergence and very good accuracy of the esti-
mated states and model parameters.
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DJURIĆAND CHUN: MCMC SAMPLING APPROACH TO ESTIMATION OF NONSTATIONARY HMMS 1123

primary interests are in the theory of modeling, detection, estimation, and time
series analysis and its application to a wide variety of disciplines, including
telecommunications, biomedicine, and power engineering.
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