
Detection with particle filtering in BLAST systems

Yufei Huang
Department of Electrical Engineering

The University of Texas at San Antonio

San Antonio, TX 78249-0669

E-mail: yhuang@utsa.edu

Jianqiu Zhang
Department of Electrical and Computer Engineering

University of New Hampshire

Durham, NH 03824

Email: jianqiu.zhang@unh.edu

Petar M. Djurić
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Abstract— This work demonstrates the use of particle filtering
for detection in BLAST systems. A novel dynamic state-space
model (DSSM) is constructed for BLAST systems that is crucial
for development of particle filtering algorithms. The proposed
DSSM is based on QR decomposition and the output of the feed-
forward filter, and it evolves in space. The particle filtering solu-
tion does not suffer from error propagation, and our simulations
show that it greatly outperforms the V-BLAST and provides near
optimum performance.

I. INTRODUCTION

Recent studies on bandwidth efficient transmission for broad-
band wireless communications have been focused on the ex-
ploitation of spatial diversity. It has been shown that the use of
multiple transmitting and receiving antennas in rich scattered
multipath communication environments can provide enormous
capacity gain. The thrust of the work came with an architecture
called BLAST (Bell Laboratories Layered Space-Time) [1], [2].

The maximum likelihood (ML) or minimum mean-square er-
ror (MMSE) criteria provide optimum detection for BLAST
systems. However, the complexity of optimum detection ex-
ponentially increases with the number of transmitting antennas,
and thus imposes a prohibitive price for practical implementa-
tion of BLAST systems with many transmitting antennas. To
seek certain balance between complexity and performance, a
detection algorithm employing ordered successive interference
cancellation (OSI) was proposed and named V-BLAST (verti-
cal BLAST) [3]. Although the V-BLAST system is rather sim-
ple for implementation, its performance is limited due to error
propagation. To alleviate the problem, various new schemes
have been discussed, but the performance improvement has of-
ten been only marginal [4], [5], [6].

In this paper, we propose to use a sequential Monte Carlo
sampling algorithm, also known as particle filtering (PF) [7],
[8], for detection in BLAST systems. A distinct advantage in
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Fig. 1. BLAST system diagram.

detection by PF is that it can prevent error propagation and
hence achieve near optimum performance. To employ PF,
we demonstrate the possibility of constructing a dynamic state
space model (DSSM) for BLAST systems. It is based on QR
decomposition of the channel matrix and the output of the feed-
forward filter, and it evolves in space.

The remaining parts of the paper are organized as follows. In
Section II, we describe the system model, review the V-BLAST
system, and state the adopted methodology. In Section III, we
briefly review Monte Carlo and importance sampling, demon-
strate the DSSM of BLAST systems, and develop a PF solution
for detection. In Section IV, we present simulation results, and
in Section V, we make concluding remarks.

II. PROBLEM FORMULATION

A. System model

We consider a flat fading MIMO system as illustrated in Fig-
ure 1. At the transmitter, a single data stream is first divided into
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M substreams or layers, and they are then encoded, mapped,
and transmitted in parallel on the M transmitting antennas. The
receiver consists of N receiving antennas (assume N ≥ M ) and
at time t, the sampled discrete signal vector y can be written as

y = Hs + n (1)

where H is an N × M channel matrix which is known at the
receiver, s is an M × 1 vector that represents the transmitted
signal, and n is an N × 1 noise vector. The data are assumed
to have narrow bands, and therefore the channels are consid-
ered flat Rayleigh fading channels. Thus, the entries of H are
independent identically distributed (i.i.d.) zero mean complex
Gaussian random variables of equal variance σ2

n. The total sig-
nal power E[sHs] is P (H represents the Hermitian transpose),
and n is zero mean complex additive white Gaussian noise vec-
tor with covariance matrix E[nnH ] = σ2

nIN , where IN is the
identity matrix of dimension N . We are here concerned with
detection of the transmitted signal s from the receiving obser-
vations y.

B. Review of the V-BLAST scheme

An optimum solution to the detection problem is based on
the maximum likelihood (ML) principle. However, since the
complexity of the ML detection is exponential with the number
of transmitting antennas M , it is prohibitive to use it in prac-
tice. To achieve a reasonable trade-off between complexity and
performance, Foschini proposed a suboptimal algorithm based
on OSI and the receiver applying this scheme has been refereed
to as the V-BLAST receiver.

In a V-Blast receiver, the detection proceeds along the sig-
nal layers in a decreasing order of their signal-to-noise ratio. In
the detection of each layer, a two-step scheme with cancellation
and nulling is carried out. First, the estimated interference from
the previous layers is subtracted out from the receiving observa-
tions using the detected signals and then nulling is performed to
extract the desired signal layer. In fact, the V-BLAST receiver
was shown to be equivalent to a generalized decision feedback
equalizer (DFE) [9] and that its implementation based on DFE
requires less computational effort [10]. In the following, we
describe the V-BLAST algorithm from a DFE perspective. In a
later section, the proposed algorithm is developed based on this
representation.

In a V-BLAST receiver, first the channel matrix is decom-
posed according to the Gram-Schmidt QR decomposition [11]
as

H = (Q Q̄)
(

R
0

)
(2)

where Q and Q̄ are N ×M and N ×(N −M) unitary matrices,
R is an M ×M lower triangular matrix, and 0 is an (N −M)×
M matrix with all entries equal to 0. Then, in the feedforward
filter, we right multiply y with QH and obtain

ȳ = QHy

= Rs + n̄ (3)

or

ȳ1
ȳ2
...

ȳM

=





r11 0 · · · 0

r21 r22
. . . 0

...
...

. . . 0
rM1 rM2 · · · rMM









s1
s2
...

sM



 +

n̄1
n̄2
...

n̄M

(4)
where rij and n̄i are the ijth and ith element of the matrix
R and vector n̄, respectively, and n̄ is still an i.i.d. Gaussian
random vector with the same mean and variance as n.

Next, in the feedback filter, the symbols are detected succes-
sively from s1 to sM and at the m-th step, the decision statistic
is computed as

xm = ȳm−rm1ŝ1−. . .−rm(m−1)ŝm−1 = rmmsm+n̄m (5)

where ŝm+1, ŝm+2, · · ·, and, ŝM are the decisions made from
the previous steps and they can take either soft or hard deci-
sions. Notice that decision errors made in early steps propagate
and result in imperfect interference cancellation in later steps.
As a result, the V-BLAST receiver is not near optimum, and to
reduce the error in early steps, an ordering on y with respect to
the SNR is applied [5].

C. Decision criterion

We approach the problem from a Bayesian perspective and
in particular, we are interested in the marginalized minimum
mean square error (MMMSE) decision criterion. According to
MMMSE, the decision statistic for sm is expressed as

zm = E[sm|y] =
∑

s∈A
smp(s|y) (6)

where A = {a1, a2, · · · , aK} is the alphabet set of the con-
stellation in use and p(s|y) is the full posterior distribution. A
final decision on sm can be made by mapping zm to the nearest
constellation point in A.

The complexity of the MMMSE approach is the same as that
of the ML receiver since KM terms must be evaluated on the
posterior distribution, which makes the MMMSE method pro-
hibitive for practical use. In the following sections, we propose
to use particle filtering for estimation of zms.

III. THE PF DETECTION SCHEME

A. Review of Monte Carlo sampling

Monte Carlo sampling is a powerful method for calculating
high dimensional integrals [12]. It has been intensively stud-
ied by the statistics community in the past decade, and it has
become of great interest to researchers in the area of signal pro-
cessing in the past few years [13].

The use of the Monte Carlo method in computing the
MMMSE estimate (6) requires generation of random samples
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{s(j)}J
j=1 from the posterior distribution p(s|y), where J in-

dicates the sample size. Then (6) can be approximated by the
sample average as

zm ≈ 1
J

J∑

j=1

s(j)
m (7)

and the approximation can be shown to converge to zm as J
increases [14]. For our problem, J is usually much smaller
than KM , which makes the computation of (7) manageable.

One difficulty associated with the Monte Carlo method is the
direct sampling from p(s|y) because the calculation of the nor-
malizing constant of p(s|y) requires evaluation of all the KM

terms in the variable space, which again is intractable for large
M . To circumvent the difficulty, various sampling schemes
can be applied, and we describe here the importance sampling.
In the implementation of importance sampling, one first draws
samples {s(j)}J

j=1 from a trial importance distribution π(s|y),
which must be easy for sampling. Then, the weights of the
samples are calculated by

w(j) =
p(s(j)|y)
π(s(j)|y)

∀j. (8)

Next, the weights are normalized by w̄(j) = w(j)/
∑J

j w(j).
It should be noted that this normalization process eliminates
the necessity of knowing the normalizing constant of p(s|y)
and π(s|y) in computing the weights (8). These samples and
weights approximate p(s|y), and using them, we can estimate
zi in (6) by

zm ≈
J∑

j=1

w̄(j)s(j)
m . (9)

The effectiveness of importance sampling is affected by the
choice of the trial importance distribution. In general, the more
similar π(s|y) to p(s|y) is, the less samples are needed to
achieve the same performance.

B. The PF detector

As every Monte Carlo sampling algorithm, PF also requires
generation of random samples from a desired posterior distri-
bution. However PF allows for producing samples sequentially
as the unobserved states of the system evolve. One important
approach to implementing PF is by sequential importance sam-
pling (SIS).

PF is commonly used for dynamic systems. Recently it has
also been used as an alternative sampling method for static
systems [15]. There, the advantage of using PF is that it can
produce samples more effectively than the generic importance
sampling method. Nonetheless, it is in general not trivial to
apply PF for static systems.

When applying PF, especially to static systems, it is instru-
mental to identify a Markovian factorization of the posterior

distribution, or equivalently, to establish a DSSM for the prob-
lem. In our problem, the feedforward filter output provides us
with the possibility of constructing a DSSM, which evolves in
space from ȳ1 to ȳM . Particularly, s is a state variable and con-
sidered as the static parameter. By using the Markovian prop-
erty of the DSSM, the posterior distribution up to step m can be
factored as follows

p(s1:m|ȳ1:m) =
p(ȳm|s1:m, ȳ1:m−1)p(s1:m|ȳ1:m−1)

p(ȳm|ȳ1:m−1)
∝ p(ȳm|s1:m)p(sm)p(s1:m−1|ȳ1:m−1)

(10)

where the subscript 1:m denotes a collection of the vari-
ables with subscript of 1 to m, where for instance, s1:m =
{s1, s2, · · · , sm}. Now, to obtain samples from the posterior
distribution, we apply importance sampling with the trial im-
portance distribution chosen according to

π(s1:m|ȳ1:m) = p(sm|s1:m−1, ȳ1:m) (11)

p(sm−1|s1:m−2, ȳ1:m−1) · · · p(s1|y1)
= p(sm|s1:m−1, ȳ1:m)π(s1:m−1|ȳ1:m−1). (12)

The associated importance weight for the jth samples is calcu-
lated by

w(j)
m =

p(s(j)
1:m|ȳ1:m)

π(s(j)
1:m|ȳ1:m)

=
p(ȳm|s(j)

1:m)p(s(j)
m )p(s(j)

1:m−1|ȳ1:m−1)

p(s(j)
m |s(j)

1:m−1, ȳ1:m)π(s(j)
1:m−1|ȳ1:m−1)

=
p(ȳm|s(j)

1:m)p(s(j)
m )

p(ȳm|ȳ1:m−1)
p(ȳm|s(j)

1:m)p(s(j)
m )

p(ȳm|s(j)
1:m−1,ȳ1:m−1)

w
(j)
m−1

∝ p(ȳm|s(j)
1:m−1, ȳ1:m−1)w

(j)
m−1

∝ u(j)
m w

(j)
m−1 (13)

where the second equality is arrived by using the fac-
torization (10) and u

(j)
m is called the incremental weight.

In deriving the above equation, we utilized the fact that
p(s(j)

m |s(j)
1:m−1, ȳ1:m−1) = p(s(j)

m ), i.e., sm is independent of
data from other antennas and previous observations. We have
also ignored the term p(ȳm|ȳ1:m−1) because it is the same for
all samples and in any way it will be eliminated in weight nor-
malization. The importance distribution (11) is known as the
optimal importance function in the PF literature because it pro-
duces weights with minimal variance conditional on s

(j)
1:m−1

and ȳ1:m [7]. Examining (11) and (13), we notice that the sam-
ples and the weights can be obtained recursively based on those
acquired at step m − 1, and this recursive implementation of
importance sampling is known as PF. In the jargon of PF, s

(j)
m

is called a particle and s
(j)
1:m is referred to as a trajectory. Now
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suppose that at step m − 1, we have obtained the trajectories
{s

(j)
1:m−1}J

j=1 and the weights {w
(j)
m−1}J

j=1. Then the detailed
procedure at the mth step can be summarized by the following
chart:

For j = 1 to J ,
1) Draw a particle s

(j)
m from the trial distribution

p(sm|s(j)
1:m−1, ȳ1:m).

2) Append s
(j)
m to s

(j)
1:m−1 and obtain the extended trajec-

tory s
(j)
1:m.

3) Evaluate the incremental weight u
(j)
m and calculate the

weight w
(j)
m using (13).

Perform weight normalization by w̄
(j)
m = w

(j)
m /

∑J
j=1 w

(j)
m

In implementing the above PF procedure, we need to draw sam-
ples from the trial distribution p(sm|s(j)

1:m−1, ȳ1:m) and calcu-

late the incremental weights u
(j)
m . The essence of the two re-

quirements is the evaluation of the likelihood function

λk = p(ȳm|sm = ak, s
(j)
1:m−1)

= N (ȳm − rm,mak −
m−1∑

i=1

rm,isi, σ
2
n) (14)

for all ak ∈ A. Then, a sample ak from p(sm|s(j)
1:m−1, z1:m)

is drawn with probability λk/
∑K

i=1 λi which rests on the fact
that

p(sm = ak|s(j)
1:m−1, ȳ1:m)

∝ p(ȳm|bm = ak, b
(j)
1:m−1, ȳ1:m−1)

p(bm = 1|b1:m−1, ȳ1:m−1)

= p(ȳm|sm = ak, s
(j)
1:m−1)p(sm = ak)

= λkp(sm = ak)
∝ λk (15)

The last proportional relation is arrived from the fact that the
prior density of sm is noninformative and p(sm = ak) = 1

K .
Next, since

u(j)
m =

∑

sm∈A
p(ȳm|sm, s

(j)
1:m−1)p(sm) =

1
K

K∑

k=1

λk (16)

the incremental weight is also readily obtained from the λks.
When the algorithm is completed at iteration M , the tra-

jectories {s
(j)
1:M}J

j=1 and their weights {w̄(j)
M }J

j=1 approximate
p(s|ȳ), or equivalently p(s|y), the desired posterior distribu-
tion. Finally, we can form our decision using these weighted
samples according to (9).

The advantage of PF is its ability to reduce and even prevent
error propagation. For the MMMSE criterion, the marginal-
ized posterior distribution (MPD) is the key entity for inference.

4 5 6 7 8 9 10 11 12 13 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

VBLAST
PF−50
PF−ORD−50
PF−75
PF−ORD−75
ML

Fig. 2. Plot of SER vs. SNR. The system settings are M = 4, N = 4, and
4-QAM.

Since the MPD is independent of the decision on symbols from
other antennas, the decision on the symbol of interest is im-
mune to decision errors on other symbols. The PF can produce
samples which approximate the MPD very closely and there-
fore can be very effective in reducing and eventually preventing
error propagation. However, when the sample size is limited,
there would be error propagation in some small degree. Then
ordering the observations according to SNR as in [5] could be
advantageous.

An important issue of PF is the need for resampling. Namely,
after several steps, some weights of the samples become trivial
and stop contributing to the overall evaluation. In the litera-
ture of PF, resampling is used so that samples with negligible
weights are replaced by those from the high density area of the
desired posterior distribution. There are many strategies for re-
sampling, and we use the residual resampling procedure as de-
scribed in [16]. There is a slight difference here with respect to
its common implementation. Usually, when a sample trajectory
is selected in the resampling, only the present particle in the
trajectory is retained and therefore after resampling, the con-
nection between the present weights and previous particles is
broken. Note that in our application, the weight must be clearly
associated with all the particles in the trajectory at all times be-
cause otherwise the MMMSE cannot be performed. As a result,
we especially emphasize that a whole trajectory must be taken
together as an entity in performing resampling.

The complexity of the algorithm is O(KMJ), i.e., propor-
tional to the product of the size of the alphabet set, the number
of samples and the number of transmitting antennas. If the size
of the alphabet set and the number of samples are fixed, then the
complexity is only linear with respect to the number of trans-
mitting antennas.
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16-QAM.

IV. SIMULATION RESULTS

We present several simulation results in this section that show
the performance of the proposed PF detection algorithm. In
the simulation, the signal is q-QAM modulated and the average
power per bit is equal to 1. Thus the symbol energy is P =
2(q − 1/3) and the SNR per receiving antenna per transmitted
bit is defined by

SNR = 10 log
MP

σ2
n log2 q

. (17)

We have tested PF detection on the effect of different sample
size as well as the ordering. For convenience of presentation,
we use PF-ORD-J to represent the PF implementation with the
ordering and using J samples.

In the first experiment, we use M = 4 transmitting and
N = 4 receiving antennas with 4-QAM modulation. We com-
pared the PF detection with the V-BLAST as well as the ML
solution. The PF with and without ordering were tested for
J = 50 and J = 75. The symbol error rate (SER) versus SNR
is plotted in Figure 2. We can see that there is about 10 fold
improvement in SER at 10 dB and more than 20 fold at 14 dB
for PF algorithms over the V-BLAST. Comparing among the PF
algorithms, we notice that they perform rather similarly at low
SNRs and the ordering and increased J are more effective for
high SNR regions. Finally, their performance is near optimum,
especially the one of PF-ORD-75.

Next, we tested the system with 16-QAM modulation em-
ploying M = 8 transmitting antennas and N = 8 receiving
antennas. This time the sample size for PF was set to J = 100
and J = 150. The simulation results are shown in Figure 3, and
big improvements over the V-BLAST can be clearly seen for
the PF algorithms. Especially, at 20 dB, PF-ORD-150 achieves
almost 100 times gain in SER. Again, as in the previous exper-

iment, the ordering and increasing of sample size show some
moderate improvement.

V. CONCLUSIONS

We have shown the use of PF for detection in BLAST
systems. The particle filtering was constructed on a novel
DSSM which evolves in space. The proposed particle filter-
ing scheme was demonstrated to have great improvement over
the V-BLAST system and possesses potential for achieving near
optimum performance for BLAST systems.
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