
482 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 5, MAY 2004

An Efficient Fixed-Point Implementation of Residual
Resampling Scheme for High-Speed Particle Filters
Sangjin Hong, Member, IEEE, Miodrag Bolić, Student Member, IEEE, and Petar M. Djurić, Senior Member, IEEE

Abstract—A novel low-complexity residual resampling scheme
for particle filters is presented. The proposed scheme uses a simple
but effective “particle-tagging” method to compensate for a pos-
sible error that can be caused by finite-precision quantization in
the resampling step of particle filtering. The scheme guarantees
that the number of particles after resampling is always equal to
the number of particles before resampling. The resulting scheme
is suitable for high-speed physical realization when the number of
particles is a power of two.

Index Terms—Fixed-point processing, particle filters, resam-
pling, residual resampling.

I. INTRODUCTION

PARTICLE filters are used in nonlinear signal processing
where the interest is in tracking and/or detection of random

signals. Particle filters base their operations on representing rel-
evant densities by discrete random measures composed of parti-
cles and weights and compute integrals by Monte Carlo methods
[1]. More specifically, at every time instant a random measure

is defined, where is the th particle of
the signal at time , is the th trajectory of the signal, and

is the weight of the th particle (or trajectory) at time . If
now, for example, an estimate of is needed,
where is a function of , the estimate can easily be com-
puted using the random measure from

(1)

The particle filters have three important operations: genera-
tion of new particles, computation of the particle weights, and
resampling. The third operation is needed for resolving an im-
portant problem of particle filtering known as weights degener-
ation. More specifically, as time progresses, a few weights be-
come very large and the remaining weights decrease in value to
the point that they become negligible. The idea of resampling is
to remove the trajectories that have small weights and to focus
on trajectories that are dominating. Resampling is very impor-
tant in particle filtering because it prevents the particle filter
from weight degeneracy [2]–[4]. In the weight computation, a
weight is computed for each particle . The weights

Manuscript received May 22, 2003; revised September 26, 2003. This work
was supported by the National Science Foundation under Award CCR-0220011.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Marcelo G. S. Bruno.

The authors are with the Department of Electrical and Computer Engineering,
Stony Brook University—SUNY, Stony Brook, NY 11794-2350 USA (e-mail:
snjhong@ece.sunysb.edu; mbolic@ece.sunysb.edu; djuric@ece.sunysb.edu).

Digital Object Identifier 10.1109/LSP.2004.826634

for all particles are normalized for resampling where is
the number of particles used in the filtering. The objective of
the resampling is to redistribute the particles according to the
weights.

Standard algorithms used for resampling are different vari-
ants of stratified resampling. The two most common methods
for resampling are systematic and residual resampling [1], [5].
Their algorithmic representation is given in [6]. For correct
functioning of systematic resampling, it is necessary that the
sum of all weights after normalization is equal to one. However,
this condition is not satisfied in very large scale integration
implementation due to the finite-precision effect. In residual
resampling, the number of replicated particles is calculated
first by truncation or rounding of the product . In the
case of truncation, the number of particles produced after
this step is in general less than . Then, it is necessary to
process the residues in order to compensate for the number of
particles. In this letter, a residual resampling algorithm suitable
for fixed-point implementation is considered. Residues are
processed using a memory-addressing scheme and a tagging
method, and this procedure guarantees the correct number of
particles after resampling.

II. PROPOSED RESAMPLING SCHEME

We reiterate that the resampling process is an important inte-
gral part of particle filtering and that its performance crucially
affects the overall particle filter performance. For a physical re-
alization of particle filtering, it is critical to have an efficient
mechanism that reduces the hardware complexity and maintains
the filtering performance. In this section, we describe the opera-
tion of the proposed resampling scheme, where we assume that
the number of particles is a power of two.

In the weight computations, before resampling, all the
weights of the particles are normalized through
addition and division, i.e., all the weights are added, and each
weight is divided by the sum such that, after normalization,
the sum of all weights is equal to one. However, the sum of
one is only achievable with infinite precision. In hardware
implementation with fixed-point number representation, these
weights are quantized with bits (excluding the sign bit),
where . A naive approach would quantize the
value of the weight by simple truncation. Then, the integer
representation of the bits corresponds to the number of times
the particle should be replicated. The simple truncation may
result in a total number of replicated particles less than .
This is illustrated in Table I, where and . The
second column represents the decimal values of the particle
weights, and the third column their binary representation with

1070-9908/04$20.00 © 2004 IEEE

HONG et al.: RESIDUAL RESAMPLING SCHEME FOR HIGH-SPEED PARTICLE FILTERS 483

TABLE I
RESAMPLING WITH QUANTIZATION BY SIMPLE TRUNCATION

TABLE II
ROUNDING/TRUNCATION SCHEME AND TAGS

two bits. The fourth column provides the replication factor,
which is a decimal equivalent value of the bits indicated in
bold. According to the table, particle will be replicated
twice; particle will be replicated once; and particles
and will be eliminated. Because of the quantization, the
sum of the resampled particles is not equal to four. In general,

may not be equal to .
For solving this problem, one might consider using a con-

ventional rounding method. When the rounding is employed,
however, it is possible that the sum of all replicated particles
be larger than . It should be noted that both simple trunca-
tion and rounding methods complicate the hardware. For ex-
ample, when the sum of all replicated particles is less than ,
the hardware must decide which particles to additionally repli-
cate so that the total number of particles is . On the other
hand, if the sum of all replicated particles is larger than ,
the hardware must somehow choose some of the already repli-
cated particles for removal. These two scenarios require addi-
tional iteration (i.e., scanning of all the weights for reevalua-
tion) and selection of particles for additional replication or re-
moval. Therefore, a modification is necessary for efficient hard-
ware implementation.

In order to resolve the problem of not having resampled
particles, we propose that all the weights are quantized with
two additional bits such that , excluding the
sign bit. The two additional bits are used to create tags. Then,
a final quantization is performed, which consists of rounding
and truncation, as shown in Table II. The entries of the first
column are the last three bits of the binary representation of
the weight, the second column the applied rounding scheme,
the third column the resulting least significant bit, and the last
column the Tag status. Notice that the bit pattern 111 is not
rounded, but tagged, since an adder is needed to incorporate

TABLE III
RESAMPLING WITH THE PROPOSED SCHEME

carry propagation to the most significant bit. However, the bit
pattern 011 is rounded where simple bit reversal is sufficient.
The difference between Tag1 and Tag2 is to indicate that Tag1
has higher priority for replication. For simplicity in the imple-
mentation, however, these do not have to be distinguished, es-
pecially when the value of is large (i.e., more than 64). The
particles with Tag3 are used only when the total number of repli-
cated particles is less than .

When , the tagged particles may be repli-
cated once more. Note that where ,
and are the sums of particles with tags Tag1, Tag2, and Tag3,
respectively. has priority over , or , and therefore the
tagged particles are overwritten in case . A reason that
tagging is used instead of rounding for all cases is to avoid a
situation where exceeds such that it may be possible to
exclude particles that are very important but located physically
toward the end of the memory location (this will be described in
the next section). The proposed scheme is illustrated in Table III
on the same example as in Table I.

The modified quantization scheme ensures that the sum of all
replication factors is closer to than with the resampling based
on quantization by simple truncation. In addition, only a single
iteration (i.e., scanning of all the weights) is necessary, which
saves computation time (i.e., cuts processing time by half) and
minimizes hardware complexity.

There are three special cases, which must be considered care-
fully. First, there is a situation where one particle has a weight
equal to 1.0 and the rest are all zero. Without any special modifi-
cation, the scheme will get all the weights to zero, since it only
considers the least significant bits. To avoid this problem,
the weight of 1.0 in decimal representation is represented as

. Then the tagging method will guarantee that the
total number of replicated particles is . Second, it is also pos-
sible that all the weights are zero. This may happen when the
estimate of the state being estimated diverges, and it is not pos-
sible to accurately compute the weights with finite precision.
This situation can be detected in the weight calculation stage
prior to resampling, and thus no resampling is performed. The
third special case occurs when the number of particles in the
resampling is greater than due to rounding. The algorithm
then produces the correct number of particles, but the number
of some particles is not proportional to the respective weights.

III. LOGIC STRUCTURE

A logic structure of the proposed scheme is shown in Fig. 1.
The particles and their weights are stored in a memory, and they
are provided prior to resampling. The same address is used to

484 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 5, MAY 2004

Fig. 1. Logic diagram that illustrates the structure of the proposed resampling
scheme. It is assumed that the particles x and their weights w are
provided prior to resampling. The resampled particles ~x are stored in a
separate memory.

Fig. 2. Comparison of exact resampling and resampling with and without
tagging. The particles are ordered according to their weights, where the first
particle has the largest weight.

access the particles and weights. Each weight is read and de-
coded. An integer value of bits representing is loaded to
the down-counter for particle replication. While a particle is
being replicated in the other memory starting from the lowest
address, the same particle, if it is tagged (Tag1 or Tag2), is also
written to the same memory but starting from the highest ad-
dress. This is to ensure that when we have enough replicated
particles, the tagged particles can be overwritten and discarded.
Thus, the total number of replicated particles is always . How-
ever, it is still possible, as we will show in the simulation, that

. This problem is resolved by having a small
memory for storing tagged particles (Tag3) and these particles
are copied to the resampled memory. This condition is checked
by adding addresses of memory locating the last insertion of
replicated particles and tagged particles. If the sum of these two
addresses is less than , the tagged particles (Tag3) are inserted
from the starting address of particles right after . Although we
have assumed that the number of particles is a power of two, the
scheme can be extended to handle an arbitrary number of par-
ticles. Moreover, parallelization is possible for high-throughput
applications.

Fig. 3. Illustration of the ranges of total number of replicated and tag particles.
Only T and T are included in T . The results are based on 100 independent
resamplings.

Fig. 4. Average numbers ofR and T particles for variousM . Only T and T
are included in T . The results are based on 100 independent resamplings.

IV. SIMULATION RESULTS

In order to illustrate the performance of the proposed resam-
pling scheme, weights are randomly generated, and their
weight distributions after resampling are compared with that of
full precision resampling. Fig. 2 illustrates the replication fac-
tors both with and without tagging for . The results are
obtained by simulating the logic structure of the scheme, where
a random set of 128 normalized weights is used to implement
the resampling. As shown in the figure, the scheme with tagging
is very close to that of full precision resampling, which is plotted
with a solid line. The sum of the replicated particles illustrated
by the resampling without tagging is less than . Fig. 3 illus-
trates the range of variation of the number of replicated particles
by displaying the ranges of total number of replicated plus tag
particles. For example, when the number of particles is 256, the
minimum and maximum numbers of particles are 248

HONG et al.: RESIDUAL RESAMPLING SCHEME FOR HIGH-SPEED PARTICLE FILTERS 485

and 261 (obtained from 100 independent resamplings). These
numbers are important because from them one decides on the
size of the Tag3 memory. We note that the range of variation is
due to the quantization of the weights. As shown in the figure, it
is possible that , and this is the reason tagged
particles are not included in . Fig. 4 shows the average number
of replicated particles (including the tagged particles) for dif-
ferent . For example, for 256 particles the average number of

and particles is 233.82 and 20.02, respectively. When the
total number of replicated particles exceeds 100%, the proposed
scheme always guarantees that particles are replicated be-
cause of the overwriting mechanism. When the number is below
100%, tagged (with Tag3) particles are used. This has negligible
effect on the performance. In both figures, the value of , which
excludes the tagged particles, is always less than . The total
number of replicated particles will be equal to or exceed only
when tagged particles are added.

V. CONCLUDING REMARK

In this letter, we have proposed a novel scheme for fixed-
point implementation of residual resampling used in particle fil-

ters. The proposed scheme exploits a simple but effective “par-
ticle-tagging” method to compensate for possible errors that
can be caused by finite-precision quantization in the resampling
process. The scheme guarantees that the total number of parti-
cles after resampling is always equal to the number of particles
before resampling. If the number of particles is a power of two,
the resulting scheme is suitable for high-speed physical realiza-
tions.

REFERENCES

[1] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, 2001.

[2] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, “Dynamic condi-
tional independence models and Markov chain Monte Carlo methods,”
J. Amer. Statist. Assoc., vol. 92, pp. 1403–1412, 1997.

[3] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and
Bayesian missing data problems,” J. Amer. Statist. Assoc., vol. 89, no.
425, pp. 278–288, 1994.

[4] J. S. Liu and R. Chen, “Blind deconvolution via sequential imputations,”
J. Amer. Statist. Assoc., vol. 90, no. 430, pp. 567–576, 1995.

[5] E. R. Beadle and P. M. Djurić, “A fast weighted Bayesian bootstrap filter
for nonlinear model state estimation,” IEEE Trans. Aerosp. Electron.
Syst., vol. 33, pp. 338–343, 1997.

[6] M. Bolić, P. M. Djurić, and S. Hong, “New resampling algorithms for
particle filters,” in Proc. ICASSP, 2003.

