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A Blind Particle Filtering Detector of Signals
Transmitted Over Flat Fading Channels

Yufei Huang, Member, IEEE, and Petar M. Djurić, Senior Member, IEEE

Abstract—A new particle filtering detector (PFD) is proposed
for blind signal detection over flat Rayleigh fading channels whose
model coefficients are unknown. The detector employs a hybrid im-
portance function and a mixture Kalman filter. It also incorporates
an auxiliary particle filtering strategy with a smoothing kernel in
the resampling step. Further, by considering practical information
of communication systems and the physical interpretation of the
adopted second-order autoregressive (AR) channel model, a fully
blind particle filtering implementation is developed. The structure
of the proposed PFD can be easily adapted to other system re-
quirements. Simulations are provided that demonstrate the per-
formance of the new PFD.

Index Terms—Autoregressive moving average, blind signal
detection, least mean square, particle filtering detector, recursive
least square.

I. INTRODUCTION

WITH the ever-growing frequency bandwidth used for
wireless transmission of voice and data, the detection

of transmitted symbols through frequency flat Rayleigh fading
channels is increasingly challenging. This problem has been
treated as detection of Gaussian signals in Gaussian noise, and
under the maximum a posteriori (MAP) criterion, its optimum
solution is known to be a quadratic receiver: a form of the
discrete Wiener filter [1].

In the past two decades, the maximum-likelihood sequence
detection (MLSD) in both flat and frequency-selective fading
channels has drawn much research interest [2]–[4]. With known
channel state information (CSI), the MLSD is implemented
using the Viterbi algorithm, and the solution is optimum [2], [5].
When the CSI is unknown to the receiver, it must be extracted
in order to carry out signal detection. It is known that when
linear parametric structures such as autoregressive (AR) and
autoregressive moving average (ARMA) models with known
parameters are used to represent fading channels, the optimal
solution can be obtained by a bank of Kalman filters [6], [7].
However, this optimal implementation requires a separate run
of a Kalman filter for each possible sequence, and that leads to a
structure of exponential complexity. To reduce the complexity,
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suboptimal algorithms have been proposed. These algorithms
usually consist of a separate channel estimator followed by a
per-survive sequence detector [3], [4]. The channel estimator
often employs linear prediction, least mean square (LMS), or
recursive least square (RLS) algorithms. In comparison with
optimal implementations, these suboptimal solutions suffer
from a number of drawbacks. First, since no channel model
is assumed, the tracking ability degrades especially for fast
fading channels. Second, due to time correlation of the fading
channel, the surviving branches in the per-survive algorithm
may not guarantee larger metrics than the discarded branches in
later stages. As a result, the branch associated with the optimal
solution could be discarded in an early stage, leaving only
suboptimal solutions for the rest of the process. This implies
that an error committed at an early stage propagates.

Recently, novel particle filtering detectors (PFDs) for se-
quential detection with linear complexity have been proposed
[8]–[11]. Using the idea of sequential Monte Carlo sampling,
these detectors can approximate the optimum solution directly
without compromising the system model. Additionally, another
salient feature of these detectors is that the decision made at
time does not depend on any decisions made previously,
and thus, no error is propagated in their implementation.
Furthermore, they are fully blind detectors and allow for both
Gaussian and non-Gaussian ambient noise as well as parallel
implementations.

Commonly, in the implementation of the PFDs, state-space
models are adopted, and a typical assumption is that the model
coefficients are known to the detectors. In practice, they have to
be estimated in advance, and to obtain good estimate, a separate
long interval of training data is required. In addition, since the
model parameters are assumed fixed, these algorithms cannot
adapt to fast changes of the channel statistics. In [12], a hybrid
algorithm is proposed to integrate the estimation of the model
parameters within the PFD. This novel detector employs an RLS
algorithm for estimation of the unknown parameters. To avoid
ambiguity, pilot symbols are required in the implementation.

In this paper, a new PFD is proposed for blind signal
detection under unknown channel model coefficients. The PFD
employs a newly introduced hybrid importance function [13]
that, together with mixture Kalman filtering (MKF) [14]–[17],
reduces significantly the computational complexity of a generic
implementation of the particle filtering algorithm. An AR(2)
process is adopted to model the fading channels, where the
modeling imposes a direct link between the AR coefficients
and the underlying fading channel. The physical information of
the communication systems also enables us to resolve inherent
ambiguities that may arise in the implementation of the PFD.
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Consequently, a fully blind implementation of the PFD is
possible. Finally, a resampling technique is employed that
incorporates auxiliary particle filtering and a smoothing kernel,
and it is combined with the hybrid importance function to
further improve the efficiency and effectiveness of the proposed
PFD.

The paper is organized as follows. In Section II, the mathe-
matical formulation of the problem is given. In Section III, the
PFD is proposed where the implementation procedure, initial
sampling, and resampling methods are described. In Section IV,
the extensions of the detector to cases of semiblind imple-
mentation and time-varying AR coefficients are discussed. In
Section V, simulation results are provided that show the per-
formance of the proposed detector. Concluding remarks are
included in Section VI. There are also two appendices that
provide a derivation and a proof of claims made in the paper.

II. PROBLEM FORMULATION

We consider detection of digital signals transmitted through
flat Rayleigh fading channels. At the transmitter, a modulated

-ary PSK symbol sequence is first passed through a pulse
shaping filter to form the baseband signal , which is then
transmitted across a flat Rayleigh fading channel. At the re-
ceiver, the received baseband signal is fed into a matched
filter and then sampled with a symbol rate . The resulting
sampled sequence can be expressed as

(1)

where and are the complex fading coefficient and addi-
tive ambient noise. The noise is assumed complex Gaussian
with zero mean and variance . Since the fading channel is a
Rayleigh process, the stochastic characteristics of the fading co-
efficient depend on the maximum Doppler spread

(2)

where denotes the speed of the mobile, and is the carrier
wavelength. When is constant, is modeled by the Jakes’
model as a stationary, circular complex Gaussian process with
zero mean and autocorrelation function [18], [19]

(3)

where denotes the power of the fading process, and is
the zero-order Bessel function of the first kind. It is, however,
not feasible to directly apply the Jakes’ model in our compu-
tation for it leads to intractable solutions. Alternatively, an AR
process can often be used to approximate the Jakes’ model with
satisfactory accuracy [20], [21]. Particularly, in this paper, an
AR(2) process as used in [19] and [22] is adopted, i.e.,

(4)

where and are the model coefficients, and
, where is the variance of the driving noise. This

variance is chosen such that the average power of matches
the power of the fading process , which leads to

(5)

The coefficients and are closely related to the physical
characteristics of the underlying fading process that will be
discussed in detail in Section III-B. Here, of our interests, is
the detection of the transmitted symbol without knowing the
instantaneous value of . Commonly, and are unknown,
and for detection, they have to be estimated. Their estimation
is done separately by, for example, using pilot signals. For
accurate estimation of the parameters, a long sequence of pilot
signals is needed. It is important to note that this implementation
does not have the ability to adapt to the changes of the channel
statistics. When changes occur, the sequence of pilot signals
must be retransmitted. In our work, we assume no knowledge
of and .

In presenting the problem in a mathematical form, we use the
following state-space representation:

state equations

observation equation
(6)

where , , and

Notice that under the stationary channel assumptions, and
are modeled as static parameters. In a nonstationary channel,
as long as the dynamics of and can be represented as
a Markovian model, the solution can be obtained similarly, as
proposed in the sequel. This will be discussed in more detail
in a later section. If , at any instant of time ,
the unknowns are , , and , and our main objective is to
detect the transmitted symbol sequentially without sending
pilot signals. Note that and are nuisance parameters. We
assume that the power of the channel and the noise variance

are known to the receiver, but the proposed algorithm can
be easily extended to include them as unknowns. Notice that
phase ambiguity exits that is an inherent problem for detection
of PSK-modulated signals over Rayleigh fading [19]. To combat
phase ambiguity, differential encoding is applied [8], [19], [23].

III. PARTICLE FILTERING DETECTOR

A. Particle Filtering Solution with Hybrid Importance
Functions and MKF

Particle filtering is a sequential Monte Carlo sampling
method built on the Bayesian paradigm [24], [25]. From a
Bayesian perspective, at time , the posterior distribution

is the main entity of interest. However, due to the
nonlinearity of the model (6), the analytical expression of

cannot be obtained. Alternatively, particle filtering
can be applied to approximate by stochastic samples
generated using a sequential importance sampling strategy.

Now, we explain the proposed PFD. First, we note that given
and , (6) is linear and Gaussian in . Therefore, the MKF

can be used to integrate out and obtain [14].
Then, our objective is to generate samples from the distribution

. For this purpose, define ,
and suppose that at time , we have collected
sets of samples with weights
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. In particular, the weighted samples, or par-

ticles, approximate . When
a new observation arrives, sampling from is
carried out in a sequential manner based on ,
as in Chart 1.

Chart 1. Particle filter

• For
— Sample from an importance func-

tion , and set

.
— Calculate the weight of by

(7)

• For , normalize the weights by

(8)

In Chart 1, is an importance function
that must be specified. The choice of the importance function
is essential because it determines the efficiency as well as the
complexity of the particle filtering algorithm. Two standard
choices of the importance function are the posterior and the
prior importance functions. The posterior importance function
is considered optimal because it minimizes the variance of the
importance weights. Here, we observe that due to the presence
of and , the calculation of the posterior importance function
leads to intractable computations of the weights. Hence, one
would usually resort to using the prior importance function.
However, since the prior importance function employs no
information from observations in proposing new samples, its
use is often ineffective and leads to poor filtering performance.
Here, we adopt a hybrid importance function [13], which is
expressed as

(9)

(10)

where and are defined in the same way as and
, and is the Dirac delta function. The last

equality is obtained based on the state equations
and . The corresponding unnormalized weight is
computed by

(11)

where is the alphabet set of . Note that as
suggested by its name, the hybrid importance function (9) is a
combination of the posterior and the prior importance functions.
Intuitively, due to the use of observations, the hybrid importance
function is more effective than the prior importance function.
Moreover, compared with the posterior importance function, it
is implementable since the sampling from (9) and the computa-
tion of the weight in (11) can be readily carried out.

Now, we discuss the sampling of and from (9) and the
calculation of the weight (11). First, we observe that no sam-
pling for is needed, i.e., . Although it simplifies
the sampling process, the absence of sampling introduces lack
of diversity on . To address this problem, kernel smoothing
techniques can be used during the resampling procedure, which
will be discussed in Section III-C. As for , since it is discrete,
its sampling only requires the evaluation of the importance func-
tion on . In particular, with a uniform prior on , the sampling
distribution becomes

(12)

Now, from (11) and (12), we see that both the sampling of and
the calculation of the weight can be achieved by evaluating

. This distribution is the
likelihood function and can be obtained using the results from
the predictive and update steps of the Kalman filter (note that
is marginalized out). We show in Appendix A that

(13)

where and are the mean and variance, respectively,
which are derived in Appendix A.

We have identified every element required in the implemen-
tation of the particle filtering algorithm. The resulting weighted
samples approximate , and the min-
imum mean square error (MMSE) estimate of can be easily
calculated according to

(14)

In summary, the overall structure of the PFD at time is pre-
sented in Fig. 1. The parallelism of the algorithm is clearly
demonstrated. For each trajectory, an independent filter is em-
ployed whose interior functional diagram is displayed in Fig. 2.

The performance of the PFD can be further improved by the
delayed weight method [15]. In a delayed weight implementa-
tion, the MMSE estimate of is computed by

(15)

where is a positive integer. In essence, the delayed weight
implementation is the same as the implementation of the generic
PFD, except that the decision on is delayed for steps, which
requires extra memory for storing the samples of .
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Fig. 1. Structural plot of the particle filtering detector at time t.  and C are defined in Appendix A.

Fig. 2. Interior structure of the jth trajectory filter of the particle filtering detector at time t.  andC are defined in Appendix A.

B. Initial Sampling of the AR(2) Coefficients

Before starting the PFD implementation, the initial sam-
ples of are drawn from a predefined prior distribution. Usu-
ally, if no prior knowledge is available, a uniform distribution
defined on the whole parameter space is used. However, in our
problem, the physical communication systems provide useful
prior information, and based on it, the sample space of the uni-
form distribution can be confined to enhance the performance
and the efficiency of the proposed PFD.

First, to ensure stability and minimum phase of the AR(2)
process, the parameter space of is defined within a trian-
gular region depicted in Fig. 3, and the sampling from a uni-
form distribution defined on the region can be carried out as in
[26]. Unfortunately, ambiguity exists when estimating and

using samples from the triangle region, and it is an inherent

problem in blind detection. For instance, when the transmitted
symbols are binary phase-shift keying (BPSK) modulated, and
if and are one set of estimates, then and would
be a set of estimates that would produce the same value of the
likelihood function. In other words, there are sets of ambiguity
pairs that are symmetric with respect to the axis. This am-
biguity could dramatically deteriorate the bit error rate (BER)
performance. For instance, if the detector with estimates and

produces a BER of 0, then the detector with ambiguous es-
timates would theoretically produce a BER of 0.5. The proof of
existence of ambiguity in a BPSK modulated system is shown
in Appendix B.

To combat the ambiguity in a fully blind implementation, fur-
ther restrictions on the sampling space need to be imposed. This
can be achieved by considering the relationship between the
AR coefficients and the physical parameters of the underlying
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Fig. 3. Plot of the sample space for the coefficients a and a of the AR(2)
channel model. The area inside the triangle corresponds to the coefficients that
induce stable and minimum-phase process. The shaded area is a constrained
region derived from a practical system.

fading channels. It is shown in [19] that the AR(2) coefficients
are chosen by

(16)

where is the pole radius of the AR(2) model, and

(17)

which is the normalized maximal Doppler frequency. The vari-
able determines the steepness of the power spectrum of the
AR process to closely approximate the Jakes’ model, and there-
fore, is often taken between [0.9, 0.999]. Next, an upper limit
on is required. Since the carrier frequency is usually prede-
fined in the standards, the upper limit of can be obtained
from (17) by specifying the upper limits on the mobile velocity
and the symbol time (or the lower limits on the symbol rate).
From a practical perspective, this upper limit can easily be ob-
tained from the prior knowledge of real-world communication
systems. For example, for a system with a carrier frequency of
2 GHz, if we know that the vehicle speeds are less than 75 mi/h
and that for all transmissions the symbol rates are greater than
3600 Hz, then must be less than 0.062.

Once we determine the bounds on and , we can obtain
a refined region for and from (16), and this region is
automatically in the triangle region of a stable AR process.
The initial samples of and from the refined region can
be obtained by first sampling and uniformly from the
bounded regions and then computed from (16). In Fig. 3, with
the shaded lines, we also plot the region corresponding to

and . Note that samples of and
are no longer uniformly distributed in the region, and they

reflect better the prior information about these coefficients than
the uniform prior. Particularly, we see that no ambiguity exists

in this region and that it is much more restricted compared
with the triangular region. Therefore, by having such restricted
sampling space, we not only resolve the phase ambiguity but
greatly increase the efficiency of the detector as well.

C. Resampling Procedure

A resampling procedure [24], [25] must be incorporated in the
PFD algorithm to enhance its performance. Recall that and
are static parameters and that no sampling is involved for and

throughout the implementation. With conventional resam-
pling with time, the particles of and degenerate into very
few different values. The inability to rejuvenate and with
the arrival of new observations makes the accuracy of the final
estimates greatly dependent on the initial samples. To overcome
this drawback, one can rejuvenate the impoverished particles by
a Markov chain Monte Carlo move such as a Gibbs sampling
move with its invariant distribution being the desired posterior
distribution [27]. The method, however, requires considerable
memory to store the trajectories that might not be feasible for
the communication application. We, therefore, adopted an alter-
native scheme that combines the auxiliary particle filter [28] and
a kernel smoothing technique, which were proposed in [29]. In
its implementation, modifications were made to adapt the use of
the hybrid importance function. Specifically, when resampling
is needed, the proposed procedure is inserted to replace the orig-
inal particle filtering step. If assuming and
are the constrained regions for and derived from Sec-
tion III-B, the detailed algorithm is summarized in Chart 2. It is
suggested in [29] that and
and that is a discount factor typically from the set [0.95,0.99].
We want to point out that this smoothing kernel approach is an
approximation method that cannot guarantee samples from the
right distribution.

Chart 2. PFD with resampling and smoothing
kernel
At time :

For , compute

, where .
For
• Sample an auxiliary variable from
the set with probability
proportional to

(18)

and call the sample index .
• Sample

, where is a smoothing
parameter, is the weighted
sample covariance matrix, and

represents a truncated
Gaussian distribution with
and constrained in the region

and , respectively.
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• Sample from the hybrid impor-
tance function.

• Evaluate the corresponding weight
by

(19)

IV. DISCUSSION

The PFD presented in Section III is general in structure and
is flexible to accommodate changes of system requirements and
conditions, evoking only small additional computations. In the
following, we focus our discussion on coping with a semiblind
implementation and time varying AR coefficients.

A. Semiblind Implementation

A semiblind implementation may be desired to reduce the
initial transition period in a blind implementation and further
combat the phase and coefficient ambiguities. In the semiblind
implementation, pilot data are transmitted before or in between
the implementation of the blind PFDs. These pilot data are used
to obtain extra information about the AR coefficients, which is
then fed to the subsequent blind detection to improve its per-
formance. The implementation of the PFD on the pilot data se-
quence still follows the described procedure. However, since
the symbols are known to the receiver during the pilot trans-
mission, no sampling procedure on is needed. Therefore, the
weight is solely associated with the samples and is cal-
culated by

(20)

where is the sequence of the pilot signals up to .
One distinct feature of the semiblind PFD is its ability to allow

the exchange of soft information rather than hard decisions of
the AR coefficients within the semiblind implementation. The
soft information is expressed in terms of the prior distribution
and approximated by the particles. Namely, at the beginning of
the pilot data sequence, the particles of obtained from the blind
implementation at the previous time instant are fed into the par-
ticle filtering detectors as initial particles. Then, at the end of the
sequence, the particles generated from the pilot sequence are
used as initial samples from the prior distribution by the sub-
sequent blind PFD. Notice that in a conventional deterministic
implementation, a hard decision is made on at the end of the
pilot sequence and then used as a fixed true value of for sub-
sequent detection. Therefore, no update on is acquired during
the detection, although the new observations contain extra infor-
mation of . Compared with the deterministic implementation,
the PFD has clear advantages since, through exchange of soft
information between the blind and pilot implementation, it can
use all the available information to make a decision. This ad-
vantage is more evident for time varying AR coefficients.

B. Time-Varying AR Coefficients

The Rayleigh fading assumes that the mobile has a constant
speed. However, in reality, the mobile speed changes con-
tinuously, which implies that the coefficients of the adopted
AR model also change with time. This type of AR model is
called a time-varying AR model. The time-varying AR model
imposes great mathematical and computational difficulties for
conventional solutions. One possible conventional solution is
to use semiblind implementation. However, as indicated in
Section IV-A, in these implementations, the use of information
about is very inefficient. Thus, for cases with fast varying
coefficients, the performance of the system deteriorates. To
improve on it, one must send pilot sequences more frequently,
which in turn reduces the bandwidth. The PFD demonstrates
its great versatility in that it does not need pilot signals. When
a parametric model of coefficient change is available, the
implementation of the detector follows the proposed procedure,
except that now, at each time , is sampled from the prior
distributions associated with the assumed model. If the model
of parameter variation is not known, one can use the method
based on forgetting factors, as suggested in [30].

V. SIMULATION RESULTS

In this section, the performance of the proposed PFD is
studied through experiments. In all the experiments, the trans-
mitted signal was DBPSK modulated. The bit error rate (BER)
was computed by transmitting a symbol stream continuously
until 300 errors were collected. The initial samples of and

were drawn from the shaded region in Fig. 4.
In the first experiment, we first studied the effect of using

a smoothing kernel in the resampling. In the simulation of
a fading channel, the coefficients of the AR(2) model were

and . They reflect a physical
scenario of . This AR process was normalized to
have a unit power, and thus, the signal-to-noise ratio (SNR) was
obtained by . In Fig. 4, we provide the (BERs)
under various SNRs for the PFDs with residual resampling
(PFD-RS) [29] and those with smoothing kernel (PFD-SK).
For the PFD-RS, we displayed the BERs of two different
implementations: the one using 300 trajectories (PFD-RS-300)
and another one using 500 trajectories (PFD-RS-500). In the
same figure, we also plotted the performance of the MKF
with known AR coefficients, which serves as a lower bound.
We observe that the increase of sample size from 300 to 500
does not improve the performance of the PFD-RS too much.
However, a drastic improvement on the BER is seen for the
PFD-SK-200 over the PFD-RS-300 and particularly at high
SNRs. There, the BER improvement is almost tenfold. Since
only 200 trajectories were maintained by the PFD-SK-200, it is
apparent that the use of smoothing kernel in resampling is ad-
vantageous. Further, we studied the effect of the sample size
and show in Fig. 4 the performance of using 300 (PFD-SK-300)
and 400 (PFD-SK-400) trajectories. We see clear improvement
over PFD-SK-200, whereas the PFD-SK-300 and PFD-SK-400
perform similarly. Therefore, 300 trajectories were maintained
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Fig. 4. BERs of the PFD-RSs, the PFD-SK, and the MKF with known model
coefficients. 
 = 0:05.

for all the PFDs in the following simulations. In addition, the
BERs of the PFD-SK-300 and PFD-SK-400 also follow closely
the performance of the MKF with known coefficients.

Next, we studied the performance of the PFD-SK under
various conditions. To be more realistic, the fading channel
was simulated by the Jakes’ method with eight oscillators [18],
and it was normalized to have a unit power. In addition to the
PFD-SK, we examined the performance of the differential
detector (DD) [23], the PFD-SK’s using 1-step (PFD-SK-D1)
and 2-step (PFD-SK-D2) delayed weight, the pilot-aided
MKF, and the detector with known channel. In the pilot–aided
MKF, 1000 pilot symbols were first used to estimate the AR
coefficients (the modified covariance method [31], [32] was
employed for the estimation of the AR parameters), and then,
MKF was implemented with the estimated coefficients set
as the true coefficients. In Fig. 5 and 6, we plot the BERs
versus SNR for all the examined methods at and

, respectively. From the two plots, first, we observe
that unlike the DD, there is no visible error floor for the
PFD-SKs. Second, the performance of the PFD-SK approaches
that of the pilot-aided MKF and by adding small extra memory,
the delayed weight PFD-SKs outperform the pilot-aided MKF.
Since no pilot symbols are needed, the PFD-SK’s are clearly
more bandwidth efficient than the pilot-aided MKF. Third,
although there is still some margin for improvement of the
BERs of the PFD-SKs, the gap can be reduced by introducing
the delayed sample method [15], [33], smoothing [34]–[36], or
diversity (for example, fractional sampling) [37].

In Figs. 7 and 8, we demonstrate the performance of the
PFD-SKs with the change of . The SNR was fixed at 30 dB
for Figs. 7 and 40 dB for Fig. 8. Although the DD, PFD-SKs,
and pilot-aided MKF have better performance at 40 dB than at
30 dB, their performance deteriorates with the increase of .
Nonetheless, compared with the DD, the PFD-SK and PFD-SK
with delayed weights have around a three and five times gain
in BER, respectively. Compared with the pilot-aided MKF,

Fig. 5. BERs versus SNR of the PFD-SKs, the pilot-aided MKF, and the
detector with known channel. The fading channel was generated by the Jakes’
method and 
 = 0:03.

Fig. 6. BERs versus SNR of the PFD-SKs, the pilot-aided MKF, and the
detector with known channel. The fading channel was generated by the Jakes’
method and 
 = 0:05.

similar conclusions can be reached about the PFD-SKs, as in
the last experiment.

VI. CONCLUSIONS

A particle filtering detector was proposed for blind joint
estimation of the parametric channel model coefficients and
signal detection. A novel hybrid importance function and the
employed MKF method led to efficient implementation of the
detector. A connection between the physical interpretation of
the AR(2) channel model and the underlying fading channel
was used to avoid ambiguity in detection. The structure of the
PFD was shown to be versatile to incorporate different imple-
mentation requirements. The simulation results demonstrated
very good performance of the proposed PFDs.
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Fig. 7. BERs versus 
 for the PFD-SKs, the pilot-aided MKF, and the
detector with known channel. The SNR was 30 dB.

Fig. 8. BERs versus 
 for the PFD-SKs, the pilot-aided MKF, and the
detector with known channel. The SNR was 40 dB.

APPENDIX A
DERIVATION OF (13)

Note that

(21)

From the observation equation, we know that

(22)

Furthermore, is the predictive density
of , which can be obtained from the predictive step of the
Kalman filter [31], [38], i.e.,

(23)

where , and
with

and and are computed from the update steps of the
Kalman filter that are expressed at as

(24)

and

(25)

where . Now, the integration in (21) is
readily derived as

(26)

where , and .

APPENDIX B
PROOF OF THE AMBIGUITY IN A BPSK-MODULATED SYSTEM

For a BPSK-modulated system, define two particles
and , where ,

for all , when is even and when is odd.
Here, for convenience, we call the two particles a complement
pair. The existence of the ambiguity in detection is established
through the following two propositions.

Proposition 1: At any time ,
, where the two likelihood functions are

calculated in the way, as discussed in Appendix A. Further-
more, we also have , , ,
and for , where and are the th
element of and , and and represent the th
element of and , respectively.

Proof: Since the two likelihoods are Gaussian, it is equiv-
alent to show that and that . This is proved by
induction.

First, we prove that the proposition is true at . At time
, we have no prior knowledge on the state vector , and

the initial condition is chosen as and
with taking a sufficiently large value. The initial

conditions indicate , ,
, and for .

Therefore, we can prove the validity of proposition at
in the same vein as what is developed in the following for time
.
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At time , suppose that the proposition holds for time up
to , and therefore, at , we have ,

, , and for
. We also assume that is an odd number, which in-

dicates that . At time , by assumption, ,
and .
Next, we have from Appendix A that follows (27), shown at
the bottom of the page. Since , we obtain

, 2, and . It then follows that
. Therefore, we obtain

. Next, we de-
rive and . Since ,
we find that and that . Now, by def-
inition, we first have

Since and , we conclude
that , and for . Second

If , , , and , it is
straightforward to see that and that .

Proposition 2: For a BPSK-modulated system, the particle-
filtering detector has the same probability of generating the par-
ticles and .

Proof: To prove the proposition, it is equivalent to show

(28)

which, again, can be proved by induction.
First, at , we have

(29)

From the proof of Proposition 1, we know that
, , and . Thus, the

proposition is true at .
Next, suppose that the proposition holds for time up to .

Thus, at time , we have
, and we want to show that

. First, we factor
as

(30)

where the same factorization applies to .
Since and , if
comparing the factorization of the two posterior distribu-
tions, we notice that (28) holds as long as the likelihoods

, which has
been proved true in Proposition 1. As a result, the proposition
is true at time .

Using Proposition 2, we deduce that by time , if the
PFD generated a set of particles , it would
then be equally likely to produce another set of particles

with each corresponding particle (with the
same index) in the two sets being the complement pair. As a
result, with the same probability, the PFD could produce either
the estimates , , and obtained from the first set
of particles or the estimates and , computed
by the second set of particles. Furthermore, if
produces a BER of 0, then will produce a BER
of 0.5. In conclusion, the ambiguity in detection and estimation
exists in PDF and the ambiguity could dramatically deteriorate
the performance of the detector.
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