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Estimation of a Bernoulli Parameterp from Imperfect
Trials

Petar M. Djurićand Yufei Huang

Abstract—Imperfect Bernoulli trials arise when the outcome of
a Bernoulli experiment is not known with certainty. In signal pro-
cessing, we often need to estimate a probability of occurrenceof
an event from imperfect Bernoulli trials. A typical example is the
estimation of the probability of a signal being present in noisy data.
In his famous essay, Bayes solved the same problem but for perfect
trials. In this letter, a solution is provided for imperfect trials. It is
shown that it includes Bayes’ solution as a special case.

Index Terms—A posteriori densities, estimation, probabilities of
events, signal detection.

I. INTRODUCTION

I N his famous work, “An essay toward solving a problem in
the doctrine of chance,” Thomas Bayes addressed the fol-

lowing problem: “Given: the number of times in which an un-
known event had happened and failed:Required:the chance that
the probability of its happening in a single trial lies somewhere
between any two degrees of probability that can be named”
[1]. In mathematical terms, if is the probability that a phe-
nomenon of interest may occur, is the number of times a
Bernoulli experiment is conducted, and, is the number
of times the event occurred, Bayes wanted to find the proba-
bility , where ,
and generically denotes experimental data. Bayes solved the
problem without relying on integral calculus and instead used
interesting geometric arguments. It should be noted that he tac-
itly assumed that the outcomes of the Bernoulli experiments are
known with certainty. That is, after observing the data from the
trial, the probability of occurrence of the event would collapse
to either zero or one. Such Bernoulli trials are here referred to
asperfectBernoulli trials.

In signal processing, there are many situations where
Bernoulli experiments are performed and the value of the prob-
ability of occurrence of an event is desired. A typical scenario
there, however, is different from the one described by Bayes
in that the data do not reveal with certainty whether the event
occurred. For example, consider a problem where there are
independent data records and each of them represents a signal
in noise or noise only, and one wants to estimate from past
experiments the probability that a signal will be present in the
next data set. For each data record, two hypotheses are formed
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and their posterior probabilities are evaluated. Theoretically,
due to the presence of noise, the posterior probabilities of each
of the hypotheses are never zero or one (i.e., for each data
record, the two posterior probabilities are always nonzero,
and so the application of Bayes’ solution cannot be directly
applied). This is particularly critical when the signal is weak
and the posterior probabilities of the hypotheses take values
close to 1/2. To distinguish this setting from the one solved by
Bayes, we refer to Bernoulli experiments whose outcomes are
not known with certainty asimperfectBernoulli trials. For some
reason, this problem has not received much attention in the
literature. The only direct reference we found on the subject is
[4], where a scenario that arises in social sciences is examined.
The objective of this letter is to present the Bayes’ solution for
imperfect Bernoulli trials and show that the solution for perfect
trials is a special case of it.

II. ESTIMATION FROM PERFECTBERNOULLI TRIALS

Here, we briefly review the case of perfect Bernoulli trials
[3]. Without loss of generality, in the sequel, we assume that

0 and 1. Let be the probability that an event
will occur in a Bernoulli trial, that is , where is
the parameter we want to estimate. Suppose that the Bernoulli
experiment is repeated times under identical conditions, and
that the observed data from the trials are denoted by,

. The data belong to one of two disjoint sets,
and , and we say that occurred in the th trial if .
Therefore

(1)

It is important to emphasize that after observing, we can un-
ambiguously decide if or . If in trials occurs

times, then for the probability of , , we can
write

(2)

If is our prior of , according to the Bayes theorem, the
posterior density of is

(3)

where signifies proportionality. From (2), the posterior (3)
becomes

(4)
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When the prior is uniform on [0, 1], the posterior becomes [3]

(5)

which is the well knownbeta density[2]. This result can be
found in many standard textbooks on probability and statistics.

III. ESTIMATION FROM IMPERFECTBERNOULLI TRAILS

Now let each Bernoulli experiment produce a data record,
that can be modeled by one of two hypotheses,

and , and let the densities of the data given these hy-
potheses be and , respectively. If the prior
of is , after observing the first data record, we can
write

(6)

The last identity follows because if the density of is condi-
tioned on and , the conditioning on becomes irrelevant.
Since

(7)

and

(8)

(6) can be expressed as

(9)

where

(10)

The prior for the second data record is given by (9), and the
posterior is

(11)

where

(12)

or

(13)

It is easy to show that the result for the posterior aftertrials is

(14)

where

(15)

When is uniform on [0, 1], and provided none of the trials
produces , the posterior can be written as

(16)

where the coefficients of the polynomial ,
are defined by

(17)

and where , can be obtained from

(18)

(19)

(20)

and

(21)

(22)

So if the exact analytical form of is de-
sired, the coefficients that define the density can recur-
sively be obtained from (17)–(22).

From the above, we see that is a polyno-
mial of th degree provided none of the ratiosequal one. If

of the ratios are equal to one, then the polynomial is of degree
. In perfect Bernoulli trials, is either 0 or . When it

is zero, the factor in (14) from theth trial is , whereas if it is
, the factor is . These factors, when multiplied and the

product normalized, yield Bayes’ solution (5).
To get further insight about the posterior obtained from im-

perfect trials, let , , denote the poste-
riors that hypothesis is true after observing . Then we may
write

(23)

and

(24)

where

(25)

(26)

(27)

The effects of and on the posterior of are shown in
Figs. 1 and 2. In Fig. 1, we see that if 1 or 0, we
have the beta density and the Bayes’ solution. If 0.5, we
notice that the posterior has not changed. That is, it is still flat
because then the evidence from data recordfavors neither
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Fig. 1. Posterior probability ofp after one data record for various probabilities
p (probability thatH is true given the data recordy ).

Fig. 2. Posterior probability ofp after two data records for various
probabilitiesp (probability thatH is true given the data recordy ) and
p = 0.8 (probability thatH is true given the data recordy ).

nor . For all other values of , the function is
accordingly slanted. In Fig. 2, is plotted for
0.8 and for various values of . As varies from 0
to 1, the shape of the posterior changes considerably. For
0.5, we see that the posterior is a linear function ofbecause, as
has already been noted, when the ratio 1 (which is equiv-
alent to 0.5), new evidence of is nonexistent, and the
function of the posterior does not increase the degree of its poly-
nomial.

IV. A N EXAMPLE

In this section, examples are provided that show the differ-
ence between Bayesian estimates from imperfect Bernoulli
trials when they are obtained by considering the trials perfect
and imperfect, respectively. Namely, one attempt in estimating

by treating the trials as “perfect” could be based on ap-
plying (5), that is, increasing the count by one whenever

Fig. 3. Posterior density ofp obtained with the method for imperfect Bernoulli
trials (solid line) and the method for perfect Bernoulli trials (dotted line), where
p = 0.7. The number of trialsm = 200.

, where is an appropriately chosen threshold (in our
experiment, we adopted 1). Then, it is well known that
for large , the function has a sharp
peak at , and so, if the prior is smooth, the posterior

will also be concentrated around [3].
In our experiment, each time a trial is performed, a data vector
of length 30 samples is observed. It is generated by one

of the hypotheses

(28)

where the ’s are independent and identically distributed
noise samples whose distribution is Gaussian with mean zero
and known variance . The signal is random and also
Gaussian with mean zero and known variance.

The experiment had trials, with .
Each trial was conducted as follows: First a random number
was drawn from a uniform distribution, . Second, if the
number was less than 0.7,was generated according to ;
otherwise it was generated according to. If was the gen-
erating mechanism,was first sampled from followed
by generating . The variance of was .

The ratio , for , can be shown to be [2]

(29)

where is the mean of . With the method for perfect
Bernoulli trials, whenever , it was considered that the
data were produced according to hypothesis, and if ,
it was supposed that they were generated by.

The results of the experiment are shown in Fig. 3. The method
for perfect Bernoulli trials obviously failed to provide accurate
result because it does not incorporate the uncertainties present
in the data when deciding between or . The posterior ob-
tained by applying (14) is shown by the curve with solid line,
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Fig. 4. Posterior density ofp obtained with the methods for imperfect
Bernoulli trials (solid line) and the method for perfect Bernoulli trials (dotted
line), wherep = 0.7. The number of trialsm = 30, and the SNR’s were�20
dB (top),�10 dB (middle), and 0 dB (bottom figure).

and it peaks at about the correct value of. In general, the poste-
rior densities of obtained according to the imperfect Bernoulli
formulation are always wider than those obtained by the method
based on perfect Bernoulli trials.

A different set of experiments were performed, wherewas
kept constant and equal to one, and the noise variance was varied
from experiment to experiment. The total number of records

in each experiment was 30. In Fig. 4, we see the re-
sults for SNR’s (SNR’s) , , and 0 dB, respectively
(SNR ). When theSNR was 0 dB, the found
posteriors by the methods for perfect and imperfect Bernoulli
trials were practically the same (there is no distinction between
the two curves in the bottom graph of Fig. 4), and as the SNR
decreased, the posterior obtained by the method for imperfect
trials became broader. This certainly agrees with our intuition
and simply reflects the fact that the noisier data induce greater
uncertainty about the estimated probability.

V. CONCLUSIONS

Estimation of the probability of an event from imperfect
Bernoulli trials was examined. The main result is given by
(14)–(22), which represents the posterior of the probability
given data from independent and imperfect Bernoulli trials.
The expression simplifies to (5) when the trials are perfect.
From the posterior of the probability, various point and interval
estimates of the probability of the event can be readily obtained.
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