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Estimation of a Bernoulli Parametefrom Imperfect
Trials

Petar M. Djuricand Yufei Huang

Abstract—Imperfect Bernoulli trials arise when the outcome of and their posterior probabilities are evaluated. Theoretically,
a Bernoulli experiment is not known with certainty. In signal pro-  due to the presence of noise, the posterior probabilities of each
cessing, we often need to estimate a probability of occurrengeof of the hypotheses are never zero or one (i.e., for each data

an event from imperfect Bernoulli trials. A typical example is the d. the t teri babiliti |
estimation of the probability of a signal being present in noisy data. fecord, e wo POSIerior probabiiities areé aWways nonzero,

In his famous essay, Bayes solved the same problem but for perfectand so the application of Bayes’ solution cannot be directly
trials. In this letter, a solution is provided for imperfect trials. Itis ~ applied). This is particularly critical when the signal is weak

shown that it includes Bayes' solution as a special case. and the posterior probabilities of the hypotheses take values
Index Terms—A posteriori densities, estimation, probabilities of close to 1/2. To distinguish this setting from the one solved by
events, signal detection. Bayes, we refer to Bernoulli experiments whose outcomes are

not known with certainty asnperfectBernoulli trials. For some

reason, this problem has not received much attention in the

literature. The only direct reference we found on the subject is
N his famous work, “An essay toward solving a problem ify], where a scenario that arises in social sciences is examined.
the doctrine of chance,” Thomas Bayes addressed the fphe objective of this letter is to present the Bayes’ solution for

lowing problem: ‘Given the number of times in which an un-imperfect Bernoulli trials and show that the solution for perfect

known event had happened and failBequiredthe chance that trials is a special case of it.

the probability of its happening in a single trial lies somewhere

between any two degrees of probablllty that can be named” 1I. ESTIMATION FROM PERFECTBERNOULLI TRIALS

[1]. In mathematical terms, if is the probability that a phe-

nomenon of interest may occus; is the number of times a _ L

Bernoulli experiment is conducted, ahdk < m is the number [3]. Without loss of generality, in the sequel, we assume that

of times the event occurred, Bayes wanted to find the probh-— 0 a”‘?'b =1L Let]? b_e the prpbablhty that an even_@

bilty Pla < p < bD), where0 < a < b < I, will occur in a Bernoulli trial, Fhat isP(Q) = p, wherep is _
and?D generically denotes experimental data. Bayes solve IW(? pa'\ramet.er we want tp estimate. .Supp.ose that_the Bernoull
problem without relying on integral calculus and instead us&gPerimentis repeated times unde_r identical condltlon‘s, and
interesting geometric arguments. It should be noted that he tH@t the observed data from the trials are den_o_te_griby -

itly assumed that the outcomes of the Bernoulli experiments -+, m. The datay; belong to one Of, two .d'S.JO'nt sets,
known with certainty. That is, after observing the data from tk%nd‘s’ and we say thay occurred in theith trial if y; € S.

trial, the probability of occurrence of the event would coIIapsU‘ere'core

to either zero or one. Such Bernoulli trials are here referred to Ply; € 8) =p

asperfectBernoulli trials. .

In signal processing, there are many situations where Plyi €5)=1-p. @
Bernoulli experiments are performed and the value of the prob-
ability of occurrence of an event is desired. A typical scenario
there, however, is different from the one described by Bay#ds important to emphasize that after observingwe can un-
in that the data do not reveal with certainty whether the evedbiguously decide i§; € Sory; € S. Ifin m trialsQ occurs
occurred. For example, consider a problem where therenarek times, then for the probability of;, ¢ = 1,2,---,m, we can
independent data records and each of them represents a sigiée
in noise or noise only, and one wants to estimate from past k
experiments the probability that a signal will be present in the Plyyz - ymlp) =p"(1 — p)

next data set. For each data record, two hypotheses are formeg #(p) is our prior ofp, according to the Bayes theorem, the
posterior density o is
Manuscript received September 4, 1999. This work was supported by the Na-
tional Science Foundation Award CCR-9903120. The associate editor coordi-  f(p|y1,¥2,,¥m) X P(¥1,¥2, -, ¥m|p) (D) (3)
nating the review of this manuscript and approving it for publication was Prof.
A. Nehorai. ianifi i i i
where x signifies proportionality. From (2), the posterior (3
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. INTRODUCTION

Here, we briefly review the case of perfect Bernoulli trials

rn,—k' (2)
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When the prior is uniform on [0, 1], the posterior becomes [3When f(p) is uniform on [0, 1], and provided none of the trials

(m+1)! produces; = 1, the posterior can be written as
FPly, ¥z, ¥m) = o pk(l _p)rn—k )
k‘(m—k)' f(p|YIaYQa"'aan)

which is the well knowrbeta density[2]. This result can be = G, D™+ Gy 10"+ Ao (16)

found in many standard textbooks on probability and sta’usucshere the coefficients of the polynomia, i, i = 0,1, - - - ,m

are defined b
Ill. ESTIMATION FROM IMPERFECTBERNOULLI TRAILS y

Cm,i
Now let each Bernoulli experiment produce a data regord Um,i = (17)
+=1,2,.--,m that can be modeled by one of two hypotheses, Cm, k
Ho andHy, and let the densities of the data given these hy- k=0 k+1

potheses b¢ (y;|Ho) and f(y;|H1), respectively. If the prior

of p is f(p), after observing the first data recosd, we can and where,, ;, ¢ = 0,1,---,m can be obtained from

Write crn,O :crn—l,OTrn (18)
f(p|YI) x f(YI|p)f(p) Cm,i = cm—l:i—l(l - Tm) + Cm—1,iTm;
= F(y1lp, Ho) P(Holp) £ (p) t=12-m—1 (19)
+ [ (¥ilp, H) P(Hulp) f () Cm,m =Cm—1,m-1{1 = Tm) (20)
= f(y1Ho)P(Holp) f(p) and
+ f(y1[Hy) P(Hilp) f(p)- (6) o
C1,0 =71 (21)
The last identity follows because if the densitysaf is condi- c11=1—r]. (22)
tioned onp and;, the conditioning orp becomes irrelevant. ’
Since So if the exact analytical form of (p|y1,y2, -, ¥m) iS de-
sired, the coefficients,, ; that define the density can recur-
= P(Hi|p) (7)  sively be obtained from (17)—(22).
and From the above, we see th&|y1, ¥z, -, ¥m) iS apolyno-
mial of mth degree provided none of the ratigsequal one. If
1—p = P(Ho|p) (8) n ofthe ratios are equal to one, then the polynomial is of degree
m — n. In perfect Bernoulli trialsy; is either 0 orcc. When it
(6) can be expressed as is zero, the factor in (14) from th&h trial is p, whereas if it is

_r . o0, the factor i1 — p). These factors, when multiplied and the
Fplyr) o (L= ro)p+11)f(p) ©) product normalized, yield Bayes’ solution (5).

where To get further insight about ';he posterior obtained from im-

perfect trials, letP(H;|y;) = p”, i = 1,2, denote the poste-

= M. (10) riors that hypothesi&{; is true after observing;. Then we may
Fya|H) write
The prior for the second data record is given by (9), and the (1) (1)
posterior is flply) =p" —2)p+2-2p (23)
Py ye) < (L=ra)p+72)f(plyy) (1) &
where f(ply1,¥2) = az2p” + az.1p + az,0 (24)
Ty = f(YQ|H0) (12) where
f(y2|H1) o — 6(2p(1) - 1) (2p(2) —1) (25)
or 22 TopWp®@ — p(M) — p@ + 2
2 _6((2p™W = 1) (1 — p®) 4 (2p® — 1) (1 — pM)))
Flyry2) oc f(p) [T (1 =ri)p + ). (13) %217 2pWp@ — p@O — p@ 12
=1 (26)
Itis easy to show that the result for the posterior aftdrials is _ 6(1 — p(l)) (1— p(2))
920 To 0@ — pl —p®@ £ 2° 27)
il pHps) —pi) —pt 42
F@ly ¥z, ym) < f(p) E ((=rip+ry)  (A4) The effects opt™) andp(® on the posterior of are shown in
Figs. 1 and 2. In Fig. 1, we see thapif) = 1 orp¥) =0, we
where have the beta density and the Bayes’ solutiop™f = 0.5, we
_ JyilHo) 15 notice that the posterior has not changed. That is, it is still flat
"= f(yilH)" (15) because then the evidence from data regordavors neither
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Fig. 3. Posterior density gfobtained with the method for imperfect Bernoulli
Fig. 1. Posterior probability gf after one data record for various probabilitiestrials (solid line) and the method for perfect Bernoulli trials (dotted line), where
p (probability that¥; is true given the data recosd, ). p = 0.7. The number of trials: = 200.

r; < =, wherevy is an appropriately chosen threshold (in our
experiment, we adopteg = 1). Then, it is well known that
for largem, the functiong(p) = p*(1 — p)™~* has a sharp
peak atk/m, and so, if the priomp is smooth, the posterior
f(ply1,¥2, -+, ¥m) will also be concentrated aroudrm [3].

In our experiment, each time a trial is performed, a data vector
y; of lengthT” = 30 samples is observed. It is generated by one
of the hypotheses

Ho: y[t] =wlt], t=0,1,---,7—-1
Hi:ylt] =a +w[t], t=0,1,---,7-1 (28)

where thew[t]'s are independent and identically distributed

noise samples whose distribution is Gaussian with mean zero

and known variancer?. The signala is random and also

Gaussian with mean zero and known variange

Fig. 2. Posterior probability ofp after two data records for various Th€ experiment had. = 200 trials, with p(H:) = 0.7.

probabilitiesp(® (probability that?, is true given the data recond;) and  Each trial was conducted as follows: First a random nunaber

p™ = 0.8 (probability that; is true given the data recosd, ). was drawn from a uniform distributio®(0, 1). Second, if the
number was less than 0.¥,was generated according d; ;

Hy nor H. For all other values o™, the functionf(p|y1) is  otherwise it was generated accordingg. If ; was the gen-

accordingly slanted. In Fig. 2/(p|y1,y2) is plotted forp”) = erating mechanism,was first sampled fromV/ (0, o2) followed

0.8 and for various values pf? € [0,1]. Asp® varies from 0 by generatingv ~ A’(0, I). The variance of waso? = 1/30.

to 1, the shape of the posterior changes considerablyPoe The ratior;, fori = 1,2, ---,m, can be shown to be [2]

0.5, we see that the posterior is a linear functiop bécause, as

has already been noted, when the ratie= 1 (which is equiv- o2 1/2 2202

e (wirm) o (s o)

alent top(” = 0.5), new evidence af is nonexistent, and the
function of the posterior does notincrease the degree of its poly-
nomial.

To2 +02)0? (29)

o2+ To?
where 5, is the mean ofy;. With the method for perfect
Bernoulli trials, whenever; < 1, it was considered that the
IV. AN EXAMPLE data were produced according to hypothé&gis and ifr; > 1,

In this section, examples are provided that show the diffat-was supposed that they were generatedgy
ence between Bayesian estimates from imperfect BernoulliThe results of the experiment are shown in Fig. 3. The method
trials when they are obtained by considering the trials perfdor perfect Bernoulli trials obviously failed to provide accurate
and imperfect, respectively. Namely, one attempt in estimatingsult because it does not incorporate the uncertainties present
p by treating the trials as “perfect” could be based on am the data when deciding betwe#fy or H,. The posterior ob-
plying (5), that is, increasing the coukt by one whenever tained by applying (14) is shown by the curve with solid line,
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¢ ! i ' ) ' ' ' ' ' in each experiment was: = 30. In Fig. 4, we see the re-
af 2w 4 sults for SNR’s §NR’s) —20, —10, and O dB, respectively
(SNR = 10 loga?/a?). When theSNR was 0 dB, the found
posteriors by the methods for perfect and imperfect Bernoulli
trials were practically the same (there is no distinction between
the two curves in the bottom graph of Fig. 4), and as the SNR
decreased, the posterior obtained by the method for imperfect
trials became broader. This certainly agrees with our intuition
] and simply reflects the fact that the noisier data induce greater
uncertainty about the estimated probability.

L]

()

V. CONCLUSIONS

i Estimation of the probability of an event from imperfect
Bernoulli trials was examined. The main result is given by
(14)—(22), which represents the posterior of the probability

o o1 0z 03 04 05 08 o7 08 08 1 given data fromm independent and imperfect Bernoulli trials.
P The expression simplifies to (5) when the trials are perfect.

Fig. 4. Posterior density op obtained with the methods for imperfectFrom the posterior of the probability, various point and interval

Bernoulli trials (solid line) and the method for perfect Bernoulli trials (dotte@@Stimates of the probability of the event can be readily obtained.
line), wherep = 0.7. The number of trials: = 30, and the SNR’s were 20
dB (top), —10 dB (middle), and O dB (bottom figure).

p)
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