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Abstract

MCMC sampling is a methodology that is becoming increasingly important in statistical signal processing. It has been
of particular importance to the Bayesian-based approaches to signal processing since it extends signi"cantly the range of
problems that they can address. MCMC techniques generate samples from desired distributions by embedding them as
limiting distributions of Markov chains. There are many ways of categorizing MCMC methods, but the simplest one is to
classify them in one of two groups: the "rst is used in estimation problems where the unknowns are typically parameters
of a model, which is assumed to have generated the observed data; the second is employed in more general scenarios
where the unknowns are not only model parameters, but models as well. In this paper, we address the MCMC methods
from the second group, which allow for generation of samples from probability distributions de"ned on unions of disjoint
spaces of di!erent dimensions. More speci"cally, we show why sampling from such distributions is a nontrivial task. It
will be demonstrated that these methods genuinely unify the operations of detection and estimation and thereby provide
great potential for various important applications. The focus is mainly on the reversible jump MCMC (Green,
Biometrika 82 (1995) 711), but other approaches are also discussed. Details of implementation of the reversible jump
MCMC are provided for two examples. ( 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many signal processing problems the un-
knowns of interest are the model that generates the
observed data and its parameters. In a practical
setting, there are more than one candidate models
for the data, and the main objective is to choose the
best of them according to a prede"ned criterion.

The models have their own parameters, which in
general may not be related at all, and often they,
too, have to be estimated. A coherent approach of
"nding the best model is based on the Bayesian
methodology. Although the theory of the proced-
ure is fairly simple, its practical implementation is
plagued with several nontrivial di$culties. One of
them is the multidimensional integrations needed
to obtain the marginal posterior probabilities of the
models.

The integration problem has most commonly
been alleviated by applying asymptotic approxi-
mations and invoking the Laplace's method for
integration. Quite often, however, the so obtained
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approximations may be relatively poor, which alto-
gether lead to incorrect results. Recently, very inter-
esting alternatives have emerged, most of them
based on the Markov chain Monte Carlo (MCMC)
sampling technique. Some of them can be viewed as
generalized MCMC schemes where the random
walks within the parameter spaces of the standard
MCMC computations are extended to include
walks that allow for jumps between parameter
spaces of di!erent dimensions.

MCMC sampling was initially proposed as
a method for drawing samples from nonconven-
tional densities, and so it was restricted to problems
where the densities had "xed dimensionalities. For
this reason, in the 1980s and early 1990s most of the
e!orts in the "eld were focused on applications
related to estimation. Good reviews of the method
can be found in [20,21,23,36], and in signal process-
ing context, in [2,31]. Additional references on the
subject can be found in [13].

In 1994, Grenander and Miller proposed a
method with the same objective, to draw samples

from a desired (target) distribution, but with an
important di!erence in that the dimensionality of
the parameter space was not "xed [26]. In other
words, the target distribution was de"ned over the
joint sample space of the models and their para-
meters. With this, they generalized the sampling-
based methodology in an important way, which in
fact allows for simultaneous detection and estima-
tion of signals. Their approach was based on
jump-di!usion dynamics with the essential features
that at random times the process jumps between
parameter spaces corresponding to di!erent mod-
els and of di!erent dimensions, and once within
a model of "xed dimensionality, it follows a Lan-
gevin di!usion [26]. Earlier work had also been
done in the "eld based on the construction of a
continuous-time Markov birth}death process as
described by Preston [33]. Ripley "rst applied this
idea to the simulation of point processes [35].

In signal processing, the theory of random samp-
ling based on jump-di!usion processes has found
interesting applications. Besides in target tracking
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applications, it has been used to resolve problems
related to estimation of directions of arrival of
signals from an unknown number of moving signal
sources [30]. This work has been extended to
a more general setting to include automated track-
ing and recognition of moving targets by fusion of
multi-sensor data, speci"cally, narrow sensor array
outputs and high-resolution images [30]. Addi-
tional contributions in the same application area
have been reported in [28,29,40].

In 1995, Green showed that the MCMC meth-
odology can be generalized in order to cope with
problems where the data generating models are
also unknown [27]. His approach represents a #ex-
ible framework for construction of reversible
Markov chain samplers, where moves between
di!erent parameter spaces are also allowed. The
Markov chain, thus, not only moves within para-
meter spaces that correspond to particular models,
but it also jumps between them, their di!erence in
dimensionality notwithstanding. A nice feature of
the approach is that it is a generalization of the
standard MCMC theory.

Since the appearance of [27], there have been
many e!orts to apply the methodology to solving
various model selection problems. In signal pro-
cessing some topics that have been examined are
the joint detection and estimation of harmonic sig-
nals [1,16], model order determination of autoreg-
ressive processes [43], restoration of distorted
autoregressive signals [44], variable selection [14],
parametric modeling and estimation of time-vary-
ing spectra by chirps with Gaussian envelopes [15],
and unsupervised image segmentation [5,10].

Also in 1995, Carlin and Chib proposed a third
approach to model selection [8]. Their idea is
based on the use of conventional Markov chains
and the concept of a supermodel. Namely, the
supermodel is de"ned over a composite parameter
space, which in fact is the product space of all
model parameters. The implementation of their
method requires the use of pseudopriors, that is,
linking densities with no physical meaning, and
standard MCMC methodology.

In this paper, the reversible jump MCMC and
Carlin and Chib's algorithms are described in de-
tail, and a brief exposition on the jump-di!usion
methodology is provided. MCMC solutions to sev-

eral typical signal processing problems are also
given. They include the detection of harmonics em-
bedded in noise and deconvolution of impulsive
processes. In particular, the paper is organized as
follows: in Section 2 we introduce the problem and
give three illustrative examples. In Section 3 we
provide a description of MCMC samplers for
model selection. In Section 4 we present the ap-
plications of these samplers. Readers only interest-
ed in practical implementation of the algorithms
can skip the sections and subsections marked with
a r. The other sections and subsections are more
methodological and aim at giving a detailed de-
scription of the construction of MCMC samplers
for model selection, pointing out the arising `theor-
eticala problems.

In this paper we assume that the reader is famil-
iar with Bayesian statistics and MCMC algorithms
for "xed model problems, i.e. the data augmenta-
tion algorithm, Gibbs sampler and Metropolis-
Hastings (MH) algorithm. Newcomers should refer
to [19] in this special issue, and reviews such as
[23,36,38,42].

2. Problem formulation

We assume that data y
1>T

can be described by
a model that belongs to a family of models
(M

n
)
n/1,2,N

which might be de"ned on di!erent
spaces and where N may be in"nite. We therefore
consider a parameter space consisting of a union of
possibly heterogeneous subspaces. We present here
three example that are of importance in signal
processing: detection of the number of sinusoids in
noise, choice of modelling between autoregressive
and harmonic process and Bernoulli Gaussian es-
timation [17].

Example 1 (Nested models). We want to model the
data y

1>T
with one of the following models:

M
0
: y

t
"w

0,t
, k"0,

M
k
: y

t
"

k
+
j/1

(a
cj,k

cos[u
j,k

t]#a
sj,k

sin [u
j,k

t])
(1)

#w
k,t

, k*1,
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4We adopt the standard notation n(dh) for the probability of
a small set around h and we will denote with p(h) the associated
density function, de"ned with respect to a proper measure.

where for a given k, w
k,t

**$& N(0,p2
k
). The model

M
k

describes the data in terms of k sinusoids in
white Gaussian noise. The unknown parameters for
M

k
are h

k
"(a

c1,k
, a

s1,k
,u

1,k
,2, a

ck,k
, a

sk,k
,u

k,k
,p2

k
).

Bayesian inference is performed on the param-
eter space H"6k.!9

n/0
MnN]H

n
where H

n
"

(R2](0,p))n]R`, i.e. if k"n, the unknown
parameters h

k
3H

n
. The space H is a union of dis-

joint spaces. In this case, one says that the
models are nested as H

n`1
"R2](0,p)]H

n
for

n"0,2, k
.!9

.

Example 2 (Models of di+erent natures). The data
y
1>T

can be best represented by one of the following
two models:
f M

1
, an AR process of order k

AR
, k

AR
being "xed,

excited by white Gaussian noise v
t
**$&N(0,p2

kAR
),

y
t
"

kAR

+
i/1

a
i
y
t~i

#v
t
. (2)

f M
2
, k

4*/
sinusoids, k

4*/
being "xed, embedded

in a white Gaussian noise sequence
w
t
**$& N(0,p2

k4*/
), i.e.

y
t
"
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+
j/1
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cj
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t]#a

sj
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j
t])#w

t
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Consequently the parameter space for models
1 and 2 is H"M1N]H

1
XM2N]H

2
, so it is also

a union of disjoint spaces. Either the data repres-
ent an AR process of order k

AR
with unknown

parameters (a
kAR

,p2
kAR

) in H
1
"RkAR]R`, or they

are k
4*/

sinusoids in noise with unknown para-
meters (a

c1
, a

s1
, u

1
,2, a

ck4*/
, a

sk4*/
, u

k4*/
,p2

k
) in

H
2
"(R2](0,p))k4*/]R`.

Example 3 (Variable selection: Bernoulli}Gauss
(BG) problem). We assume that the underlying
process x

t
is an AR process of known dimen-

sion k
AR

excited by a BG sequence. The process
of interest x

t
is observed in an additive white

Gaussian noise w
t

and we observe y
t
. More

precisely,

x
t
"

kAR

+
i/1

a
i
x
t~i

#v
t
, (4)

y
t
"x

t
#w

t
, (5)

where w
t
**$& N(0,p2), and v

t
is an iid sequence

which takes the value 0 with probability (1!j) or
is drawn from a Gaussian distribution of variance
p2
0
'0 with probability j, i.e.4

p(dv
t
)"jN(0,p2

0
) dv

t
#(1!j) d

0
(dv

t
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From an algorithmic point of view, it is convenient
to introduce a missing Bernoulli sequence r

1>T
,

such that

n(dv
t
D(r

t
"0))"d

0
(dv

t
),

(7)
n(dv

t
D(r

t
"1))"N(0,p2

0
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t
.

In this model, (a
1
,2, a

kAR
), p2, j and p2

0
are

assumed known, and the sequence r
1>T

is un-
known. Clearly, there are 2T possible sequences
r
1>T

3M0,1NT and we order them according to
r
1>T

(n), n"0,2, 2T!1, such that n"+T~1
t/0

2tr
t
(n).

Here the objective is to perform Bayesian inference
of the unknowns (r

1>T
,*
1>T

) on the space

H"

2T~1
Z
n/0

MnN] ?
t/1,2,T

(M0N]M0N)1~rt (n)X(M1N]R)rt (n)

(8)

with the notational convention that (A)1"A and
(A)0"0 for a set A. Hence for each sequence the
unknown parameters (r

1>T
,*
1>T

) lie in a di!erent
subspace. If r

t
"0 then v

t
"0 and thus

(r
t
, v

t
)3M0N]M0N. If r

t
"1 then v

t
&N(0,p2

0
) and

thus (r
t
, v

t
)3M1N]R. This de"nition might seem

tedious, but it clearly points out that the prior and
posterior probability distributions of (r

1>T
,*
1>T

) are
de"ned on 2T distinct subspaces.

In the general case the probability distribution
will be de"ned on a space of the form
HO6N

n/1
MnN]H

n
and can be written for any

A3B(H)

P
A

n(k,dh)"Pr((k,dh)3A)

"P
A

N
+
n/1

n
n
(n,dh

n
)IMnNCH

n
(k,h), (9)
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where

IMnNCH
n
(k,h)"G

1, (k,h)3MnN]H
n
,

0, otherwise.
(10)

Note that (k,h) is in one of the spaces MnN]H
n
, and

the probability of k equal to n and h being in an
in"nitesimal set centered around h

n
is n

n
(n,dh

n
).

Thus, the probability that h is in the subspace H
n
is

n
n
(n)"PH

n

n
n
(n,dh

n
). (11)

Conditional upon n, the parameters h are distrib-
uted according to the probability distribution
:
A
n
n
(dh

n
Dn)":

A
n
n
(n,dh

n
)/n

n
(n).

Remark 1. Actually, one could write

P
A

n(k,dh)"P
A

N
+
n/1

p
n
(n,dh)IMnNCH

n
(k,h),

that is, drop the subscript n from h when h3H
n
. We

add this index to improve readability.
Again, the number N of possible models can

either be "nite or in"nite; in either case the follow-
ing condition must naturally hold:

N
+
n/1

n
n
(n)"

N
+
n/1
PH

n

n
n
(n,dh

n
)"1. (12)

In order to perform Bayesian model selection, one
is interested in evaluating quantities such as the
model probabilities n

n
(n). There is usually no

closed-form analytical expression for such quantit-
ies, so one has to resort to numerical methods. In
this scenario, MCMC has proved to be an e$cient
means for solving this kind of integration problems
[27,34]. Our aim is now to de"ne and construct
MCMC algorithms in order to obtain samples
from the distribution n(k,dh). A straightforward
solution would be to run N independent "xed
model Markov chains (where N must be "nite), one
for each distribution, subsequently compare the
quantities n

n
(n), and "nally choose among the dif-

ferent models. Such a strategy, however, would not
take advantage of possible relations between para-
meters from di!erent spaces. An MCMC sampler
that could take advantage of such relations would
be of great interest, particularly in the case of nested
models (see Example 1).

3. MCMC algorithms for model selection

In this section, we describe how to build MCMC
algorithms for model selection, i.e. how to construct
ergodic Markov chains admitting n(k,dh) as their
invariant distribution. In the case of model selec-
tion, the main di$culty for the Markov chain is to
be able to jump from one subspace H

n
to another

subspace H
m
. Green [27] has developed a general

methodology that addresses this problem. Our aim
is to present this methodology, progressively, start-
ing in Section 3.1 with a very simple case where
N"2, "rst when there is no measure theoretic
problem (see Section 3.1.2) and then when this kind
of problem arises (see Section 3.1.3). Then in Sec-
tion 3.2 we show how to extend the algorithm for
N*2. In Section 3.3, we describe Carlin and
Chib's algorithm and give a brief exposition of the
jump-di!usion methodology.

3.1. The case N"2

3.1.1. Goals
We want to sample from the distribution

P
A

n(k,dh)"P
A

n
1
(1,dh

1
)IM1NCH

1
(k,h)

#P
A

n
2
(2,dh

2
)IM2NCH

2
(k,h) (13)

de"ned on HOM1N]H
1
XM2N]H

2
where H

1
and

H
2

may be disjoint. To this aim, we need to con-
struct a Markov transition kernel K(kH,dhH D k,h)
admitting n(k,dh) as invariant distribution

P
A
PH

K(kH,dhH D k,h)n(k,dh)"P
A

n(kH,dhH), (14)

i.e. if the current state of the Markov chain is
distributed according to n( ) ) then, after one iter-
ation via the transition kernel K( ) D ) ), the new
state is also distributed according to n( ) ).
:
A
K(kH,dhH D k,h) is the probability of being in a set

A3B(H) when starting from (k,h)3H.
A su$cient condition for a transition kernel

K(kH,dhH D k,h) to admit n(k,dh) as invariant distri-
bution is the detailed balance, or reversibility,

C. Andrieu et al. / Signal Processing 81 (2001) 19}37 23



5To simplify the notation, h and hH de"ne implicitly the index
of the subspaces to which they belong, i.e. k and kH.

6From now on we do not mention any set A and integral of
the type :

A
p(dh) and simply use the simpler notation p(dh).

condition [23]:

P
A

n(k,dh)P
B

K(kH,dhH D k,h)

"P
B

n(kH,dhH)P
A

K(k,dh D kH,hH), (15)

i.e. the probability of being in any set A and jump-
ing into any set B is equal to the probability of
being in a set B and jumping into any set A when
the chain is in its stationary regime. It is trivial to
show that Eq. (15) implies Eq. (14).

When the current state of the Markov chain is
(k,h), the principle of the MH algorithm is to pro-
pose a candidate hH in H

1
XH

2
according to a pro-

posal distribution q(dhH D h).5 Then this candidate is
accepted or rejected according to an acceptance
probability a((k,h),(kH,hH))"minM1, r((k,h),(kH,hH))N,
which ensures reversibility of the transition kernel
with respect to n( ) ).

By analogy with the classical ("xed dimension)
case, a satisfactory expression for a((k,h)3A,
(kH,hH)3B) is the following:

r((k,h)3A,(kH,hH)3B)"
:
B
n(kH,dhH)

:
A
n(k,dh)

:
A
q(dh D hH)

:
B
q(dhH D h)

.

(16)

This expression is the probability version of the
standard MH acceptance ratio [27]. To be of prac-
tical interest, as one wants to work with points of
the space H and not subsets, it requires considering
the limit of this ratio when the sets A and B collapse
around the points (kH,hH) and (k,h). This ratio is not
necessarily de"ned. The existence and evaluation of
the limit of the ratio in (16) are the main di$culties
in generalizing the MCMC method. These are the
main topics discussed in the following subsections.

3.1.2. Jumping between H
1

and H
2
: simple caser

When the current state of the Markov chain is
(n,h

n
) two events can occur: either the chain stays in

MnN]H
n
, or it moves to the other subspace. The

design of MCMC updates within a subspace is

based on standard methods such as the Gibbs sam-
pler or the MH algorithm. So, for the sake of
clarity, in this subsection we discuss only the case
where we propose moves from one subspace to the
other, i.e. nOm. Then,6

q(dhH D h)"q
1,2

(dhH
2

D h
1
)IH

2CH
1
(hH,h)

#q
2,1

(dhH
1

D h
2
)IH

1CH
2
(hH,h), (17)

i.e., when h"h
1
3H

1
, a value hH"hH

2
3H

2
is pro-

posed according to the distribution q
1,2

(dhH
2

D h
1
)

and, when h"h
2
3H

2
, a value hH"hH

1
3H

1
is proposed according to the distribution
q
2,1

(dhH
1

D h
2
).

Let us assume that the current state of the Mar-
kov chain at iteration i of our MCMC sampler is
(k(i),h(i)

k
(i))"(n,h

n
)3MnN]H

n
. We propose to jump

to the state (m,hH
m
)3MmN]H

m
using the proposal

distribution q
n,m

(dhH
m

D h
n
). With probability

a((n,h
n
),(m,hH

m
)) we set (k(i`1),h(i`1)

k
(i`1) )"(m,hH

m
), other-

wise (k(i`1),h(i`1)
k
(i`1) )"(k(i),h(i)

k
(i) ) where the acceptance

ratio is the limit of the ratio when the sets dh
n

and
dhH

m
collapse around h

n
and hH

m

r((n,h
n
),(m,hH

m
))"

n
m
(m,dhH

m
)q

m,n
(dh

n
D hH

m
)

n
n
(n,dh

n
)q

n,m
(dhH

m
D h

n
)

(18)

according to Eq. (16). The acceptance probability is
a((n,h

n
),(m,hH

m
))"minM1, r((n,h

n
),(m,hH

m
))N.

If we assume that for (a, b)3M1,2N

n
a
(a,dh

a
)"n

a
(a,h

a
)k

a
(dh

a
),

(19)
q
a,b

(dh
b
D h

a
)"q

a,b
(h

b
D h

a
)k

b
(dh

b
),

i.e. n
a
(a,dh

a
) and q

a,b
(dh

b
D h

a
) admit, respectively,

a density with respect to k
a
(dh

a
) and k

b
(dh

b
), then

n
m
(m,dhH

m
)q

m,n
(dh

n
D hH

m
)

n
n
(n,dh

n
)q

n,m
(dhH

m
D h

n
)

"

n
m
(m,hH

m
)k

m
(dhH

m
)q

m,n
(h

n
D hH

m
)k

n
(dh

n
)

n
n
(n,h

n
)k

n
(dh

n
)q

n,m
(hH

m
D h

n
)k

m
(dhH

m
)

"

n
m
(m,hH

m
)q

m,n
(h

n
D hH

m
)

n
n
(n,h

n
)q

n,m
(hH

m
D h

n
)
, (20)
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i.e. the ratio of Eq. (18) exists and can be computed
straightforwardly using the densities. This is for
example the case when k

n
(dh

n
) and k

m
(dh

m
) are

Lebesgue measures. The assumptions we made to
ensure the existence and compute the ratio of prob-
ability measures might be restrictive in some ap-
plications. In the next subsection, we consider
a more general case.

Remark 2. In the case of a standard MH algorithm
where HLRd, a very common case is when n(dh),
q(dh D hH) and q(dhH D h) admit densities n(h), q(h D hH)
and q(hH D h) with respect to the Lebesgue measure
dh. Then the acceptance ratio takes the conven-
tional form

r(h,hH)"
n(hH)q(h DhH)
n(h)q(hH D h)

. (21)

3.1.3. Jumping between H
1

and H
2
: complicated

caser

We start with an example. Let us consider the
case where the two sets are nested, i.e. for example
H

2
"H

1
]W

1,2
and one wants to jump from

H
1

to H
2
. In many cases one wishes to link the

current state h
1

and the candidate state hH
2

by
exploiting that the current state in H

1
is h

1
deter-

ministically. For instance, one could add an extra
component u

1,2
3W

1,2
to h

1
to propose hH

2
as

follows:

hH
2
"(h

1
,u

1,2
). (22)

This is reasonable in the case of two nested models:
one wants to keep as much information as possible
when moving from parameter space H

1
to H

2
and

vice versa (note that otherwise one could have used
two di!erent Markov chains, one within each para-
meter space). We address this task in Section 4.1.1
in the context of sinusoids corrupted by noise. Let
us assume that we are in the subspace with
k sinusoids and we want to jump to a subspace with
k#1 sinusoids. Then, a sensible move is to pro-
pose a new frequency u

1,2
according to a proposal

distribution while keeping the current values of the
other frequencies. The reverse move, i.e. the move
to jump from H

2
to H

1
, is automatically de"ned

and consists of removing the appropriate compo-
nents of hH

2
. The acceptance ratio of the move from

H
1

to H
2

is still equal to

r((1,h
1
),(2,hH

2
))"

n
2
(2,dhH

2
)q

2,1
(dh

1
D hH

2
)

n
1
(1,dh

1
)q

1,2
(dhH

2
D h

1
)
. (23)

Reparametrizing in terms of (h
1
,u

1,2
), one obtains

for the numerator

n
2
(2,d(h

1
,u

1,2
))q

2,1
(dh

1
D (h

1
,u

1,2
))

"n
2
(2,d(h

1
,u

1,2
))dh

1
(dh

1
) (24)

while the denominator becomes

n
1
(1,dh

1
)q

1,2
(d(h

1
,u

1,2
) D h

1
)

"n
1
(1,dh

1
)q

1,2
(du

1,2
D h

1
)q

1,2
(dh

1
D h

1
)

"n
1
(1,dh

1
)q

1,2
(du

1,2
D h

1
)dh

1
(dh

1
) (25)

as only u
1,2

is sampled, whereas h
1

is kept "xed.
If we now assume that

n
a
(a,dh

a
)"n

a
(a,h

a
)k

a
(dh

a
),

(26)
q
a,b

(du
a,b

D h
a
)"q

a,b
(u

a,b
D h

a
)k6

a
(du

a,b
),

then the acceptance ratio satis"es

r((1,h
1
),(2,hH

2
))

"

n
2
(2,(h

1
,u

1,2
))k

2
(d(h

1
,u

1,2
))

n
1
(1,h

1
)q

1,2
(u

1,2
D h

1
)k

1
(dh

1
)k6

1
(du

1,2
)

(27)

which requires the existence and the evaluation of
the limit of the ratio of measures

k
2
(d(h

1
,u

1,2
))

k
1
(dh

1
)k6

1
(du

1,2
)
. (28)

In numerous cases, k
2
, k

1
and k6

1
are the Lebesgue

measures on the sets H
2
, H

1
and W

1,2
, thus this

ratio is equal to 1.
Finally, one can extend this idea to a more

general case where there exists a deterministic in-
vertible relationship f

1,2
( ) ) between H

2
]W

2,1
and

H
1
]W

1,2
of the form

A
hH
2

uH
2,1
B"A

f h

1,2
(h

1
,u

1,2
)

f u

1,2
(h

1
,u

1,2
)B. (29)

Assuming that

n
1
(1,dh

1
)"n

1
(1,h

1
)k

1
(dh

1
),

q
1,2

(du
1,2

D h
1
)"q

1,2
(u

1,2
D h

1
)k6

1
(du

1,2
),
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n
2
(2,df h

1,2
(h

1
,u

1,2
))

"n
2
(2, f h

1,2
(h

1
,u

1,2
))k

2
(df h

1,2
(h

1
,u

1,2
)),

q
2,1

(df u

1,2
(h

1
,u

1,2
) D f h

1,2
(h

1
,u

1,2
))

"q
2,1

( f u

1,2
(h

1
,u

1,2
) D f h

1,2
(h

1
,u

1,2
))

]k6
2
(df u

1,2
(h

1
,u

1,2
)), (30)

it follows that

r((1,h
1
),(2,hH

2
))"

n
2
(2, f h

1,2
(h

1
,u

1,2
))q

2,1
(f u

1,2
(h

1
,u

1,2
) D f h

1,2
(h

1
,u

1,2
))

n
1
(1,h

1
)q

1,2
(u

1,2
D h

1
)

]
k
2
(df h

1,2
(h

1
,u

1,2
))k6

2
(df u

1,2
(h

1
,u

1,2
))

k
1
(dh

1
)k6

1
(du

1,2
)

. (31)

Again, in numerous cases, k
2
, k

1
, k6

1
and k6

2
are

Lebesgue measures and therefore this ratio limit
satis"es

k
2
(df h

1,2
(h

1
,u

1,2
))k6

2
(df u

1,2
(h

1
,u

1,2
))

k
1
(dh

1
)k6

1
(du

1,2
)

"J
f 1,2
OKdet

Lf
1,2

(h
1
,u

1,2
)

L(h
1
,u

1,2
) K, (32)

where J
f 1,2

is the Jacobian of the transformation
f
1,2

( ) ).

Remark 3. The algorithm described in Section
3.1.2 is a special case of this last framework, when
u
1,2

"h
2
, u

2,1
"h

1
and f

1,2
( ) ) is such that

(h
2

h
1
)"f

1,2
(h

1
h
2
). (33)

Remark 4. The theoretical framework described by
Green [27] is more general, as he shows that a su$-
cient condition for the acceptance ratio to be de-
"ned and evaluated is to be able to "nd a symmetric
dominating measure on the probability distribu-
tions n

m
(m,dh

m
)q

m,n
(du

m,n
D h

m
). However the practi-

cal framework presented by Green is the same as
the one discussed here.

3.1.4. Practical implementation
In this section, we summarize reversible jump

MCMC algorithms to jump between spaces for two
models de"ned on H

n
and H

m
from an algorithmic

point of view. For the sake of simplicity all the

distributions are assumed to have a density with
respect to the Lebesgue measure. The algorithm
requires the de"nition of a deterministic invertible
mapping between H

m
]W

m,n
and H

n
]W

n,m

(hH
m
,uH

m,n
)"f

n,m
(h

n
,u

n,m
) (34)

and for the reverse move (hH
n
,uH

n,m
)"f

m,n
(h

m
,u

m,n
)

where

f
m,n

"f
n,m

(h
n
,u

n,m
)"(h

n
,u

n,m
).

The fact that the mapping is invertible implies that
there is dimension matching between H

m
]W

m,n
and H

n
]W

n,m
, i.e. dim(hH

m
)#dim(uH

m,n
)"

dim(h
n
)#dim(u

n,m
). Two proposal densities for

u
n,m

and uH
m,n

, respectively q
n,m

(u
n,m

D h
n
) and

q
m,n

(uH
m,n

D h
m
), have to be de"ned. Then, if the

current state is (n,h
n
), the move of jumping from

H
n

to H
m

is

Move from H
n

to H
m

(1) Sample u
n,m

&q
n,m

(u
n,m

D h
n
) and perform

the invertible transformation (hH
m
,uH

m,n
)"

f
n,m

(h
n
,u

n,m
).

(2) Accept the move with probability

a((n,h
n
),(m,hH

m
))"minM1, r((n,h

n
),(m,hH

m
))N (35)

otherwise stay at (n,h
n
).

If the current state is (h
m
,u

m
), the associated

reverse move from H
m

to H
n

is

Move from H
m

to H
n

(1) Sample u
m,n

&q
m,n

(u
m,n

D h
m
) and perform

the invertible transformation (hH
n
,uH

n,m
)"

f
m,n

(h
m
,u

m,n
).

(2) Accept the move with probability

a((m,h
m
),(n,hH

n
))"minM1, r~1((n,hH

n
),(m,h

m
))N (36)

otherwise stay at (m,h
m
).

where

r((a,h
a
),(b,hH

b
))"

n
b
(b,hH

b
)q

b,a
(uH

b,a
D hH

b
)

n
a
(a,h

a
)q

a,b
(u

a,b
D h

a
)
J

f a,b
(37)

and J
f a,b

is the Jacobian of the transformation
f
a,b

( ) )

J
f a,b

"Kdet
Lf

a,b
(h

a
,u

a,b
)

L(h
a
,u

a,b
) K. (38)
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Note that this algorithm is not guaranteed to pro-
duce, even asymptotically, samples from the correct
distributions, as two extra properties, namely irre-
ducibility and aperiodicity, of the Markov chain
need to be checked. The reader interested in the
precise de"nition of these notions should refer to
[36,42].

Remark 5. To obtain the Jacobian in Eq. (37)
we made the important assumption that all
the distributions admit a density with respect
to the Lebesgue measure. This assumption is
justi"ed in most applications. However, in more
general cases, one should be careful and use ex-
pression (31).

In this subsection we have shown how to sample
parameters from two distinct distributions and
possibly take advantage of the relation between
the parameters of the two distributions. We
now present an extension to the more general
case where N*2 di!erent distributions are
involved.

3.2. Reversible jump MCMC for N*2 models

3.2.1. Goals
We want now to sample from the distribution

P
A

n(k,dh)"
N
+
n/1
P
A

n
n
(n,dh

n
)IMnNCH

n
(k,h) (39)

de"ned on HO6N
n/1

MnN]H
n
. To this aim, we

need to construct a Markov transition kernel
K(kH,dhH D k,h) admitting n(k,dh) as an invariant dis-
tribution. As in the previous section we assume that
one can de"ne a family ( f

n,m
( ) , ) ))

(m,n)|M1,2,NN2 of
invertible mappings between H

n
]W

n,m
and

H
m
]W

m,n

(hH
m
,uH

m,n
)"f

n,m
(h

n
,u

n,m
) (40)

and that there exists a family of proposal distribu-
tions q

n,m
(du

n,m
D n,h

n
) with (m, n)3M1,2,NN2 from

which we know how to sample. In practice, we need
an MCMC transition kernel which mixes moves
within each subspace (as described previously) and
moves between subspaces. So the proposal distri-

bution can be written as

q(du D k,h)

"

N
+
n/1

N
+

m/1

o
n,m

(h
n
)q

n,m
(du

n,m
D n,h

n
)IW

n,mCH
n
(u;h),

(41)

where, for any n3M1,2, NN, 0)o
n,m

(h
n
))1 and

+N
m/1

o
n,m

(h
n
)"1. Hence if h"h

n
3H

n
then, with

probability o
nn

(h), u
n,n

3W
nn

is sampled according
to q

nn
(du

n,n
D h

n
) (classical MCMC move) and, with

probability o
n,m

(h), nOm, u
n,m

3W
n,m

is sampled
according to q

n,m
(du

n,m
D h

n
) (reversible jump

MCMC move). In many applications, o
n,m

(h
n
)"0

for most couples (n, m). Note that a possible exten-
sion would consist of proposing several moves from
H

n
to H

m
. Here we do not consider this case be-

cause it is a trivial extension of the above scheme.
With the assumption that all probability distri-

butions admit a density with respect to the Lebes-
gue measure, the acceptance probability of a move
from H

n
to H

m
satis"es

r((n,h
n
),(m,hH

m
))

"

n
m
(m,hH

m
)o

m,n
(hH

m
)q

m,n
(uH

m,n
D hH

m
)

n
n
(n,h

n
)o

n,m
(h

n
)q

n,m
(u

n,m
D h

n
)

]J
f n,m

, (42)

where J
f n,m

is the Jacobian, when only continuous
variables are involved in the transformation, of the
invertible mapping f

n,m
( ) , ) ) between the spaces

H
n

and H
m
. One must not forget the terms o

n,m
(h

n
)

and o
m,n

(hH
m
) that are part of the proposal in the

acceptance ratio. They did not appear in Eq. (37) as
in that case N was equal to 2 and the only per-
mitted moves were from space H

n
to space H

m
with

nOm. Invariance of this kernel with respect to the
distribution n(k,dh) is ensured by the detailed bal-
ance condition.

3.2.2. Practical implementation
The main procedure of the algorithm is of the

form

Reversible Jump MCMC algorithm
(1) Initialization: set (k(0),h(0)

k(0)
)3H, and i"1.

(2) Iteration i.
v Sample kH from the discrete distribution

(o
k
(i)
k
H (h

k
(i) ))

k
H/1,2,N

.
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v Apply the procedure Move from H
k
(i) to

H
k
H (with in this case r ((k,h),(kH,hH)) de5ned

in (42)).

where Move from H
n

to H
m

is described in Section
3.1.4.

3.3. Other approachesr

3.3.1. Method of subspace extension and the algo-
rithm of Carlin and Chib

One can, of course, generalize what has been
presented in the previous subsection by extending
the two subspaces H

n
and H

m
. More precisely, we

can introduce extended parameters hM
n
O(h

n
,u

n
) de-

"ned on extended sets HM
n
OH

n
]W

n
and associated

with probabilistic models n6
n
(n,d ) ) such that

PW
n

n6
n
(n,dhM

n
)"n

n
(n,dh

n
) (43)

which means that there exists a distribution
n6
n
(du

n
D n,h

n
) such that

n6
n
(n,dhM

n
)"n6

n
(du

n
D n,h

n
)n

n
(n,dh

n
). (44)

Then, assuming that there exists a deterministic
invertible mapping f

n,m
( ) ) between HM

n
and HM

m
, one

can apply the same strategy as mentioned in the
previous subsection.

A particular case of interest is the method pro-
posed by Carlin and Chib [8], in which the follow-
ing choice for family of spaces (W

n
)
n/1,2,N

was
made:

W
n
"H

1
]2]H

n~1
]H

n`1
]2]H

N
. (45)

This requires the de"nition of the following distri-
butions:

n6
n
(du

n
D n,h

n
) (46)

called `pseudopriorsa as they do not have any
meaning in the sense of statistical application, des-
pite the fact that u

n
is composed of parameters

similar to h
l
for lOn. Note that the complete state

space can then be written as

H"

N
Z
n/1

MnN]H
1
]2]H

N

"M1,2,NN]H
1
]2]H

N
(47)

and that N probabilistic models must be de"ned at
the beginning of the procedure and, while it is
carried out, this number cannot change.

The algorithm they propose is a Gibbs sampler
on HM which, contrary to Green's reversible jump
MCMC, allows hM

n
to be drawn "rst and then the

new model m conditional upon hM
n
. A summary of

the algorithm follows:

Carlin and Chib's algorithm
(1) Initialization
(2) Iteration i

v u(i)
k
(i~1)&n6

k
(i~1) (d ) D k(i~1),h(i~1)

k
(i~1) )

v h(i)
k
(i~1)&n6

k
(i~1)(d ) D k(i~1),u(i)

k
(i~1))

(3) Draw the new index k(i)

k(i)&n6
k
( ) D h(i)

k
,u(i)

k
)Jn6

k
(u(i)

k
D k,h(i)

k
)n

k
(k,h(i)

k
)

(48)
(4) Go to 2.

Note that Chib and Carlin make further assump-
tions that, with u

k
"(u

1,k
,2,u

k~1,k
,u

k`1,k
,2

,u
N
), the u

m,k
are independent among themselves

and of h
k
, conditional upon k. More precisely, they

assume that

n6
k
(k,d(h

k
,u

k
))"n

k
(k,dh

k
)

N
<
m/1
mEk

n6
k
(du

m,k
D k) (49)

and that the pseudopriors do not depend on the
current index, that is, for any k and distinct m and
n such that mOk and nOk then

n6
m
(du

k,m
D m)"n6

n
(du

k,n
D n). (50)

This algorithm has several drawbacks:
f N has to be "nite,
f simulation of u

m
is required at each iteration, al-

though they are neither used for estimation pur-
poses nor for proposing the h

k
in a `clevera way,

f pseudopriors must be carefully chosen in order
for the exploration of the di!erent indices to be
e$cient,

f it requires a Gibbs sampler, and hence the avail-
ability of full conditional distributions, which
seriously limits the range of applications, even if
Metropolized versions can be proposed.

Interesting remarks and comments on this algo-
rithm can be found in [11,24], where connections
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between `Metropolizeda Carlin and Chib type
algorithm and reversible jump MCMC were inde-
pendently noticed.

3.3.2. Jump-diwusion sampling
Much of the research on sampling from posterior

distributions de"ned on HO6N
n/1

MnN]H
n

was
reinitiated by the work of Grenander and Miller
published in 1994 [26]. The proposed method of
inference is based on a random process which fol-
lows jump-di!usion dynamics, and whose samples
are drawn from a posterior of the form (9).

The main idea in [26] is to construct a single
posterior distribution over the union of all considered
parameter spaces and then sample from it using
a Markov process that has jump-di!usion dynamics.
In particular, at random times the Markov process
jumps from one of the parameter spaces to another,
and in between the jumps, the process follows Lan-
gevin stochastic di!erential equations. Early work on
simulations from a given probability density by
using Langevin equations appears in [25].

The jump dynamics can be de"ned in various
ways, and always must satisfy certain regularity
and balance conditions as well as reversibility. The
jump times are obtained from marginal jump inten-
sities, which are computed from jump intensities
chosen to satisfy a proper condition that ensure
sampling from the desired posterior [26, Theorem
1,b]. Once the jump time is determined, a decision
where to jump is made by using transition kernels,
which are conditional probability densities of
jumping from the current to a new parameter
space. Two useful jump dynamics are the Gibbs
and Metropolis}Hastings jump dynamics [32].

The di!usion process h(t) within a "xed para-
meter space and between jump times satis"es the
Langevin stochastic di!erential equation

dh(t)
k
"

dt

2 A
d

dh
k

logp
k
(h

k
Dk)Bh(t)

k

#dW (t)
k
, (51)

where W(t)
k

is a standard Brownian motion process
whose dimension is the same as that of h(t)

k
. In

practice, (51) is approximated by a discrete-time
version of it, and to be rigourous, a Metropoliz-
ation of the algorithm is necessary to preserve the
correct target distribution [37].

4. Examples

4.1. Analysis of sinusoids in noise

4.1.1. Data models
We do not motivate here the choice of the prob-

abilistic model to perform model selection of
sinusoids in Gaussian noise; the reader should refer
to [1]. We just recall that the problem addressed is
the selection of one of the following models:

M
0
: y

t
"w

0,t
, k"0,

M
k
: y

t
"

k
+
j/1

(a
cj,k

cos[u
j,k

t]#a
sj,k

sin[u
j,k

t])

#w
k,t

, k*1, (52)

to represent the data for t"1,2,¹!1, where
w
k,t

**$& N(0,p2
k
). In the present paper, dedicated to

Bayesian computational methods and not Bayesian
model selection, we use the priors introduced in
[1], which allow for the amplitudes and the vari-
ance of the observation noise to be integrated out
analytically, leading to the following posterior dis-
tribution for the number of sinusoids and their
frequencies:

p
k
(k,dxD y

1>T
)J

k.!9

+
n/0

( yT
1>T

P
n
y
1>T

)~T@2

]
(K/((d2#1)p))n

n!
dx

n
IMnNCX

n
(k,x). (53)

The hyperparameters K and d2 can be interpreted
as the mean number of expected sinusoids and the
expected signal-to-noise ratio, respectively. A dis-
cussion of priors for model selection can be found
in [3]. The matrix P

n
is de"ned as

P
n
"I

T
!D(x

n
)M

n
DT(x

n
)

with

M~1
n

"

1#d2
d2

DT(x
n
)D(x

n
) (54)

and

[D(x
n
)]

i`1,2j~1
Ocos[u

j,n
i]

(i"1,2,¹!1, j"1,2, n),

[D(x
n
)]

i`1,2j
Osin[u

j,n
i]

(i"1,2,¹!1, j"1,2, n). (55)
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The space where the probabilistic models are de-
"ned is XO6k.!9

n/0
MnN]X

n
where X

0
O0,

X
n
OMx

n
;x

n
3(0,p)n/u

j1 ,n
Ou

j2 ,n
for j

1
Oj

2
N (56)

and k
.!9
Ox(¹!1)/2y . To perform model selec-

tion, one is interested in evaluating p
k
(kD y

1>T
),

for which one cannot obtain a closed-form
expression.

4.1.2. Overview of the algorithm
For our problem, the following moves have been

selected:
(1) Birth of a new sinusoid, i.e. proposing a new

sinusoid with frequency uH at random on (0,p).
(2) Death of an existing sinusoid, i.e. removing

a sinusoid chosen randomly.
(3) Update of the parameters of all the sinusoids,

when kO0, and the variance of the observa-
tion noise.

The birth and death moves represent changes from
k to k#1 and k to k!1, respectively. These moves
are de"ned by heuristic considerations, the only
condition to be ful"lled being to maintain the cor-
rect invariant distribution. A particular choice will
only have in#uence on the convergence rate of the
algorithm. Other moves may be proposed, but we
have found that the ones suggested here lead to
satisfactory results.

The resulting transition kernel of the simulated
Markov chain is then a mixture of the di!erent
transition kernels associated with the moves de-
scribed above. This means that at each iteration
one of the candidate moves: birth, death or update
is randomly chosen. The probabilities for choosing
these moves are o

k,k`1
(x

k
), o

k,k~1
(x

k
) and o

k,k
(x

k
)

respectively, where o
k,k`1

(x
k
)#o

k,k~1
(x

k
)#

o
k,k

(x
k
)"1 for all 0)k)k

.!9
. The move is per-

formed if the algorithm accepts it. For k"0 the
death move is impossible, so that o

0,~1
(x

0
)O0.

For k"k
.!9

the birth move is impossible and thus
o
k.!9 ,k.!9`1

(x
k.!9

)O0. Except in the cases described
above, we take the following probabilities:

o
k,k`1

(x
k
)OcminG1,

p
k`1

(k#1)

p
k
(k) H,

(57)

o
k`1,k

(x
k`1

)OcminG1,
p
k
(k)

p
k`1

(k#1)H

where p
k
(k)J(Kk/k!)IM0,2,k.!9

N is the prior probabil-
ity of model M

k
and c is a parameter which tunes

the relative frequencies of dimension change and
update moves. As pointed out in [27, p. 719], this
choice ensures that

o
k,k`1

(x
k
)p

k
(k)[o

k`1,k
(x

k`1
)p

k`1
(k#1)]~1"1

(58)

which means that a MH algorithm on the sole
dimension in the case of no observation would have
1 as acceptance probability. We take c"0.5 and
then o

k,k`1
(x

k
)#o

k,k~1
(x

k
)3[0.5,1] for all k [27].

For this algorithm, u
k,k`1

"uH and x
k`1

"

f
k,k`1

(x
k
,uH) is just any concatenating function

such as x
k`1

"(x
k
,uH).

One can then describe the main steps of the
algorithm as follows:

Reversible Jump MCMC algorithm
(1) Initialization: set (k(0),h(0)

k(0)
)3H.

(2) Iteration i.
v Sample u&U

*0,1+
.

v If (u)o
k
(i),k(i)`1

(x
k
(i) ))

L then `birtha move.
L else if

(u)o
k
(i),k(i)`1

(x
k
(i) )#o

k
(i),k(i)~1

(x
k
(i)))

then `deatha move.
L else update the parameters using

a standard MH step.
L End If.

(3) iQi#1 and go to 2.

We describe more precisely these di!erent revers-
ible jump moves below. In what follows, in order to
simplify notation, we drop the superscript ) (i) from
all variables at iteration i.

4.1.3. The birth and death moves
Suppose that the current state of the Markov

chain is in MkN]H
k
, then

Birth move
f Propose a new frequency at random on

(0,p): uH&U
(0,p)

and set x
k`1

"(x
k
,uH).

f Evaluate a
k,k`1

, see (61), and sample u&
U

*0,1+
.

f If u)a
k,k`1

then the state of the Markov
chain becomes (k#1,x

k`1
), else it remains

at (k,x
k
).
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Assume that the current state of the Markov
chain is in Mk#1N]H

k`1
, then

Death move
f Choose a sinusoid at random among the

k#1 existing sinusoids: l&UM1,2,k`1N .
f Evaluate a

k`1,k
, see (61), and sample u&

U
*0,1+

.
f If u)a

k`1,k
then the state of the Markov

chain becomes (k,x
k
), else it remains

(k#1,x
k`1

).

The acceptance ratio for the proposed moves are
deduced from expression (42)

r((k,x
k
),(k#1,x

k`1
))

"

p
k`1

(k#1,dx
k`1

D y
1>T

)o
k`1,k

(x
k`1

)1/(k#1)

p
k
(k,dx

k
D y

1>T
)o

k,k`1
(x

k
)duH/p

"

p
k`1

(k#1,x
k`1

D y
1>T

)o
k`1,k

(x
k`1

)1/(k#1)

p
k
(k,x

k
D y

1>T
)o

k,k`1
(x

k
)1/p

]1 (59)

which yields, after simpli"cations

r((k,x
k
),(k#1,x

k`1
))

"A
yT
1>T

P
k

y
1>T

yT
1>T

P
k`1

y
1>T
B

T@2 1

(k#1)(1#d2)
. (60)

Note that here the Jacobian is equal to one as
dx

k`1
/(dx

k
duH)"1. Then the acceptance prob-

abilities corresponding to the described moves are

a((k,x
k
), (k#1,x

k`1
))

"minM1, r((k,x
k
), (k#1,x

k`1
))N,

a
k`1,k

((k#1,x
k`1

), (k,x
k
))

"minM1, r~1((k,x
k
), (k#1,x

k`1
))N. (61)

The update move consists of standard MH steps
and is not detailed here, see [1] for details.

4.1.4. Merge and split moves?r

In this subsection we illustrate the #exibility of
the reversible jump methodology by considering
sophisticated moves, which (similarly to [34]) we
name split and merge moves. These moves are
motivated by the following situation where the
signal contains two sinusoids closely spaced in

frequency. If a single high amplitude sinusoid has
been created near the location of the two sinusoids,
then the probability of removing this sinusoid so
that it can be replaced by two smaller amplitude
sinusoids can be low in practice. The split move will
divide a sinusoid into two sinusoids in one step.
The merge step will select two close sinusoids and
replace them by one sinusoid. The proposal distri-
butions for these steps have been selected to ensure
that there is conservation of energy between the old
and new con"gurations. Furthermore, we want our
transformation to re#ect the fact that we are
more con"dent in the value of a sinusoid with
high-energy than in a low-energy one. To simplify,
we assume that the nuisance parameters, a

k
,p2

k
have not been integrated out, i.e. the space H

is as de"ned in Example 1 in Section 2. From
a practical point of view it has been found that
these sophisticated moves do not signi"cantly
improve the quality of the convergence of the
algorithm towards the target distribution, meaning
that the birth and death move are e$cient enough.
However, we think that they are of pedagogic
interest as they illustrate the #exibility of the
approach, and more importantly adaptations have
proved to be useful for other types of regression
problems for which ambiguities are more likely to
occur [4].

Assume that there are k#1 sinusoids. Our pro-
posal for the merge move begins by choosing at
random a pair l of sinusoids which are adjacent in
terms of their frequencies. To simplify notation, we
will denote these two sinusoids as (a

c1
, a

s1
, u

1
) and

(a
c2

, a
s2

, u
2
). One can merge these sinusoids, thus

reducing k#1 by 1 and creating a new sinusoid
(aH

c
, aH

s
,uH). The parameters of the proposed new

sinusoid are obtained by "rst generating

uH
0
&U

(0,1)
(62)

which will determine the fraction of energy at-
tributed to the component DaH

c
D cos[uHt]. The signs

of aH
c

and aH
s
, eH

c
and eH

s
, are drawn according to

a uniform discrete probability distribution on
M!1,1N, i.e.

Pr(eH
c
"!1)"Pr(eH

c
"1)"1

2
,

(63)
Pr(eH

s
"!1)"Pr(eH

s
"1)"1

2
.
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7 If the birth/death move is also used, then one should intro-
duce the notation f *1+

k`1,k
( ) , ) ), f *2+

k`1,k
( ) , ) ) and o*1+

k,k`1
,o*2+

k,k`12
but we do not, to simplify notation.

Table 1
Parameters for the experiment

i E
i

!arctan(a
si
/a

ci
) u

i
/2p

1 20 0 0.2
2 20 p/3 0.2#2/¹

Consequently uH
k`1,k

"(uH
0
,eH
c
,eH
s
). The transforma-

tion f
k`1,k

( ) , ) )7 is de"ned as

aH2
c

#aH2
s

"a2
c1
#a2

s1
#a2

c2
#a2

s2
,

aH
c
"eH

c
JuH

0
(a2

c1
#a2

s1
#a2

c2
#a2

s2
),

(64)
aH
s
"eH

s
J(1!uH

0
)(a2

c1
#a2

s1
#a2

c2
#a2

s2
),

uH"
(a2

c1
#a2

s1
)u

1
#(a2

c2
#a2

s2
)u

2
a2
c1
#a2

s1
#a2

c2
#a2

s2

.

Now, the reverse split move is largely determined.
Assume that there are k sinusoids. Our proposal
begins by choosing a sinusoid (a

c
, a

s
,u) among the

k existing ones with uniform probability. Then, this
sinusoid is split into two components (a

c1
, a

s1
,u

1
)

and (a
c2

, a
s2
,u

2
) with parameters conforming to

Eq. (64). To generate these new parameters, we "rst
generate an eight-dimensional random parameter
vector uH

k`1,k
"(uH

1
, uH

2
, uH

3
, uH

4
,eH
c1

,eH
s1

,eH
c2

,eH
s2

) where

uH
1
&U

(0,1)
, uH

2
&U

(0,1)
, uH

3
&U

(0,1)
, uH

4
&U

(0,1)

(65)

and eH
c1

, eH
s1

, eH
c2

, eH
s2

are drawn according to a uni-
form discrete probability distribution on M!1,1N.
Then the inverse f

k,k`1
( ) , ) ) of the transformation is

given by

aH2
c1

#aH2
s1

"uH
1
(a2

c
#a2

s
),

aH2
c2

#aH2
s2

"(1!uH
1
)(a2

c
#a2

s
),

aH
c1
"eH

c1
JuH

2
uH
1
(a2

c
#a2

s
),

aH
c2
"eH

c2
JuH

3
(1!uH

1
)(a2

c
#a2

s
),

(66)
aH
s1
"eH

s1
J(1!uH

2
)uH

1
(a2

c
#a2

s
),

aH
s2
"eH

s2
J(1!uH

3
)(1!uH

1
)(a2

c
#a2

s
),

uH
1
"u!uH

4
p8S

aH2
c2

#aH2
s2

a
H2c1 #aH2

s1
,

uH
2
"u#uH

4
p8S

aH2
c1

#aH2
s1

aH2
c2

#aH2
s2

,

where p8 is a predetermined constant. Eq. (66) is
consistent with (64). Once u

1
and u

2
have been

sampled, we must also verify that there is no other
frequency located between u

1
and u

2
. If there are

such frequencies, then the move is rejected as the
split/merge pair would not be reversible. The ac-
ceptance ratio of the merge move has the form, with
h
k
O(a

k
,x

k
,p2

k
)

r((k#1,h
k`1

),(k,h
k
))

"

p(k,h
k
D y

1>T
)

p(k#1,h
k`1

D y
1>T

)

o
k,k`1

(h
k
)k~1p(u

1
)p(u

2
)

o
k`1,k

(h
k`1

)k~1
.

]
p(u

3
)p(u

4
)p(e

c1
)p(e

s1
)p(e

c2
)p(e

s2
)

p(u
0
)p(e

c
)p(e

s
)

J
f k`1,k

. (67)

4.1.5. Example of simulation
We present here results for the case of two

sinusoids (N"2) with parameters given in Table 1,
where E

i
"a2

si
#a2

ci
. The number of observed sam-

ples was 64.
We do not discuss here the choice of d2 and K,

which are estimated from the data (see [1]). We ran
the algorithm for 20 000 iterations. Here we present
estimators of di!erent quantities of interest, aiming
at performing model selection. In Figs. 1 and 2 we
present the observed data and the posterior distri-
bution of the models that allows us for example to
choose the most probable model, and then con-
ditional upon the knowledge of the `besta model
to display the frequencies for the model with
two sinusoids. The most probably frequencies for
these two sinusoids can then be estimated from
these histograms. Other estimators might be con-
sidered. For example if one is interested in estima-
ting the original signal +k

j/1
(a

cj,k
cos[u

j,k
t]#

a
sj,k

sin[u
j,k

t]) one might then consider the
following estimator E(+k

j/1
(a

cj,k
cos[u

j,k
t]#

a
sj,k

sin[u
j,k

t]) D y
1>T

).
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Fig. 1. Noisy observations.

Fig. 2. Top: the component of the Markov chain corresponding to the dimension, and an estimate of p(k D y
1>T

). Bottom: estimation of
p(u/2p D y

1>T
).
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8Note that we do not use the dangerous notation
x
t
"+kAR

i/1
a
i
x
t~i

#r
t
v
t
, which might suggest that when r

t
"0

then v
t
can take any value.

4.2. Bernoulli}Gauss deconvolution

4.2.1. Model of the data
In this model selection problem, we have to

choose among the following data models:8

Mr
1>T

: Gx
t
"G

kAR

+
i/1

a
i
x
t~i

#v
t

if r
t
"1,

kAR

+
i/1

a
i
x
t~i

if r
t
"0, (68)

y
t
"x

t
#w

t

and the space where the posterior distribution
is de"ned is given by (8). We assume that
(x

0
,2,x

1~kAR
)"(0,2,0). To simplify the pre-

sentation and focus on the model selection prob-
lem, we suppose that p2

v
, (a

i
)
i/1,2,kAR

and p2
w

are known. Note that these parameters could
be estimated without any di$culty. We want
to estimate the joint posterior distribution
p(r

1>T
,d*

1>T
D y

1>T
)

p(r
1>T

,d*
1>T

D y
1>T

)

"

2T~1
+
n/0

p
n
(r
1>T

(n),d*
1>T

D y
1>T

)

]IMnNCH
nA

T~1
+
t/0

2tr
t
(n),*

1>TB (69)

using MCMC, where n"+T
t/1

2tr
t
, and r

1>T
(n)

denotes the corresponding sequence. More
precisely,

p
n
(r
1>T

(n),d*
1>T

D y
1>T

)

Jp( y
1>T

D r
1>T

(n),*
1>T

)p(d*
1>T

D r
1>T

(n))p(r
1>T

(n))

Jp( y
1>T

D *
1>T

)p(d*
1>T

D r
1>T

(n))p(r
1>T

(n)) (70)

and p(d*
1>T

D r
1>T

(n))"<T
t/1

p(dv
t
D r

t
(n)), where

p(dv
t
D r

t
)"(1!j)d

0
(dv

t
)IM0N(rt

)

#

j

J2pp
0

expA!
v2
t

2p2
0
Bdv

t
IM1N (rt

). (71)

We present here an algorithm which stresses on the
fact that the posterior distribution is de"ned on
2T di!erent subspaces H

n
.

4.2.2. Algorithm
The algorithm we have chosen, consists of the

following steps:
(1) Select t at random according to UM1,2,TN .
(2) If r

t
"0, then propose a new value of r

t
, rH

t
&

q
t
(rH
t

D r
1>T

,*
1>T

,y
1>T

), so that o
k,k`2t (*1>T ,r

1>T
)

"q
t
(1 D r

1>T
,*
1>T

, y
1>T

)/¹ and o
k,k

(*
1>T

,r
1>T

)"
q
t
(0 D r

1>T
,*
1>T

,y
1>T

)/¹.
(3) If r

t
"1, then propose a new value of r

t
,

rH
t
&q

t
(rH
t
D r

1>T
,*
1>T

,y
1>T

), so that o
k,k~2t(*1>T,r

1>T
)

"q
t
(0 D r

1>T
,*
1>T

,y
1>T

)/¹ and o
k,k

(*
1>T

,r
1>T

)"
q
t
(1 D r

1>T
,*
1>T

,y
1>T

)/¹.
(4) Propose vH

t
to replace v

t
, with vH

t
&

q
t
(dvH

t
D rH

t
,r
1>T

,*
1>T

, y
1>T

) which admits R as
support if rH

t
"0 or M0N if rH

t
"1.

We now describe the algorithm more precisely,
starting with the main procedure:

v Initialization
v Iteration i

L Sample t&UM1,2,TN and
rH
t
&q

t
(rH
t
D r(i~1)

1>T
,*(i~1)
1>T

, y
1>T

).
L If r(i~1)

t
"rH

t
Move from H

k
to H

k
.

L Else
If r(i~1)

t
(rH

t
then Move from H

k
to H

k`2t

Else Move from H
k

to H
k~2t

where the procedures Move from H
k

to H
k`2t and

Move from H
k

to H
k~2t are described below. The

procedure Move from H
k

to H
k

corresponds to
a standard MH step and is not described in details
here.

Assume that the current model is k and that
(r(i~1)
t

, v(i~1)
t

)3M0N]M0N and rH
t
"1, then,
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Move from H
k

to H
k`2t

v Propose a candidate vH
t

where vH
t
&q

t
(dvH

t
D rH

t
,r(i~1)
1>T

,*(i~1)
1>T

, y
1>T

).
v Set (r(i)

t
, v(i)

t
)"(1, vH

t
) with probability minM1,aN with

a"
p(r(i~1)

~t
,*(i~1)
~t

,1, vH
t
D y

1>T
)q

t
(0 D1, vH

t
,r(i~1)
~t

,*(i~1)
~t

,y
1>T

)

p(r(i~1)
~t

,*(i~1)
~t

,0,0 D y
1>T

)q
t
(vH

t
D 1,r(i~1)

1>T
,*(i~1)
1>T

,y
1>T

)q
t
(1 D r(i~1)

1>T
,*(i~1)
1>T

,y
1>T

) (72)
otherwise (r(i)

t
, v(i)

t
)"(r(i~1)

t
, v(i~1)

t
).

Similarly, assume that the current model is k and that (r(i~1)
t

, v(i~1)
t

)3M1N]R and rH
t
"0, then,

Move from H
k

to H
k~2t

v Propose the candidate M0N.
v Set (r(i)

t
, v(i)

t
)"(0,0) with probability minM1,aN with

a"
p(r(i~1)

~t
,*(i~1)
~t

,0,0 D y
1>T

)q
t
(v(i~1)

t
D 0,0,r(i~1)

~t
,*(i~1)
~t

,y
1>T

)q
t
(1 D 0,0,r(i~1)

~t
,*(i~1)
~t

,y
1>T

)

p(r(i~1)
1>T

,*(i~1)
1>T

D y
1>T

)q
t
(0 D r(i~1)

1>T
,*(i~1)
1>T

,y
1>T

)
(73)

otherwise (r(i)
t
, v(i)

t
)"(r(i~1)

t
, v(i~1)

t
).

Note that in the special case where q
t
(rH
t

D r
1>T

,*
1>T

,
y
1>T

)"p(rH
t
D r

~t
, y

1>T
) and q

t
(dvH

t
D r

1>T
,*
1>T

, y
1>T

)"
p(dvH

t
D r

1>T
,*
~t

, y
1>T

) then the acceptance prob-
abilities (72) and (73) are equal to 1. In practice,
it is possible to evaluate the values p(rH

t
D r

~t
, y

1>T
)

using a Kalman "lter, and thus to sample from
this discrete distribution. Sampling from p(dvH

t
D r

1>T
,

*
~t

, y
1>T

) is standard as it is either a Gaus-
sian distribution when r

t
"1 or a delta Dirac

mass on 0 when r
t
"0. It is very important here

to observe that the algorithm boils down to a
random scan Gibbs sampler [36] due to the analyti-
cal properties of the model. If it was impossible to
sample exactly from p(rH

t
D r

~t
, y

1>T
) then this would

not be the case, and the use of the reversible jump
algorithm described above would then be unavoid-
able. To conclude, note that as shown in [17] it is
possible to dramatically reduce the complexity of
this algorithm by replacing this random scan Gibbs
sampler by a deterministic scan Gibbs sampler, see
[17] for details.

5. Conclusions

MCMC sampling is a powerful methodology for
signal processing which has little been exploited in

the signal processing community. With the recent
advances of the theory of MCMC computations,
this methodology has been generalized to allow for
simultaneous selection of models and the estima-
tion of their parameters. This has become possible
once algorithms for sampling from target distribu-
tions de"ned over joint sample spaces of models
and their parameters had been developed.

The main objective of this paper was to provide
a summary of the theory and present examples of
how one might apply it. Special care has been taken
to pinpoint the subtleties of jumping from one
parameter space to another, and in general, to show
the construction of MCMC samplers in such
scenarios. The focus in the paper was on the
reversible jump MCMC algorithm because it is the
most widely used of all existing methods; it is
easy to use and is #exible and has nice properties.
Many references have been cited, with the emphasis
being given to articles with signal processing
applications.
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