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ABSTRACT

This paper addresses the problem of classification of digital mod-
ulations. The proposed solution uses the Bayes classifier, which
is implemented by the Markov chain Monte Carlo scheme. In the
proposed implementation, classifications in presence of phase and
frequency offsets as well as residual filtering effects coming from
imperfect channel equalization are considered. The proposed ap-
proach has been tested for many scenarios and its performance has
been compared with the maximum likelihood classifier and the4th

order cumulant-based method. The obtained results show that our
classifier outperforms the other methods considerably.

1. INTRODUCTION AND PROBLEM FORMULATION

The digital modulation classification problem consists of deter-
mining the underlying symbol constellation from observed noisy
measurements. This problem has received much attention in the
signal processing and communications literature (see for instance
[1][2][3][4] and the references therein). The optimal Bayes clas-
sifier, which minimizes the average probability of error (based on
a zero-one loss function), can be studied under appropriate con-
ditions on the symbol sequence and the communication channel.
Unfortunately, when these conditions are not satisfied, the Bayes
classifier suffers from high computational complexity. This has
motivated many authors to study suboptimal classifiers. Typical
suboptimal classifiers consist of computing appropriate features
from the observed data and applying standard classification rules
(such as the nearest-mean rule of the k-nearest neighbor rule) on
these features. The features, which have been used for classifica-
tion of digital modulation, include moments of the extracted phase
[5], estimates of the instantaneous amplitude, phase and frequency
[6], wavelets coefficients [7] or more recently higher-order cumu-
lants [3]. This paper studies an implementation of the Bayesian
rule using Markov Chain Monte Carlo (MCMC) methods.

We assume that we can operate in a coherent and synchronous
environment and that the carrier, timing, andwaveform recovery
have been accomplished. All problems concerning signal band-
width, baud rate, pulse-shaping filter and noise variance estima-
tions are not addressed in this paper. The baseband complex en-
velope of the modulated signal sampled at one sample per symbol
can be written as:

xk = mk + nk; k = 1; 2; : : : ; NS (1)

wherenk is an independent and identically distributed (i.i.d.) com-
plex Gaussian noise sequence with variance�2n (nk � N

�
0; �2n

�
),
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with the real and imaginary components ofnk being independent
and identically distributed, and

mk = Ae
j(� k

NS
fr+�)

pX
l=0

hlsk�l; k = 1; 2; : : : ; NS (2)

wheresk is an i.i.d. symbol sequence drawn from one ofc con-
stellations denotedf!1; !2; : : : ; !cg, and the constellation!j is a
set ofMj complex numbersfS1; S2; : : : ; SMj

g. The remaining
symbols have the following meaning:� 2 [��=4; �=4] is a phase
offset,A is the signal amplitude,h = (h0 = 1; h1; :::; hp) is the
residual channel modeled as an FIR filter, andfr = 2NS(fc �

f̂c) 2 (�1=2; 1=2] is a normalized residual carrier frequency also
called frequency offset (fork = NS , fr is the constellation rota-
tion whose maximum value is 90Æ).

GivenNS samplesxk, k = 1; 2; : : : ; NS of a modulated sig-
nal, the problem of digital modulation classification consists of
determining the underlying modulation!i represented by the sam-
plesxk, where!i 2 f!1; !2; : : : ; !cg:

2. THE MAXIMUM LIKELIHOOD (ML) CLASSIFIER

Bayes theory provides a minimum error-rate classifier by finding
the maximum amongc a posteriori probabilitiesP(!j jx); j =
1; 2; : : : ; c. If all the modulations are equally-likelya priori, the
optimal Bayes classifier reduces to the ML classifier. The ML clas-
sifier chooses the modulation of the samplesx = (x1; x2; : : : ; xNS

)
as the one that maximizes the probability density functionsp(xj!j),
using the I and Q samples as sufficient statistics. Such problem
was studied in [8] in the ideal situation whereA, h, fr, � and
�2n are known. This unrealistic situation has provided an upper
bound of the expected performance for a digital modulation clas-
sifier. The ML classifier can be summarized as follows:

Assignx to !i if l(xj!i) � l(xj!j); 8j; where

l(xj!j) =
NsX
k=1

ln

8<
:

1

Mj

MjX
i=1

exp

�
�

1

�2n
jxk � Sij

2

�9=
; (3)

is obtained after dropping constants in the log-likelihood of the
observed signal.

3. THE BAYES MINIMUM ERROR-RATE CLASSIFIER

This paper generalizes the work carried out by Wei and Mendel
to a more practical scenario, where the parameter vector denoted
� = (fr; �; h) is unknown. In other words, the proposed algo-
rithm mitigates the effects of phase and frequency offsets as well



as residual filtering effects coming from imperfect channel equal-
ization. A common strategy for this kind of problem is to re-
place the unknown parameters in the density functions by their
estimated values, resulting in the so-called ML plug-in classifier
([9], p. 267). Here, instead,we take a fully Bayesian route.

Under the assumption of uniform prior probabilities for the
digital modulations, the posterior probabilitiesP(!ijx) can be
written as

P(!ijx) / p(xj!i) (4)

where the proportionality constants of all the probabilities are the
same and equal to1=(cp(x)), wherec is the number of different
classes andp(x) is the probability density function of the obser-
vationsx. The marginalized density of the data given the class!i
can be obtained from

p(xj!i) =

Z
p(xj�i; !i)p(�ij!i)d�i (5)

wherep(�ij!i) is the prior density of�i, andp(xj�i; !i) is the
likelihood function. Thus, the classification of the modulations is
carried out according to

!̂ = argmax
!i

�Z
p(xj�i; !i)p(�ij!i)d�i

�
: (6)

Unfortunately, a closed-form expression of (6) can rarely be ob-
tained. This paper proposes the use of MCMC methods to com-
pute the multidimensional integrals in (5).

4. MCMC METHODS: THE METROPOLIS-HASTINGS
(MH) ALGORITHM

MCMC methods have recently received much attention in signal
processing applications [10] [11]. These numerical techniques
consist of generating samples by running an ergodic Markov Chain
whose target distribution is a desired distribution. A critical step in
our classification procedure is the computation of integrals of the
form given by (5). It can be shown that they can be evaluated by
Monte Carlo integration using importance sampling according to

p(xj!i) '
1

N

NX
n=1

p(xj�ni ; !i)p(�
n
i j!i)

g(�ni jx; !i)
(7)

where�ni is then-th sample drawn fromg(�), i.e.,

�ni � g(�ijx; !i)

andg(�) is an importance density function.
The MCMC methods can play important role in the computa-

tion of integrals according to (7) in that they generate the samples
�ni from the importance densityg(�ijx; !i). In this paper we use
the MH algorithm to draw samples distributed according to thea
posteriori density of�. The MH algorithm defines an irreducible,
aperiodic Markov chain whose target distribution is the invariant
distributionp(�jx;!i). It should be noted that not all the samples
drawn by the chain are good samples. The set of samples in the
beginning of the simulation, also known as "burn-in" samples, are
discarded because the chain needs time to converge. The MH al-
gorithm is summarized below. The Markov chain state space and
current state are denoted by
 and �n = (fnr ; �

n; hn1 ; : : : ; h
n
p )

2 
, respectively. At each iteration, a candidatez is drawn ac-
cording to an instrumental distributionq(zj�n). This candidate is
accepted with the acceptance probability

�(�n; z) = min

�
1;

p(zjx)q(�njz)

p(�njx)q(zj�n)

�
: (8)

A fundamental property of the MH algorithm is that any in-
strumental distributionq(zj�n) can be chosen, provided that the
support ofp(�jx) is contained in the support ofq(zj�n) [12]. This
paper proposes to drawz from a local perturbation of the previous
sample, i.e.,z = �n + �, leading to the well-known random-walk
MH algorithm. In this case, the instrumental distribution is of the
form q(zj�n) = g(z� �n). Interestingly, the choice of a symmet-
ric distribution forg leads to an acceptance probability which is
independent ofq.

Instead of updating the whole of� en bloc, it is often more
convenient and computationally efficient to divide� into k blocks
and to update each block one-at-a-time. This procedure has been
suggested by many authors (see [13] [14] for more details) and has
been shown to improve the convergence of the sampler. This pa-
per proposes to update each component of� one-at-a-time. Such
strategy exhibits good performance for the digital modulation clas-
sification, as shown in the next section.

5. SIMULATION RESULTS

Many simulation results have been performed to illustrate the per-
formance of the MCMC based digital modulation classifier. For
these experiments, the number of samples isNS = 250, and the
additive noise is complex white and Gaussian. The signal-to-noise
ratio in decibels is defined asSNR = log10(1=�

2
n) (constellation

symbols had unit energy). The MCMC sampler had the following
properties:
� number of "burn-in" iterations:Nbi = 500,
� Markov chain length:N = 3000,
� instrumental distributions:q(zj�ni ) � N (�ni ; �

2) where�2 was
optimized to obtain an appropriate acceptance rate (1=4 to 1=2,
see ([12], p. 8) for more details).

The following priors have been used for the parameters:
� Uninformative independent uniform priors for the frequency and
phase offsets :p(fr; �) = p(fr)p(�)wherep(fr) = I(�1=2;1=2](fr),
p(�) = M

2�
I[��=M;�=M](�) for an M-PSK modulation,p(�) =

2
�
I[��=4;�=4](�) for other modulations, andI is the indicator func-

tion.
� Independent Gaussian priorsN (0; �2h) for the residual channel
FIR filter taps: a suitable choice of parameter�2h allows to incor-
porate vague prior information about the parametershl.

A. Convergence of the Sampler
Convergence assessments have to be investigated to determine whe-
ther the Markov chain has converged to the stationary distribution.
Convergence diagnostics for MCMC methods have received in-
creasing interest in the literature [12]. Gelmanet al. [15] have
suggested to study different key-parameters of interest with itera-
tion number. Fig. 1 shows a typical Markov chain obtained for
h = (1; 0; 0), � = 0, andfr = �0:35. Clearly, the Markov chain
samples start to oscillate around a value which is quite close to the
true value offr after the 200-th iteration. This result illustrates
the Markov Chain convergence for the parameterfr. Similar re-
sults have been obtained forh and�. Therefore, for simplicity, all



simulations have been conducted withNbi = 500 "burn-in" itera-
tions, which provides some safety margin. (Of course, some of the
convergence diagnosis methods such as those described in [12],
could have been used instead.) Fig. 2 shows the mean square error
(MSE) between the Markov Chain target distribution (computed
from 100000 iterations) and the estimated frequency offset poste-
rior distribution as a function of the iteration number. As can be
seen,N = 3000 samples are sufficient to approximate this poste-
rior distribution. Based on these results, all simulations presented
in this paper have been carried out with Markov chains of length
N = 3000 andNbi = 500 "burn-in" iterations.

B. Comparisons
This section compares the MCMC based classifier with two other
classifiers: the ML classifier [8] and a4th order cumulant-based
classifier [3]. Note that both classifiers do not take into account
the presence of the residual effects (frequency offset, phase offset
and residual channel), contrary to the proposed approach. The ML
classifier has been presented in Section 2. The4th order cumulant
based classifier is summarized below for classification of BPSK,
4-PAM, 8-PSK and 16-QAM constellations:

jĈ40j < 0:34 ) 8PSK

0:34 � jĈ40j < 1:02 ) 16QAM

1:02 � jĈ40j < 1:68 ) 4PAM

jĈ40j � 1:68 ) BPSK

whereC40 = E[x4(n)]� 3E[x2(n)]2 (see [3] for motivations).
Table 1 shows representative confusion matrices for the clas-

sification of BPSK, 4-PAM, 8-PSK and 16-QAM modulations,
obtained for a sample sizeNS = 250, SNR = 5dB, fr =
0:4; � = 0; and h = (1; 0; 0). The MCMC classifier clearly
outperforms the ML and HOS classifiers. The robustness of the
classifier to frequency offset is depicted in Fig. 3. The MCMC
classifier clearly outperforms the ML and HOS classifier for large
values of the frequency offset. Figures 4 and 5 show better results
for the MCMC classifier for all values of the frequency offset and
h = (1; 0:25; 0:15) for SNR0s = 5dB and0dB respectively.
Fig. 6 shows similar results for the robustness to residual channel
effects.

Classifier Output
Classifier Input BPSK 4-PAM 8-PSK 16-QAM

BPSK 0 0 99 1
4-PAM 0 0 0 100
8-PSK 0 0 99 1

16-QAM 0 0 18 82

BPSK 16 83 0 6
4-PAM 11 78 0 11
8-PSK 0 0 83 17

16-QAM 0 0 61 39

BPSK 100 0 0 0
4-PAM 24 76 0 0
8-PSK 0 0 100 0

16-QAM 0 0 37 63

Table 1. Confusion matrices for ML, HOS and MCMC classifiers
(top to bottom), withNS = 250, SNR = 5dB, 100 trials and
fr = 0:4; � = 0; h = (1; 0; 0).

6. CONCLUSIONS

This paper addressed the problem of digital modulation classifi-
cation in the presence of frequency and phase offsets and residual
channel effects. The proposed approach consisted of estimating
the class posterior probabilities by using samples generated with
the Metropolis-Hastings algorithm. This strategy resulted in the
so-called MCMC Bayes classifier. The MCMC Bayes classifier
was shown to outperform two well known powerful digital modu-
lation classifiers. Further generalization of the MCMC Bayes rule
to the problem of digital modulation classification that includes
analysis of signals propagated through non-linear channels is un-
der consideration.
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Fig. 1. MCMC samples for the frequency offset.
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Fig. 2. MSE between target and estimated posterior distributions
vs iteration number.
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Fig. 3. Probability of correct classification vs frequency offset for
the ML, HOS and MCMC classifiers (SNR=5dB, h andfr are
both estimated).
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Fig. 4. Probability of correct classification vs frequency offset for
the ML, HOS and MCMC classifiers (SNR=5dB, h andfr are
both estimated).
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Fig. 5. Probability of correct classification vs frequency offset for
the ML, HOS and MCMC classifiers (SNR=0dB, h andfr are
both estimated).
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Fig. 6. Probability of correct classification vs residual channel
modulus for the ML, HOS and MCMC classifiers (SNR=5dB,
only h is estimated).


