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Abstract—In recent years, Markov chain Monte Carlo
(MCMC) sampling methods have gained much popularity
among researchers in signal processing. The Gibbs and the
Metropolis–Hastings algorithms, which are the two most popular
MCMC methods, have already been employed in resolving a
wide variety of signal processing problems. A drawback of these
algorithms is that in general, they cannot guarantee that the sam-
ples are drawn exactly from a target distribution. More recently,
new Markov chain-based methods have been proposed, and they
produce samples that are guaranteed to come from the desired
distribution. They are referred to as perfect samplers. In this
paper, we review some of them, with the emphasis being given to
the algorithm coupling from the past (CFTP). We also provide two
signal processing examples where we apply perfect sampling. In
the first, we use perfect sampling for restoration of binary images
and, in the second, for multiuser detection of CDMA signals.

Index Terms—CFTP, Fill’s algorithm, Gibb’s coupler, MCMC,
perfect (exact) coupling, rejection coupler.

I. INTRODUCTION

I N THE last decade of the last century, research in computa-
tional statistics has made very significant strides. This is par-

ticularly true in the area of Monte Carlo methods, more specif-
ically, in Markov chain Monte Carlo (MCMC) sampling [14].
The newly proposed methods could, in general, tackle prob-
lems that not long ago were considered insolvable because of
their high complexity. With the increasing availability of pow-
erful computers, these advances have brought great excitement
among researchers from various backgrounds. As a result, in
a rather short period of time, many books and research papers
have been published [12], [14], [33]. Research in signal pro-
cessing has also played an important role, and a variety of its
contributions have enriched the theory and practice of MCMC
sampling [2], [13], [34].1

In statistical signal processing, key entities are probability
distributions. From Bayesian point of view, all the informa-
tion that can be extracted from data about signal unknowns is
contained in the posterior distribution of the unknowns. From
a non-Bayesian point of view, the center of interest is usually
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around the likelihood of the data. A standard task of estimation
when point estimates of unknowns are sought is the maximiza-
tion of the posterior distribution or the likelihood with respect to
the unknowns. In Bayesian signal processing, another entity of
interest is the mean of the posterior. In many signal processing
problems, the maximizations of the posterior distribution and
the likelihood function or the evaluation of the mean of the pos-
terior are not trivial at all. When analytical approaches fail, one
resorts to numerical techniques. Most of these techniques have
the objective to search the maximum of the relevant function by
employing iterative techniques. The computation of the mean,
on the other hand, requires evaluation of high-dimensional in-
tegrals, which has usually been done by invoking standard nu-
merical integration techniques. For many problems, these ap-
proaches have provided good results, and they continue to be
the method of choice in many applications. However, for highly
complex problems, where the dimension of the unknowns is
very high, these methods show their limitations.

A completely different paradigm for solving the above prob-
lems is used by MCMC sampling methods. The idea there is
to generate samples from the posterior distribution or the likeli-
hood function of interest and use them to extract relevant infor-
mation or compute multidimensional integrals. The reasoning
is that all that we can know about the unknowns is summarized
by their posterior densities or likelihoods. Thus, if the samples
can approximate the posterior densities and the likelihoods very
well, we use them for inference and for carrying out the neces-
sary computations. Consequently, a critical step of this approach
is the generation of samples from a given distribution function.

The classical theory of random sample generation from
simple distributions includes inversion, rejection, squeezing,
and transformation methods [32]. The MCMC algorithms
have the same objective, and they achieve it by using carefully
constructed Markov chains. The basic MCMC method is the
Metropolis algorithm [25], which was later generalized to the
Metropolis–Hastings method [17]. Much of the recent research
of MCMC theory was sparked by the Gibbs sampler, which
is a special case of the Metropolis–Hastings method [13].
The samples in MCMC sampling are generated as a sequence
of random variables , according to a
transition kernel of the chain. The chain is
considered time-homogeneous, that is, the transition kernel
does not change with time. The chain starts its trajectory at time

in , and in the beginning, its states depend on or
. However, provided the chain satisfies

some regularity conditions [14], after some time, it forgets
the initial condition, and converges to its unique
stationary distribution. Therefore, with time, when the chain
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converges, the samples produced by the chain look increasingly
like samples from the stationary distribution. Then, we say
that the chain is inequilibrium and that its samples are drawn
from the stationary distribution. The period from until
convergence is known asburn-in period, and the samples from
this period are always thrown away.

An important practical problem in applications is the deter-
mination of the burn-in period. Typically, the chain is started
from an arbitrary state; it is run for some burn-in time, which
is believed to be long enough for the chain to have converged,
and from then on, the generated samples are assumed as if they
are truly samples from the stationary distribution. For assessing
convergence, there are various diagnostics [4], [6], [24], but
none of them guarantees that the chain has indeed converged
and that the generated samples are truly samples from the de-
sired distribution. In fact, since the chains are always run for
finite time, the samples are usually only approximate.

This weakness of the MCMC notwithstanding, research in
this area proceeded unabated. There was a strong reason for such
activity; MCMC methods led to successful resolutions of many
highly complex problems. In 1996, a new Markov chain-based
algorithm for a generation of random samples was proposed,
with a distinct feature that its samples were perfect (exact), i.e.,
the samples were exactly from the stationary distribution of in-
terest [30]. The algorithm uses a clever scheme for determining
the burn-in period, that is, the time at which the Markov chain
has converged to its equilibrium. It exploits an important tool
in probability known ascoupling; and therefore, the method is
called coupling from the past(CFTP). Initially, it was devel-
oped for discrete distributions with finite number of states, but
later, it was extended to allow for sampling from continuous
state spaces [29]. An alternative approach to the CFTP method
was proposed in 1998, and it is referred to as Fill’s perfect re-
jection sampling algorithm [9]; as its name suggests, it is based
on rejection sampling. In contrast to CFTP, it can be interrupted
at any time during the simulation, for example, due to too-long
runs, without introducing any bias to the generated samples.

In a brief time, work on further developments of the proposed
methods has picked up, and the whole field, now known asper-
fect sampling, became very popular.2 The purpose of this paper
is to review some of the basic theory and to present some of its
relevant developments. A goal too is to bring the area of perfect
sampling closer to the signal processing community, and to that
end, we present two examples of applications of perfect sam-
pling in signal processing. First, we review the CFTP algorithm
for discrete state spaces, then briefly describe Fill’s interruptible
algorithm, and finally explain the CFTP algorithm for contin-
uous state spaces. Several important concepts are also described
in detail. They include chain coupling, which plays a crucial role
in detecting the moments when the Markov chains have con-
verged, and monotone and anti-monotone chains, which allow
for easy implementation of the perfect sampling schemes. One
of the signal processing examples is on restoration of binary
images by a sandwiched CFTP scheme, and its performance is
shown in several scenarios. In the second example, multiuser

2An excellent source of information on the subject can be found on Internet
at http://dimacs.rutgers.edu/~dbwilson/exact.html.

detection of CDMA signals is carried out, where a perfect sam-
pling scheme, called the Gibbs coupler, is used to draw samples
from the posterior of the transmitted symbols.

The paper is organized as follows. In Section II, we describe
the basic CFTP algorithm and the main concepts associated with
it. In Section III, some extensions to CFTP are provided in-
cluding the Gibbs coupler, and in Section IV, Fill’s interruptible
algorithm is presented. Perfect sampling from continuous state
spaces is reviewed in Section V. Finally, in Section VI, we il-
lustrate perfect sampling-based methods with examples, and in
Section VII, we make a few concluding remarks.

A. Notation and Definitions

Before we proceed, we set some of the notation and recall a
few important definitions. The state space on which a Markov
chain is defined is denoted by. If the state space is discrete
and finite, . The state of the chain at time

is denoted by . We assume that the Markov chains are irre-
ducible, recurrent, and aperiodic. A Markov chain is irreducible
if for any states of the chain and

. It is recurrent if the expected number of visits of the chain to
any state of the state space is infinite. Finally, the chain is ape-
riodic if for some , the greatest common divider GCD satisfies

GCD

The Markov chains are assumed to have a unique stationary dis-
tribution denoted by .

II. CFTP ALGORITHM

A. Coupling

The CFTP algorithm, which is developed by Propp and
Wilson [30], allows for perfect (exact) and independent sam-
pling from a desired distribution. The sampling is implemented
by running ergodic Markov chains whose stationary distribu-
tion is the desired distribution. The underlying concept of the
approach involves running coupled Markov chains that start
from all the possible initial states. Once all the chains meet, i.e.,
coalesce, they follow the same path, which implicates that the
effect of initial states is worn off. A critical tool of the method is
coupling, which is an important probability theory concept. We
illustrate it with a simple example (a similar example appears
in [35]).

Example 1: Consider a queue that can hold only three
packets. Assume that at a given time slot, one of the following
three possibilities occurs.

1) Only one packet arrives at the queue.
2) One or two packets leave the queue.
3) No packet enters or leaves the queue.

The probabilities for a packet arrival, departure of one packet,
and departure of two packets are 0.4, 0.4, and 0.2, respectively.

The state of the queue can be represented by a Markov chain
with a state space . The
state diagram of the Markov chain is shown in Fig. 1. Clearly, it
is straightforward to compute various parameters of the queue
such as its blocking probability (the probability that it is in
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Fig. 1. State diagram of the Markov chain in Example 1.

state 3) or the probability of the queue being in any other state.
One can compute the stationary probabilities of the chainby
solving from , where is the transition matrix of
the chain [8]. Here, however, we pretend that we cannot com-
pute these probabilities using an analytical approach and that in-
stead, we have to resort to a simulation method based on perfect
sampling. The idea is to draw a large number of samples from
the stationary distribution of the chain and estimate the desired
probabilities.

We need to run four coupled Markov chains starting at all
the states of . A very important component of every perfect
sampling scheme is its updating function, which must ensure
coalescence. The updating function is arandom mapthat spec-
ifies the next state of the chain as a function of the current state
and random numbers. The specification is done according to the
transition kernel of the chain. Commonly, for reasons of conve-
nience, the random numbers denoted byare generated from
a uniform distribution on . For our example, we define
the updating function as (1) shown at the bottom of the
page, where is a random number drawn at time .
Obviously, the updating function (1) is derived from the Markov
chain in Fig. 1 and can be expressed in a different way.

Fig. 2 shows the trajectories followed by all the chains, which
started from every state of. It is important to note that at time

, all the chains use the same random number to
make the transition from to . Therefore, we say that
the chains arecoupled. As can be seen, the trajectories merge at

and thereafter follow the same path.Coalescenceoccurs
because the chains use the same updating rule as shown in (1),
and the same random numbers for transitions. In this example,
the time progresses from present to the future, and thus, the
coupling is called forward coupling.

As indicated earlier, if coalescence occurs, the effect of the
initial state is worn off, which seems to entail that the state at
which coalescence occurs is a valid sample from the desired
distribution. However, this is incorrect, and such scheme
would yield biased samples. Bias arises because the time of
coalescence does not occur at a fixed time but, rather, at random
times [35]. For the example considered above, coalescence
never occurs at the state . Thus, for the states of ,

Fig. 2. Coupling of the Markov chain in Example 1.

samples drawn using forward coupling produce a distribution
where , whereas the correct stationary distribution is

.

B. Coupling From the Past

The concept of CFTP introduces a simple but important mod-
ification to the forward coupling so that the produced samples of
the modified scheme are perfect. The basic difference between
the two types of coupling is that with CFTP the Markov chains
are run from the past ( ) to the present ( ), and most
importantly, the samples are always drawn at a fixed time, i.e.,
at , provided coalescence has occurred at or earlier.

Now, we explain how CFTP is implemented. Consider an er-
godic Markov chain with a discrete and finite state space of size

. If copies of the chain are run, where each copy corre-
sponds to a different initial state, the chains will eventually co-
alesce and will be stationary by time . In that case, the
value of the chains at is a perfect sample from the sta-
tionary distribution. Obviously, it is not feasible to run chains
from the infinite past, and instead, one can use the simple and
clever scheme known as CFTP. All thechains are started at

and are checked for coalescence at . If coales-
cence occurred, the state of the chain at is accepted as
a sample from the desired distribution. Otherwise, the starting
time is moved back to , and the chains are evolved and
again checked for coalescence at . If coalescence took
place by , the state at is a sample from the target
distribution, and if not, the starting time is moved further back
to . The whole procedure is repeated, and a sample is
drawn if coalescence occurs or the starting time is shifted fur-
ther back. This process continues until coalescence occurs.

There are two very important points for the implementation
of the CFTP scheme.

1) In the attempts to achieve coalescence, for the transitions
from to , where , one uses

if
if
if
if
if
if

(1)
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Fig. 3. CFTP of the Markov chain in Example 1. Dotted lines: Trajectories
started atT = �1; thin broken lines: Trajectories started atT = �2; thick
broken lines: Trajectories started atT = �3; thick solid lines: Trajectories
started atT = �4.

the same random number. For example, let be the
random number used in the transition from to

in the first step. In the second step, the starting time
is , and there are two transitions. Nevertheless,
only one new random number is generated [ ], and
it is used for the transition from to . For
the transition from to , the “old” random
number from the first step is applied. Therefore, in
the above scheme, every time the starting time is moved
back by one time unit, only one new random number is
generated [ ], and it is used in the first transition.
For the remaining transitions, the old random numbers are
reused.

2) The samples are drawn at only, even if coalescence
occurred earlier.

We applied the CFTP algorithm to our example, and a case
of successful drawing of a sample is shown in Fig. 3. As de-
picted, coalescence did not take place for the starting times

and . The trajectories of the chains coalesced
when they were started at , and the coalescence oc-
curred at . The trajectory was then completed at ,
and was the drawn sample.

In summary, the CFTP algorithm can be described in pseudo
code form as follows:

:

.

Next, we provide a heuristic argument why the CFTP al-
gorithm returns a perfect sample in finite time. In the sequel,
we also present a formal mathematical proof of it. Letbe a
starting time of the CFTP algorithm for which the trajectories
coalesce by . In addition, suppose that the Markov chain is

run from the infinite past. At time , the chain is in equilibrium,
and its state at is a perfect sample from the stationary
distribution. The chain remains in equilibrium beyond, and
the state at is also a perfect sample. Note that we do
not know the state of the chain at, and that it does not really
matter because from to , the state space of the chain
remains a singleton set. Therefore, we can argue that the sample

is a result of infinite time simulation, and consequently, it
is a perfect sample from the distribution. The method can thus
be referred to as virtual simulation from time as it allows us
to sample an infinitely long simulation by reconstructing it over
a finite time interval [7], [22], [36]. Now, we state the theorem
and present its proof [30].

Theorem 1: Let an ergodic Markov chain have a stationary
distribution . Then, a) the CFTP algorithm returns a sample in
finite time with probability one, and b) the returned sample is
an exact sample from the stationary distribution.

Proof: The proof basically rests on second Borel–Cantelli
lemma [8]. A similar proof has been presented in [5]. Since the
Markov chain is irreducible and aperiodic, we can find a finite

such that

It then follows that each chain has a positive probability of being
in any state at . Define the event The

chains coalesce in . Thus,
, where . Moreover, the s are independent because

coalescence in depends only on the random
numbers generated within the interval that are independent from
the random numbers generated outside the interval and does not
depend on the initial states. Thus, since

we conclude by Borel–Cantelli lemma that(infinitely many
occur) . The second part of the theorem is a consequence

of the fact that if CFTP finds to be the starting time from
which all the trajectories of the chain coalesce by , the
returned value of the chain at is the same as if the chain
was run from . Hence, this value is a sample from the
target distribution .

In the CFTP algorithm given above, the values of
are successively taken as starting

times of the chains. This, however, is not necessary. In fact, any
decreasing sequence ofis a valid set of starting times of the
algorithm. Propp and Wilson recommended the sequence of
starting times given by , which
double at every step [30]. This choice minimizes the worst-case
number of required simulation steps and almost minimizes the
expected number of steps. The proof of this claim can be found
in [30].

C. Monotonicity

The CFTP algorithm as described above is difficult to mon-
itor and is computationally very intensive for problems where
the Markov chains have large state spaces. Therefore, its practi-
cality is quite limited. In some important applications, it may be
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Fig. 4. State diagram of the Markov chain in Example 2.

possible to define an updating function that possesses the prop-
erty of monotonicity for a partial order imposed on the state
space . As a result, instead of propagating large number of
chains, we would work with only two chains. Assume that there
is a partial order 3 on the state spacefor . Then,
a mapping function is called monotone if it satisfies

when . Now, denote with and
the maximum and minimum elements of the state space of, re-
spectively, with the partial order . Then,
if there exists a monotone updating function for the
Markov chain, the use of such a transition rule ensures preserva-
tion of the same order in all subsequent paths. Therefore, when
applying the CFTP algorithm, it is only necessary to monitor the
two chains whose starting states are and since all the
other chains are always sandwiched between them.

Suppose that we impose the partial order
in Example 1. Then, it can be easily verified that the updating
function in (1) is monotone, that is,

. Thus, when applying the CFTP scheme
to Example 1, we need to monitor only the chains that start at

and .
In some situations, where a monotone transition rule cannot

be found, it may still be possible to monitor only two paths.
This can be achieved by the crossover method [15], [21], which
can be applied if the transition rule is antimonotone. A transition
rule is referred to as antimonotone if, for a partial order

, the transition rule satisfies . We
illustrate this property with the following example.

Example 2: Consider Example 1 with the modifications pre-
sented by Fig. 4.

We may define an antimonotone transition rule, shown in (2)
at the bottom of the page. Suppose that on the state space of the
Markov chain, we impose a partial order .
Then, it can easily be verified that the transition rule defined by
(2) is antimonotone. Thus, the CFTP algorithm can be applied to
this chain by keeping track of the trajectories that start only from

3A setS is partially ordered if and only if it admits a transitive ordering rela-
tion x � y between some pairs of elementsx; y so thatx � y; y � z implies
x � z.

states and . As a final note, CFTP algorithms that
exploit monotonicity or antimonotonicity of chains are called
sandwiched CFTP algorithms.

III. ON SOME FURTHER DEVELOPMENTS OF THE

CFTP ALGORITHM

Here, we address three interesting extensions of the CFTP
algorithm. The first is on a modification of the CFTP that al-
lows for running the Markov chain forward in time [37]. The
second is the Gibbs coupler method, which represents an im-
plementation of CFTP on binary state spaces and combines the
CFTP scheme with Gibbs sampling. Finally, the third extension
is the method known as dominated CFTP, which provides per-
fect samples of some point processes.

A. Read-Once CFTP

The original CFTP requires that one keep track of seeds of
the random number generator. This may entail either frequent
regeneration of the random samples (which sets additional
time requirements to the system that implements the CFTP)
or storing the random samples (which requires additional
memory for storage). It turns out that perfect samples can be
obtained by coupling from the past without reusing the “old”
random numbers, that is, by running a read-once stream of
random numbers [37].

Before we describe the implementation of the read-once
CFTP method, recall the following. First, if we apply forward
coupling in the usual way as shown in Section II-B, at some
point, coalescence occurs. Second, as already explained, we
cannot assume that the state where coalescence takes place is
a perfect sample (recall that bias arises in forward coupling).
Third, once we know that a sample is perfect, the following
samples of the chain are also perfect but not independent.
For the identification of the independent samples that follow
a perfect sample on the trajectory of the Markov chain, this
procedure runs another Markov chain, which is independent
from the first chain.

With these remarks, we return to the read-once CFTP proce-
dure and note that it is very important that it is initialized prop-
erly. The initialization is carried out by running two independent
chains using forward coupling. When coalescence of the second
chain occurs, say, at time, the coalescence of the first chain is
checked. If the first chain has already coalesced by, the value
of the chain at , for example , is stored. This value is a candi-
date for a perfect and independent sample. If the first chain has
not coalesced by time , the procedure is repeated until the first
chain has coalesced before the second chain. When this occurs,
the initialization is completed.

if
if
if
if
if
if
if

(2)
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After initialization, the forward coupling procedure of the two
chains is again invoked and run independently in parallel. In
addition, the trajectory of the first chain started out at

is tracked. When the second chain coalesces, for instance at
, coalescence of the first chain is also checked. If atthe

first chain has coalesced, say, at, the candidate is a perfect
sample. Note that but not is the perfect sample. However,

is a candidate for a perfect sample in the next run. It will be a
perfect sample (with probability 1/2) if the first chain coalesces
before the second chain after they are both restarted atand
run independently. If the first chain does not coalesce before,
at which the second chain coalesced,is not accepted as a
perfect sample. Instead, it is thrown away, and the two chains
are restarted at . The sample of the trajectory of the
first chain that went through is the new candidate for
a perfect sample.

In terms of memory and time requirements, the read-once
CFTP in general is comparable with the standard CFTP. In
some applications, however, the read-once CFTP is faster
than the standard CFTP. Another important advantage of
the read-once CFTP is that it requires only one sequence of
pseudorandom numbers, whereas the standard CFTP needs
many such sequences. These sequences have to be independent,
which is a requirement that is difficult to achieve. In fact, the
random sequences in practice may be quite correlated, and that
affects the quality of the “perfect” samples.

B. Gibbs Coupler

Recently, a new coupling algorithm has been proposed [16],
[18], [19], which we refer to as the Gibbs coupler. An advan-
tage of the Gibbs coupler over the standard CFTP method is
that it can be applied to large state spaces without the need for
monotone or antimonotone properties of the updating function.
In [16] and [19], specific algorithms are proposed for Markov
random fields such as-colorings, the hard-core model, and
the Potts model. In the following, we describe a general algo-
rithm for high-dimensional binary spaces. The coupling method
of the Gibbs coupler, as opposed to the CFTP method, is com-
ponent based. Suppose that the state of the chainhas bi-
nary representation given by , and let

denote the support of ,
where represents the support of the com-
ponent . An important ingredient of the method is the con-
cept of sandwich distributions. They are defined for everyand

by

(3)

and

(4)

where is the

collection of supports of . The

update of is then carried out according to

if

if
otherwise

(5)

where, as before, is a random number drawn from the uni-
form density on .

Coalescence occurs if the supports of all thes are single-
tons. As in the CFTP method, if coalescence occurs at ,
the singleton supports define the gen-
erated sample. It can be proved that the sandwich distributions
in (3) and (4) achieve the largest probability of coalescense, and
hence, their use leads to the fastest coalescense. It can also be
shown that for problems where monotonicity exists, the Gibbs
coupler has the same rate of coalescense as CFTP and that it is
equivalent to the sandwiched CFTP algorithm.

In summary, the basic Gibbs coupler is given by the following
pseudo-code:

:

,

.

C. Dominated CFTP

Dominated coupling from the past (DCFTP) is another
method that extends the use of CFTP [20], [21]. The CFTP
method as defined is only applicable to uniformly ergodic
Markov chains. However, if the chains are geometrically
ergodic, which is true for Markov chains that converge to point
process distributions, the CFTP may not produce samples at
all. To explain the method, we modify Example 1. A similar
example is also given in [35].

Example 3: Consider a queue where packets arrive at a rate
and leave at a rate , where

, and where the queue may be of infinite size.
The objective is to sample , which is the number

of packets in the queue. Note that the process is not
time-homogeneous, and thus, CFTP cannot be applied directly.
DCFTP overcomes the problem of time inhomogeneity by
using a process that is time homogeneous and dominates

, i.e., . For the above example, could be
a process with a packet arrival rateand a departure rate .
The process , therefore, can be straightforwardly sampled.
To use for sampling , the two processes must be
coupled since we must have . The coupling is
achieved as follows: Every arrival of a packet in is also an
arrival in with probability , and
every departure in is a departure in with probability

(note that the notation means , where
is an arbitrarily small positive number). There are no arrivals

or departures in if there are no associated arrivals or
departures in . Since is bounded by and 0, once



DJURIĆet al.: PERFECT SAMPLING: REVIEW AND APPLICATIONS TO SIGNAL PROCESSING 351

the value of is known, only two chains of
are started: one at and the other at .
If the two chains coalesce at , the obtained value comes
from the distribution of . If they do not coalesce, two new
chains are started at and 0, and so on. For more details
on DCFTP, see [20], [21], and [35].

IV. FILL ’S INTERRUPTIBLEALGORITHM

In the CFTP algorithm, the running time and the returned
sample are dependent random variables. It is very important
that the algorithm is run until it returns a sample. If, however,
the algorithm is interrupted and restarted wheneveris long,
the generated samples will be biased in favor of those samples
that take less time to generate.

Fill developed an algorithm for generation of perfect samples
that can be interrupted at any time, and yet, the samples that are
generated are not biased [9]. This is because in Fill’s algorithm,
the running time of the algorithm and the returned values are
independent. Fill’s algorithm is similar to CFTP in that it uses
Markov chains to produce perfect samples, but it is based on the
idea of rejection sampling instead of ion the concept of coupling.

The rejection sampler first takes a proposalfrom a distri-
bution , and then accepts as a sample from a target dis-
tribution with probability , where

To illustrate the application of rejection sampling in Fill’s
algorithm, consider an ergodic Markov chain with a stationary
distribution . Assume that for the Markov chain, we can
define a monotone updating function , and for
the time-reversed Markov chain, a corresponding updating
function , where .
Then, the partially ordered state-spacepossesses a unique
minimum state and a unique maximum state . Fur-
thermore, let and denote the transition kernels
of the two chains, respectively. Recall that time reversibility
is defined by , or more generally,

, where denotes the
probability of a transition from to in steps. This definition
in conjunction with the monotonic property implies

(6)

Fill’s algorithm applies rejection sampling by choosing
as a proposal density and sets

according to (6). Thus, a proposalfrom is ac-
cepted as a sample fromwith probability

(7)

In realizing the above rejection sampler, Fill’s algorithm starts
from the minimal state of the Markov chain and makestran-
sitions, where is a prespecified value. The value of the chain

after transitions is a candidate for a perfect sample. This
sample is accepted if a second chain started from the maximal
state and coupled with the time-reversed chain arrives at the
minimal state. Otherwise, the sample is rejected, and a new run
with doubled is restarted. More specifically, we can write the
pseudo code of the algorithm as in the following.

:

.

From the above pseudo code, it is easy to see that is
generated as a proposal from . Therefore, the
returned sample will be a perfect sample from as long
as

, which is demonstrated by
the following lemma, which we state without proof.

Lemma: If is a realization of the reversed monotonic
Markov chain constructed as in Fill’s algorithm, then

Fill’s original algorithm is designed on finite state spaces and
requires the monotonicity on the transition kernel to be appli-
cable. Later, it was extended to infinite state spaces [35] as well
as to antimonotonic systems with infinite state spaces [28]. The
algorithm was also generalized to apply to nonmonotonic and
continuous systems [11].

V. PERFECTSAMPLING FROM CONTINUOUSSTATE SPACES

The protocol of CFTP may also be used to construct perfect
sampling algorithms for continuous state spaces. However, di-
rect use of CFTP is prohibitive or impossible because of the un-
countable infinite number of states in the state space. It can be
impractical to implement the procedure, and/or the chains will
not coalesce in finite time. To circumvent the problem, a logical
approach is to attempt a design that is based on discretization
of the continuous space. In this section, we restrict our attention
to algorithms for bounded continuous spaces. The extension to
unbounded spaces is done by dominating techniques that are
discussed in Section III-C.

In [29], Murdoch and Green have developed several per-
fect sampling algorithms for continuous state spaces. They
include themultigamma coupler, the rejection coupler, and
the Metropolis–Hastings coupler. A common feature of these
methods is a transition scheme that updates a subset of the
support into a single state. When the union of the subsets equals
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the whole support, discretization of the continuous space is
accomplished.

Here, we explain the rejection coupler and thereby demon-
strate the basic idea. Suppose that represents the tran-
sition kernel of a Markov chain, where . In addition,
suppose also that , where is a normalizing
constant and where instead of is known. We also
assume that we can determine an upper bounding function
on such that and that we can
sample from the density , where . There-
fore, given the stateat time , a new state at time is drawn
from as a proposal density, and the generated sample
is accepted if

(8)

where . We further notice that for the drawn
and , any state satisfying (8) would accept the same state.
Therefore, by solving (8) w.r.t. when and are given, we
can identify a subset of that shrinks to a single state. This
is the basic idea of the discretization process, which in general
represents coupling of infinite number of states.

The rejection coupler operates as follows. It starts at
with support . During the update of , first, a
sample and a random number are generated from and

, respectively, and second, given the generated sample
and the random number, a subset of is determined from
(8). The procedure is repeated until the union of all the pro-
duced subsets equals . All the samples that were drawn
from represent the support . This support is dis-
crete and is recorded together with the used random numbers.
If, at time 0, the number of states in is 1, this single state is
returned as a perfect sample, and the algorithm terminates. Oth-
erwise, the algorithm is restarted at time , and it reuses the
recorded random numbers for the updates from to .

For problems with large dimensions, Murdoch and Green
proposed componentwise perfect sampling algorithms [29]. The
main idea of componentwise updating is to reduce the com-
plexity of sampling from high-dimensional spaces by applying
a sequence of lower dimensional samplings. These methods in-
herit the framework of the Gibbs sampler while using the per-
fect sampling algorithms discussed above as building blocks.
Another componentwise method for sampling from continuous
distributions was proposed in [27].

VI. A PPLICATIONS IN SIGNAL PROCESSING

A. Restoration of Binary Images

Consider the restoration of a degraded binary image,
whose pixels are either black ( 1) or white ( 1). Suppose
that the original image is contaminated by Bernoulli noise. More
specifically, the Bernoulli noise reverses independently and with
probability the value of each pixel to its complement. The
likelihood of observing when is the true image can then
be expressed as

(9)

where is an indicator function. Furthermore, since the im-
ages in reality are often composed of relatively smooth pieces,
a smooth prior is chosen as follows:

(10)

where indicates all the neighboring pixel pairs in the
image that are adjacent in either the vertical or the horizontal
directions, and . The coefficient determines the degree
of the smoothness in that the larger the value of, the smoother
the prior. In fact, the prior in (10) is also a simplified Ising
model, which is a useful Markov random field (MRF) model.
Now, the posterior distribution is readily expressed as

(11)

To obtain an estimate of the true image, various Bayesian
estimators can be used including the maximuma posteriori
(MAP) and the marginal posterior mode (MPM) estimators
[38]. These estimators involve evaluation of the posterior
distribution, which for large is a computationally prohibitive
task. Alternatively, efficient perfect-sampling algorithms like
the sandwiched CFTP can be applied to simulate the posterior
distribution. Recall that the sandwiched CFTP requires a
monotonic Markov chain. For this problem, the monotonic
chain can be realized by the Gibbs sampler. The Gibbs sampler
takes samples from the full conditional distributions which can
be obtained from (11) as

(12)

and , where
, and denotes a vector of all the

components in , except . Accordingly, the updating function
of the Gibbs sampler is

if
otherwise

(13)

where is a sample from . Now, we impose partial
order on the binary state space such that if

whenever . We can see that the distribution
(12) is an increasing function of on the partial order. This
is equivalent to saying that , and the
Markov chain so constructed is monotonic. Consequently, two
extreme states on the state space can easily be determined; one
is when all the pixels are black, and the other is
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Fig. 5. Image in the top row is a 64� 64 binary image of a panda. The three images in the second row show the degraded image by Bernoulli noises with different
value ofp. The MPM restorations of the degraded images are plotted in the third row. Misclassification ratese are also provided for each restored image.

when they are all white. Now, we are able to implement the
sandwiched CFTP by tracing two chains started from the two
extreme states and checking for coalescence at .

We show the performance of the sandwiched CFTP method
on a 64 64 binary image of a panda. Different values were
chosen for in the three experiments. However, in all the cases,

, and 1000 samples from the posterior distribution
were collected. To recover the true image, MPM estimates were
computed by using the obtained samples. In Fig. 5, the true
image, degraded images, and the corresponding restored images
are displayed. The misclassification rates in each experiment are
also provided. The rates are defined as the ratio of incorrectly
restored pixels and the total number of pixels.

B. Multiuser Detection

Optimum multiuser detection is the optimum solution to re-
covering data transmitted by many users in a code-division mul-
tiple-access (CDMA) system [36]. In this subsection, we present
a perfect sampling approach to an approximate solution of op-
timum multiuser detection.

A -user synchronous CDMA white Gaussian channel can
be modeled as [36]

(14)

where
received signal;
antipodal signature waveform of theth
user;

amplitude of the th user’s signal;
bit transmitted by the th user;
additive white Gaussian noise with zero
mean and variance ;
symbol duration.

We assume here that all the parameters except thes are
known, and our objective is to estimate .
From a Bayesian perspective, the optimum estimate ofis
the set that maximizes the posterior distribution. The solution
leads to the maximuma posteriori (MAP) detector. Now, if
noninformative prior is chosen for, the posterior distribution
of is

(15)

where represents the crosscorrelation
between the th and the th signature waveform, and

is the th matched filter output. Here, we show
how an efficient perfect sampling algorithm can be applied to
calculate the output of the MAP detector.

First of all, due to the multidimensionality of the variable
space, the Gibbs sampler is particularly preferable for con-
structing the Markov chain. The full conditional distributions
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required by the Gibbs sampler are readily derived from the
posterior distribution (15) as

(16)

for . Now, if we let , we would
notice that when and , the distribution (16) is
equivalent to (12). Thus, using analogous reasoning as in Sec-
tion VI-A, we can show that in this problem, there is a mono-
tonic Markov chain only when . Since the am-
plitudes of the signals are assumed positive, the condition
of also implies negative crosscorrelation, or .
Therefore, an efficient sandwiched CFTP can only be applied
if the crosscorrelations in the CDMA system are only negative.
For problems with arbitrary crosscorrelations, an efficient per-
fect sampling solution is provided by the Gibbs coupler [18].

An important issue of the Gibbs coupler, as pointed out in
Section III, is the specification of sandwich distributions on the
full conditional distributions. They are obtained by maximizing
and minimizing (16) on the support of . Here, the maximum
and the minimum of (16) with respect to can easily be de-
termined by only checking the sign of . It thus follows that
at time , the sandwich distributions are

and

where contains the
indices of the elements of that have not coalesced

at , and are the indices
of the remaining elements of the set that have
coalesced at. According to the algorithm then, at any, the
support of the th component is updated according to (5), and
the coalesced state at is recorded as a perfect sample from
the posterior (15).

Suppose that the desired number of samples is. Once
samples are acquired, the MAP estimate is computed. There are
several approaches to find the MAP estimate. For instance, the
posterior probability of each perfect sample is computed, and
the MAP estimate is the one that has the largest posterior prob-
ability. As an alternative, one can consider the samples of each

, for independently. In this case, the MAP es-
timate of is set to be the sample that appears most frequently.

Fig. 6. BER of the different methods on a seven-user-equal-power system as
a function of SNR.

This procedure yields the marginalized MAP estimate of the
transmitted bits.

We present the results of several experiments that demon-
strate the performance of the MAP detector. In the first two ex-
periments, we chose a seven-user system whose common cross-
correlation of the spreading code was 0.1. Apparently, there
is no monotonic Markov chain for this system. To compute a
MAP estimate, 50 samples were collected. In the first experi-
ment, bit-error rates (BERs) of both the MAP and the marginal-
ized MAP detectors of the first user were examined under dif-
ferent SNRs. The results are illustrated in Fig. 6. The results of
the conventional matched filter and the decorrelating detector
[36] on the same user are also presented. The theoretical per-
formance in the absence of multiuser interference is plotted as a
lower bound. In order to compute the BER at a specific SNR for
any detector, Monte Carlo trials were performed. The number of
Monte Carlo trials was precomputed by assuring that with the
BER of the lower bound at this SNR, there would be at least 300
errors among the trials. We see that the curves corresponding to
the MAP and the marginalized MAP detectors are closely in-
tertwined, which indicates similar performance of these detec-
tors. However, the BERs of the single-user matched filter and
the decorrelating detector are larger than those of the two MAP
detectors, which is more explicitly shown at higher SNRs.

In the second experiment, we introduced a near–far effect
into the system where different energy levels were assigned
to the seven users. Specifically, the three largest energy levels
were 5 dB higher, and the three middle energy levels were 3
dB higher than the smallest energy level, respectively. BERs of
the MAP and the marginalized MAP detectors of the user with
the smallest energy are plotted versus SNR in Fig. 7. Again,
we notice that the two MAP detectors have very similar perfor-
mance. For comparison, the results of the single-user matched
filter and the decorrelating detector are also presented. As ex-
pected, the performance of the matched filter degrades dramati-
cally, whereas, due to resistance to near-far effect [36], the per-
formance of the decorrelating detector remains the same as that
in the first experiment. However, at every tested SNR, the two
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Fig. 7. BER of the user with smallest amplitude level as a function of SNR.
There were seven users with different amplitude levels.

Fig. 8. BER of the different methods on a 15-user-equal-power system as a
function of SNR.

MAP detectors outperform both the decorrelating detector and
the matched filter. Furthermore, the BERs of the two MAP de-
tectors in this experiment are also smaller than those in the first
experiment. This is a notable feature of the optimum detectors,
and it is due to the increased energy level of the other users.
Note that the matched filter and the decorrelating detector do not
have this feature. This observation indicates that the two MAP
detectors by the Gibbs coupler correctly represent the optimum
detectors.

Finally, in the third experiment, a more realistic scenario was
simulated, in which a 31-bit Gold sequence was used as the
spreading code for a 15-user system. We assumed that all users
were with equal power. To compute a MAP estimate for this
experiment, 200 samples were used. The BERs of the MAP de-
tectors, the matched filter, and the decorrelating detector were
calculated on the system, and the results are depicted in Fig. 8.
We can see that the MAP detectors have a similar performance,
which is very close to the lower bound. On the other hand, for

higher SNRs, the single-user matched filter and the decorre-
lating detector performed rather poorly.

VII. CONCLUSIONS

In this paper, we reviewed algorithms for perfect sampling
and showed examples of its use in signal processing. The em-
phasis in the review was given to CFTP and some of its exten-
sions as well as to Fill’s interruptible algorithm. It should be
noted that there are also other Markov chain based approaches
to perfect sampling [1], [3], [23], [26], [31]. A new interrupt-
ible perfect sampler not based on Markov chains and called the
randomness recycler is presented in [10]. Many of the perfect
sampling methods, however, are not very practical, and there-
fore, their impact on many applied fields has been limited. This
is particularly true when sampling has to be performed on con-
tinuous state spaces. In our examples, for instance, some of the
variables, like the Bernoulli probabilityand the Gaussian noise
variance , which are both continuous variables, were assumed
known. In practice, this is rarely the case, but here, we had to as-
sume them as known because it would have been very difficult
to obtain perfect samples jointly with the available algorithms.
Another important weakness of the current perfect algorithms
is that they cannot meet deadlines. This implies that in theory,
they cannot be used for sequential signal processing. In the near
future, this may change, and with advances in the theory and
practice in the field, perfect sampling algorithms may become a
standard tool for researchers in many disciplines. One such dis-
cipline will certainly be statistical signal processing.
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Petar M. Djurić (SM’99) received the B.S. and
M.S. degrees in electrical engineering from the
University of Belgrade, Belgrade, Yugoslavia, in
1981 and 1986, respectively, and the Ph.D. degree in
electrical engineering from the University of Rhode
Island, Kingston, in 1990.

He is currently a Professor with the Department of
Electrical and Computer Engineering, State Univer-
sity of New York at Stony Brook. He works in the
area of statistical signal processing, and his primary
interests are in the theory of modeling, detection, es-

timation, and time-series analysis and its applications to a wide variety of dis-
ciplines, including telecommunications, biomedicine, and power engineering.

Prof. Djurić has served on numerous technical committees for the IEEE and
SPIE and has been invited to lecture at universities in the United States and
overseas. He has been Associate Editor of the IEEE TRANSACTIONS ONSIGNAL

PROCESSINGand currently is the Vice Chair of the IEEE Signal Processing So-
ciety Committee on Signal Processing—Theory and Methods. He is Treasurer of
the IEEE Signal Processing Conference Board and a member of both the Amer-
ican Statistical Association and the International Society for Bayesian Analysis.

Yufei Huang was born in Shanghai, China, in 1973.
He received the B.S. degree in applied electronics
from Northwestern Polytechnic University, Xi’an,
China, in 1995 and the M.S. and Ph.D. degrees in
electrical engineering from the State University of
New York (SUNY) at Stony Brook, in 1997 and
2001, respectively.

He is now working as a post-doctoral researcher
with the Department of Electrical and Computer
Engineering, SUNY at Stony Brook. His current
research interests are in the theory of Monte Carlo

methods and their applications to array processing and multiuser communica-
tions.

Tadesse Ghirmaiwas born in 1966 in Asmara, Er-
itrea. He received the B.Sc. degree in electrical engi-
neering from Addis Ababa University, Addis Ababa,
Ethiopia, in 1988 and the M.S.E.E. degree from Uni-
versity of South Florida, Tampa, in 1995. He is cur-
rently pursuing the Ph.D. degree at the State Univer-
sity of New York at Stony Brook.

He worked at the University of Asmara from 1988
to 1993 and from 1995 to 1999 as an Assistant Lec-
turer and as a Lecturer, respectively. His research in-
terests are in the areas of statistical signal processing

and communications.


