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Abstract—in recent years, Markov chain Monte Carlo around the likelihood of the data. A standard task of estimation
(MCMC) sampling methods have gained much popularity when point estimates of unknowns are sought is the maximiza-
among researchers in signal processing. The Gibbs and the s, of the posterior distribution or the likelihood with respect to

Metropolis—Hastings algorithms, which are the two most popular th K InB X . | . th tity of
MCMC methods, have already been employed in resolving a € unknowns. In Bayesian signal processing, another entity o

wide variety of signal processing problems. A drawback of these interest is the mean of the posterior. In many signal processing
algorithms is that in general, they cannot guarantee that the sam- problems, the maximizations of the posterior distribution and
ples are drawn exactly from a target distribution. More recently,  the likelihood function or the evaluation of the mean of the pos-
new Markov chain-based methods have been proposed, and theYa g are not trivial at all. When analytical approaches fail, one
produce samples that are guaranteed to come from the desired ts t ical techni Most of th techni h
distribution. They are referred to as perfect samplers. In this resor§ o_numerlca ec mque;. ostorinese tec nlqur-__*s ave
paper, we review some of them’ with the emphasis being given to the ObjeCtlve to SearCh the maximum Of the relevant fUnCt|0n by
the algorithm coupling from the past (CFTP). We also provide two employing iterative techniques. The computation of the mean,
signal processing examples where we apply perfect sampling. In on the other hand, requires evaluation of high-dimensional in-
the first, we use perfect sampling for restoration of binary images tegrals, which has usually been done by invoking standard nu-
and, in the second, for multiuser detection of CDMA signals. L . .

merical integration techniques. For many problems, these ap-

Index Terms—CFTP, Fill's algorithm, Gibb’s coupler, MCMC,  proaches have provided good results, and they continue to be

perfect (exact) coupling, rejection coupler. the method of choice in many applications. However, for highly

complex problems, where the dimension of the unknowns is

|. INTRODUCTION very high, these methods show their limitations.

N THE last decade of the last century, research in computa/* €Ompletely different paradigm for solving the above prob-
I tional statistics has made very significant strides. This is paeMs is used by MCMC sampling methods. The idea there is
ticularly true in the area of Monte Carlo methods, more specFQ generate samples from the posterior distribution or the likeli-
ically, in Markov chain Monte Carlo (MCMC) sampling [14]. hood function of interest and use them to extract relevant infor-
The newly proposed methods could, in general, tackle prdﬁlation or compute multidimensional integrals. The reasoning
lems that not long ago were considered insolvable becausdifat all that we can know about the unknowns is summarized
their high complexity. With the increasing availability of pow2Y their posterior densities or likelihoods. Thus, if the samples
erful computers, these advances have brought great excitenféft @PProximate the posterior densities and the likelihoods very
among researchers from various backgrounds. As a result§fill: We use them for inference and for carrying out the neces-
a rather short period of time, many books and research papedy computations. Consequently, a critical step of this approach

have been published [12], [14], [33]. Research in signal prb';_the generation of samples from a given distribution function.

cessing has also played an important role, and a variety of its! "€ classical theory of random sample generation from

contributions have enriched the theory and practice of MCM@MPle distributions includes inversion, rejection, squeezing,
sampling [2], [13], [34]: and transformation methods [32]. The MCMC algorithms

In statistical signal processing, key entities are probabilifj2ve the same objective, and they achieve it by using carefully
distributions. From Bayesian point of view, all the informatonstructed Markov chains. The basic MCMC method is the

tion that can be extracted from data about signal unknowng\§tropolis algorithm [25], which was later generalized to the

contained in the posterior distribution of the unknowns. Frofj€étropolis—Hastings method [17]. Much of the recent research
a non-Bayesian point of view, the center of interest is usuafff MCMC theory was sparked by the Gibbs sampler, which
IS a special case of the Metropolis—Hastings method [13].

The samples in MCMC sampling are generated as a sequence
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converges, the samples produced by the chain look increasindgtection of CDMA signals is carried out, where a perfect sam-
like samples from the stationary distribution. Then, we sgjing scheme, called the Gibbs coupler, is used to draw samples
that the chain is irequilibrium and that its samples are drawrfrom the posterior of the transmitted symbols.

from the stationary distribution. The period fram= 0 until The paper is organized as follows. In Section Il, we describe
convergence is known dmirn-in period, and the samples fromthe basic CFTP algorithm and the main concepts associated with
this period are always thrown away. it. In Section lll, some extensions to CFTP are provided in-

An important practical problem in applications is the detecluding the Gibbs coupler, and in Section 1V, Fill's interruptible
mination of the burn-in period. Typically, the chain is startedlgorithm is presented. Perfect sampling from continuous state
from an arbitrary state; it is run for some burn-in time, whickpaces is reviewed in Section V. Finally, in Section VI, we il-
is believed to be long enough for the chain to have convergéastrate perfect sampling-based methods with examples, and in
and from then on, the generated samples are assumed as if ®egtion VII, we make a few concluding remarks.
are truly samples from the stationary distribution. For assessing
convergence, there are various diagnostics [4], [6], [24], bat Notation and Definitions
none of them guarantees that the chain has indeed convergeg
and that the generated samples are truly samples from the 1%9\7
sired distribution. In fact, since the chains are always run f%ai

finite time, the samples are usually only approximate. and finite,S = {s1, 5o, ..., s1.}. The state of the chain at time

_This weakness of the MCMC notwithstanding, research Ns denoted by:(). We assume that the Markov chains are irre-
this area proceeded unabated. There was a strong reason for {i&ible, recurrent, and aperiodic. A Markov chain is irreducible
activity; MCMC methods led to successful resolutions of manP(x(t’) _ S‘|$(0) T 5;) > 0 for any states of the chain and

=s; =5, )

highly complex problems. In 1396, a new Markov chain-bas%q. Itis recurrent if the expected number of visits of the chain to

algorithm for a generation of random samples was propog%qiry state of the state space is infinite. Finally, the chain is ape-

with a distinct feature that its samples were perfect (exact), Rodic if for somesi, the greatest common divider GCD satisfies
the samples were exactly from the stationary distribution of in- '

terest [30]. The algorithm uses a clever scheme for determining GCD
the burn-in period, that is, the time at which the Markov chain

has converged to its equilibrium. It exploits an important tool i ) ) _
in probability known asoupling and therefore, the method isT_he Markov chains are assumed to have a unique stationary dis-
called coupling from the pas(CFTP). Initially, it was devel- {ribution denoted byr.

oped for discrete distributions with finite number of states, but

later, it was extended to allow for sampling from continuous [l. CFTP ALGORITHM

state spacesc[12.9].1 ggSalterge}tiye a?proadch to thF§|ICFTmeetr)Qd Coupling

was proposed in , and it is referred to as Fill's perfect re- . L

jection sampling algorithm [9]; as its name suggests, it is based! "€ CFTP algorithm, which is developed by Propp and
on rejection sampling. In contrast to CFTP, it can be interrupt’éﬁ'lson [30], allows for perfect (exact) and independent sam-

efore we proceed, we set some of the notation and recall a
important definitions. The state space on which a Markov
n is defined is denoted k. If the state space is discrete

{T > 0: Pz = 5|2 = ;) > 0} =1.

at any time during the simulation, for example, due to too-lorf§'"9 fro_m a desir(_ed distribution._The sampling i_s ‘mp'emer_“ed
runs, without introducing any bias to the generated samples.?Y "'unning ergodic Markov chains whose stationary distribu-

In a brief time, work on further developments of the proposdiP" IS the desired distribution. The underlying concept of the
methods has picked up, and the whole field, now knowpeas approach mvolvgs running coupled Markov chal_ns that s_tart
fect samplingbecame very popularThe purpose of this paperfrom all the possible initial states. Once gll the chalns meet, i.e.,
is to review some of the basic theory and to present some off@alescethey follow the same path, which implicates that the
relevant developments. A goal too is to bring the area of perféee‘{ect'of |n|t|ql st.ates is worn off. A cr|t|c_alll tool of the method is
sampling closer to the signal processing community, and to tfEUPIing which is an important probability theory concept. We
end, we present two examples of applications of perfect Sa.Hl\ustrate it with a simple example (a similar example appears
pling in signal processing. First, we review the CFTP algorithtf! [35])- )
for discrete state spaces, then briefly describe Fill's interruptible EX@mple 1: Consider a queue that can hold only three
algorithm, and finally explain the CFTP algorithm for continPackets. Assume that at a given time slot, one of the following
uous state spaces. Several important concepts are also desci{lf&§ Possibilities occurs.
in detail. They include chain coupling, which plays a crucial role 1) Only one packet arrives at the queue.
in detecting the moments when the Markov chains have con-2) One or two packets leave the queue.
verged, and monotone and anti-monotone chains, which allow3) No packet enters or leaves the queue.
for easy implementation of the perfect sampling schemes. Ofiee probabilities for a packet arrival, departure of one packet,
of the signal processing examples is on restoration of binaayd departure of two packets are 0.4, 0.4, and 0.2, respectively.
images by a sandwiched CFTP scheme, and its performance ihe state of the queue can be represented by a Markov chain
shown in several scenarios. In the second example, multiusgth a state spacé = {s1, s2, s3, sa} = {0, 1, 2, 3}. The

state diagram of the Markov chain is shown in Fig. 1. Clearly, it
is straightforward to compute various parameters of the queue

2An excellent source of information on the subject can be found on Internét . . - - N
at http://dimacs.rutgers.edu/~dbwilson/exact.html. such as its blocking probability (the probability that it is in
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Fig. 1. State diagram of the Markov chain in Example 1. ®\

state 3) or the probability of the queue being in any other sta @m; R=(0.6, 1
One can compute the stationary probabilities of the chay 1=
solving « from 7P = =, whereP is the transition matrix of

the chain [8]. Here, however, we pretend that we cannot com- Fig. 2. Coupling of the Markov chain in Example 1.

pute these probabilities using an analytical approach and that in- ) ) o
stead, we have to resort to a simulation method based on perf@fples drawn using forward coupling produce a distribution
sampling. The idea is to draw a large number of samples froMhereP(s3) = 0, whereas the correct stationary distribution is
the stationary distribution of the chain and estimate the desired= (14/35, 11/35, 6/35, 4/35).

probabilities.

We need to run four coupled Markov chains starting at

the states of5. A very important component of every perfect The conceptof CFTP introduces a simple butimportant mod-
sampling scheme is its updating function, which must ensuftgation to the forward coupling so that the produced samples of
coalescence. The updating function imadom maghat spec- the modified scheme are perfect. The basic difference between
ifies the next state of the chain as a function of the current stdfe two types of coupling is that with CFTP the Markov chains
and random numbers. The specification is done according to & run from the past (< 0) to the presenti(= 0), and most
transition kernel of the chain. Commonly, for reasons of convénportantly, the samples are always drawn at a fixed time, i.e.,
nience, the random numbers denotedigre generated from att = 0, provided coalescence has occurred at0 or earlier.
a uniform distribution on(0, 1). For our example, we define Now, we explain how CFTP is implemented. Consider an er-
the updating functio®( -, - ) as (1) shown at the bottom of thegodic Markov chain with a discrete and finite state space of size
page, whereR(*+1) is a random number drawn at timer- 1. V. If NV copies of the chain are run, where each copy corre-
Obviously, the updating function (1) is derived from the Marko$pPonds to a different initial state, the chains will eventually co-
chain in Fig. 1 and can be expressed in a different way. alesce and will be stationary by tinte= 0. In that case, the

Fig. 2 shows the trajectories followed by all the chains, whic¥lue of the chains at = 0 is a perfect sample from the sta-

started from every state &. It is important to note that at time tionary distribution. Obviously, it is not feasible to run chains
t + 1, all the chains use the same random numBErY to from the infinite past, and instead, one can use the simple and

make the transition from() to z(**1). Therefore, we say that clever scheme known as CFTP. All thé chains are started at
the chains areoupled As can be seen, the trajectories merge dt = —1 and are checked for coalescence at 0. If coales-
t = 4 and thereafter follow the same pa@oalescenceccurs Ccence occurred, the state of the chairt at 0 is accepted as
because the chains use the same updating rule as shown ingBgmple from the desired distribution. Otherwise, the starting
and the same random numbers for transitions. In this exampig)e is moved back t@" = —2, and the chains are evolved and
the time progresses from present to the future, and thus, mln checked for coalescencetat 0. If coalescence took
coupling is called forward coupling. place byt = 0, the state at = 0 is a sample from the target
As indicated earlier, if coalescence occurs, the effect of théstribution, and if not, the starting time is moved further back
initial state is worn off, which seems to entail that the state #8 7" = —3. The whole procedure is repeated, and a sample is
which coalescence occurs is a valid sample from the desit@@wn if coalescence occurs or the starting time is shifted fur-
distribution. However, this is incorrect, and such scheniBer back. This process continues until coalescence occurs.
would yield biased samples. Bias arises because the time of here are two very important points for the implementation
coalescence does not occur at a fixed time but, rather, at randdinthe CFTP scheme.
times [35]. For the example considered above, coalescencel) Inthe attempts to achieve coalescence, for the transitions

@ R=(0, 0.2)"R=[0.2, 0.4) R =[0.6, 1) @

)
t=2 t=3 1=4 t=5

a[ﬁ' Coupling From the Past

+® -1 if R4+D €[04, 0.6) Az® € {2, 3}
min(z® + 1, 3)  if R €0.6, 1]

never occurs at the statg = 2. Thus, for the states aof, from¢ = ktot = k£ + 1, wherek < 0, one uses
0, if ROHD €10, 0.2) Az® € {0, 1, 2}
1, if R €0,02) Az =3
® —1,0), if R e€[0.2,04
D) _ g (0 pe+D) _ ) max(z , 0), €1[0.2,04) 1
* (“’ » B ) 2® if R4+D €[04, 0.6) Az® € {0, 1} @)
[
[
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run from the infinite past. At tim&’, the chain is in equilibrium,
and its state &, (T’ is a perfect sample from the stationary
distribution. The chain remains in equilibrium beyoiid and
the state at = 0, z(% is also a perfect sample. Note that we do
not know the state of the chain &t and that it does not really
matter because from= 7"to ¢ = 0, the state space of the chain
remains a singleton set. Therefore, we can argue that the sample
, 29 is a result of infinite time simulation, and consequently, it
is a perfect sample from the distributianThe method can thus
be referred to as virtual simulation from timex as it allows us
R=(0, 0.2) = Alo.2, 0.4 R=0.6 1)@ R =[0.6, 1) @ to §gmp!e an infinitely long simulation by reconstructing it over
t-d e s " e 1=0 a finite time interval [7], [22], [36]. Now, we state the theorem
and present its proof [30].
Fig. 3. CFTP of the Markov chain in Example 1. Dotted lines: Trajectories Theorem 1: Let an ergodic Markov chain have a stationary
P s Talsaen s s S . Tarsas distibUtions. Then, a) the CETP algorithm retums a sample i
started afl’ = —4. finite time with probability one, and b) the returned sample is
an exact sample from the stationary distributiaon
Proof:. The proof basically rests on second Borel-Cantelli
lemma [8]. A similar proof has been presented in [5]. Since the
nMarkov chain is irreducible and aperiodic, we can find a finite

the same random number. For example, &Y be the
random number used in the transition frdm= —1 to
t = 0in the first step. In the second step, the starting ti

is T = —2, and there are two transitions. Neverthelesé, > 0 such that

only one new random number is generat&i{"], and L = min{t: Pe® = 22 = ) > 0}, Vy, z€S.

it is used for the transition frofi" = —2to¢ = —1. For

the transition fromt = —1 to ¢ = 0, the “old” random It then follows that each chain has a positive probability of being

numberR(® from the first step is applied. Therefore, inin any state at = L > 0. Define the event’;, = { The
the above scheme, every time the starting time is movéd chains coalesce it—kL, —(k — 1)L)}. Thus, P(Cy) >
back by one time unit, only one new random number is wheree > 0. Moreover, theCy.s are independent because
generated R¥' 1], and it is used in the first transition. coalescence if—kL, —(k — 1) L) depends only on the random
For the remaining transitions, the old random numbers anembers generated within the interval that are independent from
reused. the random numbers generated outside the interval and does not
2) The samples are drawniat 0 only, even if coalescence depend on the initial states. Thus, since
occurred earlier. o
We applied the QFTP algorithm tt_) our exar_nple, and a case Z P(Cy) = o0
of successful drawing of a sample is shown in Fig. 3. As de- P
picted, coalescence did not take place for the starting times

T = —1, —2 and—3. The trajectories of the chains coalescely® conclude by Borel-Cantelli lemma th&(infinitely many
when they were started & = —4, and the coalescence ocCr occur)= 1. The seconq part of the theorem is a consequence
curred att = —2. The trajectory was then completedtat 0, of t.he fact that |f CFTP findgl" to be_ the starting time from
andz = 2 was the drawn sample. which all the trajectories _of the cham coalescetb_yb 0, the_

In summary, the CFTP algorithm can be described in pseuffgurned value of the chain at= 0 is the same as if the chain
code form as follows: was run from¢ = —oo. Hence, this value is a sample from the

target distributionr. O
In the CFTP algorithm given above, the values of
;FL(T)l: T = -—1,-2, -3,... are successively taken as starting
— _

times of the chains. This, however, is not necessary. In fact, any

Repiiil) decreasing sequence Bfis a valid set of starting times of the
R(T) ~ U(0, 1) algorithm. Propp and Wilson recommended the sequence of
ST s starting times given by; = —2'=! (i = 1, 2, 3, ...), which
for f :1 T+ 1; e ’t_ll double at every step [30]. This choice minimizes the worst-case

S — o(sW, RUFY) number of required simulation steps and almost minimizes the
Te—T-1 expected number of steps. The proof of this claim can be found
Until S is singleton. in [30].

Next, we provide a heuristic argument why the CFTP afs- Monotonicity
gorithm returns a perfect sample in finite time. In the sequel, The CFTP algorithm as described above is difficult to mon-
we also present a formal mathematical proof of it. Zebe a itor and is computationally very intensive for problems where
starting time of the CFTP algorithm for which the trajectoriethe Markov chains have large state spaces. Therefore, its practi-
coalesce by = 0. In addition, suppose that the Markov chain igality is quite limited. In some important applications, it may be
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statess3 = 2 andsy = 3. As afinal note, CFTP algorithms that
exploit monotonicity or antimonotonicity of chains are called
sandwiched CFTP algorithms.

I1l. ON SOME FURTHER DEVELOPMENTS OF THE
CFTP ALGORITHM

Fig. 4. State diagram of the Markov chain in Example 2. Here, we address three interesting extensions of the CFTP
algorithm. The first is on a modification of the CFTP that al-
possible to define an updating function that possesses the priogss for running the Markov chain forward in time [37]. The
erty of monotonicity for a partial order imposed on the staigecond is the Gibbs coupler method, which represents an im-
spaceS. As a result, instead of propagating large number glementation of CFTP on binary state spaces and combines the
chains, we would work with only two chains. Assume that thei@FTP scheme with Gibbs sampling. Finally, the third extension
is a partial order: < %3 on the state spacgfor z, ¥ € §. Then, is the method known as dominated CFTP, which provides per-
a mapping function is called monotone if it satisfidge, R) < fect samples of some point processes.
®(y, R), ¥ Rwhenz = 5. Now, denote withy™=* andz™in
the maximum and minimum elements of the state spade- A Read-Once CFTP
spectively, with the partial order™® < x < #™* ¥z, Then, The original CFTP requires that one keep track of seeds of
if there exists a monotone updating functid-, R) for the the random number generator. This may entail either frequent
Markov chain, the use of such a transition rule ensures presemegeneration of the random sampled’ (which sets additional
tion of the same order in all subsequent paths. Therefore, wHine requirements to the system that implements the CFTP)
applying the CFTP algorithm, itis only necessary to monitor tr@f storing the random samplé&*) (which requires additional
two chains whose starting states af&™ andz™"" since allthe memory for storage). It turns out that perfect samples can be
other chains are always sandwiched between them. obtained by coupling from the past without reusing the “old”
Suppose that we impose the partial oreler< s, < s5 < s4 random numbers, that is, by running a read-once stream of
in Example 1. Then, it can be easily verified that the updatifgndom numbers [37]. _ _
function in (1) is monotone, that i€(0, R) < @(1, R) < Before we describe the |mplementat|qn of the read-once
&(2, R) < ®(3, R). Thus, when applying the CFTP schemgFTP, me_thod, recall the following. First, if we apply forward
to Example 1, we need to monitor only the chains that start @@UPIing in the usual way as shown in Section II-B, at some
s; = Oands, = 3. point, coalescence occurs. Second, as already explained, we

In some situations, where a monotone transition rule canri:c?tnnOt assume that the state where coalescence takes place is

be found, it may still be possible to monitor only two paths?_ perfect sample (recall that bias arises in forward coupling).

This can be achieved by the crossover method [15], [21], whicﬁ"rd’ once we knovy that a sample is perfect, the following
T " ) ) ... samples of the chain are also perfect but not independent.
can be applied if the transition rule is antimonotone. A transiti

) : . . For the identification of the independent samples that follow
rule (-, R)is refc_a_rred toas ar_ntn_nonotone if, for a partial ordeé perfect sample on the trajectory of the Markov chain, this
x = v, the. transition rulle Sat'Sf'e@(J_”’ R) = ¢y, R). We procedure runs another Markov chain, which is independent
illustrate this property with the following example. from the first chain

Example 2: Consider Example 1 with the modifications pre- - \yjith these remarks, we retumn to the read-once CFTP proce-
sented by Fig. 4. _ - ~dure and note that it is very important that it is initialized prop-

We may define an antimonotone transition rule, shown in (@}1y. The initialization is carried out by running two independent
at the bottom of the page. Suppose that on the state space ot#igins using forward coupling. When coalescence of the second
Markoy chain, we impose a partial ordey = 52 < 51 < 54. chain occurs, say, at tinte, the coalescence of the first chain is
Then, it can easily be verified that the transition rule defined l3hecked. If the first chain has already coalesceth bthe value
(2) is antimonotone. Thus, the CFTP algorithm can be applieddethe chain at; , for examples;, is stored. This value is a candi-
this chain by keeping track of the trajectories that start only frodate for a perfect and independent sample. If the first chain has
3A setS is partially ordered if and only if it admits a transitive ordering rela—nOt poalesced by timg, the procedure is repe_:ated until the first
tion z < y between some pairs of elementsy so thatz < y. y < = implies  chain has coalesced before the second chain. When this occurs,
@ <z the initialization is completed.

0, if R4+D €10, 0.4) Az® € {0, 1, 2}
1, if R4HD €10, 0.4) Az® =3
z®, if R4+D €[04, 0.6) Az® € {0, 1}
20D = (@ ROy = ¢ 2 if RUD € [0.4.1]Az® =3 (2)
3, if REHD €[04, 08) Az =2
+® 41, if RO ¢ [0.6, 1] A2 € {0, 1}
if ROHD € (0.8, 1) Az® =2
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After initialization, the forward coupling procedure of the twowvhere, as beforelzgt) is a random number drawn from the uni-
chains is again invoked and run independently in parallel. form density on(0, 1).
addition, the trajectory of the first chain started out:&t) = Coalescence occurs if the supports of all e are single-
s; is tracked. When the second chain coalesces, for instanceoais. As in the CFTP method, if coalescence occurs-at0,
t2, coalescence of the first chain is also checked. ifzathe  the singleton supports(® = {5£0>7 s 5}\?} define the gen-
first chain has coalesced, saysat the candidate; is a perfect erated sample. It can be proved that the sandwich distributions
sample. Note that; butnot s, is the perfect sample. However,in (3) and (4) achieve the largest probability of coalescense, and
sy, is a candidate for a perfect sample in the next run. It will beigence, their use leads to the fastest coalescense. It can also be
perfect sample (with prpbability 1/2) if the first chain coalescegown that for problems where monotonicity exists, the Gibbs
before the second chain after they are both restartégd@td .o pler has the same rate of coalescense as CFTP and that it is
run independently. If the first chain does not coalesce befgre equivalent to the sandwiched CFTP algorithm.

at which the second cha_in_coalesce;j,is not accepted as a n summary, the basic Gibbs coupler is given by the following
perfect sample. Instead, it is thrown away, and the two Cha'8§eudo-code'

are restarted at. The sample:(*3) = s; of the trajectory of the

first chain that went through(*>) = s, is the new candidate for

a perfect sample. Gibbs coupler(7):
In terms of memory and time requirements, the read-oncet — —T

CFTP in general is comparable with the standard CFTP. Inwhile ¢ <0

some applications, however, the read-once CFTP is faster ¢ < t+1

than the standard CFTP. Another important advantage of ¢ < 0

the read-once CFTP is that it requires only one sequence of while i <= M

pseudorandom numbers, whereas the standard CFTP needs update S using p(z;|z",. .. a",, xEQl,...,xE\?)

many such sequences. These sequences have to be independent, for all x; € S](t) withj=1,2,...Nandj#1

which is a requirement that. is difficult to gchleve. Infact, the ¢ give of a11 S© fori — 1,2,... M is equal to 1

random sequences in practice may be quite correlated, and that, ¢

affects the quality of the “perfect” samples. return(S©)

else

B. Gibbs Coupler Gibbs coupler(2T).

Recently, a new coupling algorithm has been proposed [16],
18], [19], which we refer to as the Gibbs coupler. An advan- .
Eagla E)f t]he Gibbs coupler over the standard ?:FTP methodqs Dominated CFTP
that it can be applied to large state spaces without the need fobominated coupling from the past (DCFTP) is another
monotone or antimonotone properties of the updating functiomethod that extends the use of CFTP [20], [21]. The CFTP
In [16] and [19], specific algorithms are proposed for Markomethod as defined is only applicable to uniformly ergodic
random fields such ak-colorings, the hard-core model, andviarkov chains. However, if the chains are geometrically
the Potts model. In the following, we describe a general algergodic, which is true for Markov chains that converge to point
rithm for high-dimensional binary spaces. The coupling methgfiocess distributions, the CFTP may not produce samples at

of the Gibbs coupler, as opposed to the CFTP method, is Cogl: To explain the method, we modify Example 1. A similar
ponent based. Suppose that the state of the cHéirhas bi- example is also given in [35].

nary representation given bﬁt)v xé”, vy xﬁ? andlets®) = Example 3: Consider a queue where packets arrive at a rate
{8 s 81 e {—1, 1}M denote the support of®,  \(N(¢)+1)/(N(¢)+2) and leave at a rat¥(¢), whereN (¢) €
whereSi(t), i=1,2,..., Mrepresentsthe support of the comNo, and where the queue may be of infinite size.

ponentz{”. An important ingredient of the method is the con- The objective is to sampléV(t), which is the number
cept of sandwich distributions. They are defined for eveapd ©Of packets in the queue. Note that the proce&g) is not
i=1,2,..., M by time-homogeneous, and thus, CFTP cannot be applied directly.
L(t)(x‘ —1)= min {P (w -1 ‘x(t))} 3) DCFTP overcomes the problem of time inhomogeneity by
L 2V es® ' o using a proces®(¢) that is time homogeneous and dominates
and N(t),i.e.,D(t) > N(t). For the above exampl&)(¢) could be
@/ L a process with a packet arrival rateind a departure rat@(t).
Uiilei=1) = et {P (wz =1 ‘x—7)} @) The process)(t), therefore, can be straightforwardly sampled.
P _ T To use D(t) for sampling N(¢), the two processes must be
® _ s ®  gt-1) (t—1)
where S=; = {87, ..., 71, Siyy 7 - Sy ) IS the oo e since we must ha(f) > N(£). The coupling is

collection of supports 08", ..., 2", 2, ..., 2{]. The achieved as follows: Every arrival of a packetlirt) is also an
update ofSi(t) is then carried out according to arrival in N (t) with probability (N (t—)+1) /(N (t—) +2), and
S _g (5@ R(t)) every departure ifD(¢) is a departure iV (¢) with probability
‘ o N(t-)/D(t-) (note that the notation— meanst — ¢, where
{1}, if R?) < Lgt)(xi =1) € is an arbitrarily small positive number). There are no arrivals
=94 {-1}, if Rz@ > Ui(t)(%‘ =1) (5) or departures inV(t) if there are no associated arrivals or
{—1,1}, otherwise departures irD(t). SinceN (t) is bounded byD(¢) and 0, once
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the value ofD(T'), T < 0 is known, only two chains oN(¢) after T transitions is a candidate for a perfect sample. This
are started: one dY(7") = 0 and the other alv(T') = D(T"). sample is accepted if a second chain started from the maximal
If the two chains coalesce at= 0, the obtained value comesstate and coupled with the time-reversed chain arrives at the
from the distribution ofV (). If they do not coalesce, two newminimal state. Otherwise, the sample is rejected, and a new run
chains are started @&(27") and 0, and so on. For more detailavith doubled? is restarted. More specifically, we can write the

on DCFTP, see [20], [21], and [35]. pseudo code of the algorithm as in the following.
IV. FILL’S INTERRUPTIBLEALGORITHM Fill(T):
In the CFTP algorithm, the running tini& and the returned t ; 0 pmin
—

samplez(?) are dependent random variables. Itis very important x(T)

that the algorithm is run until it returns a sample. If, however, yor=x

the algorithm is interrupted and restarted wheneWes long, ~ "tiie t <71

the generated samples will be biased in favor of those samples t (‘; tt1 (t—1) 1)

that take less time to generate. v 53(_31) , BEY) (t=1) 1) )
Fill developed an algorithm for generation of perfect samples dfﬁf’t)R - 7T€§ﬁ|)¢(?(T_t)’ BY) =)

that can be interrupted at any time, and yet, the samples that are ¥ ©) ‘_n(lli)rgy B )

generated are not biased [9]. This is because in Fill's algorithm,}t ¥~ = ) then

the running time of the algorithm and the returned values are TStWIR <’ as aperfect sample from 7

independent. Fill's algorithm is similar to CFTP in that it uses

max

else

Markov chains to produce perfect samples, but it is based on the Fi11(2T).
idea of rejection sampling instead of ion the concept of coupling. o _
The rejection sampler first takes a proposatom a distri-  From the above pseudo code, it is easy to see:hat is
bution f( - ), and then accepts as a sample from a target dis-9enerated as a proposal frof(™)( |z™>). Therefore, the
tribution 7 with probability () /L f(z), where returned sample:@ will be a perfect sample fromr as long
as P(y(O) — .,L,mlnly(T) — .,L,max7 .’L'(O) — $1111n7 .’L'(T)) —
L > sup m(x) PT) (groin| gmaxy ) p(T) (gmin| (T))  which is demonstrated by
T f(2) the following lemma, which we state without proof.

To illustrate the application of rejection sampling in Fil's Lemma: If 4 is a realization of the reversed monotonic
algorithm, consider an ergodic Markov chain with a stationafjarkov chain constructed as in Fill's algorithm, then
distribution . Assume that for the Markov chain, we can P(y0) = gmin|y(T) = gmax(0) — gmin (1))
define a monotone updating functid(z®, R*+Y), and for . .
the time-reversed Markov chain, a corres i i Ll (T)(xnun|xmax)

, ponding updating = = J
function (z®, RtD), wherez(t=) = &(z®, R-1), P (gmin|z (1)
Then, the partially ordered state-spagepossesses a uniqueFill's original algorithm is designed on finite state spaces and
minimum statez™™ and a unique maximum staté"*, Fur- requires the monotonicity on the transition kernel to be appli-
thermore, letP(-|-) andP( - | -) denote the transition kernelscable. Later, it was extended to infinite state spaces [35] as well
of the two chains, respectively. Recall that time reversibilit§s to antimonotonic systems with infinite state spaces [28]. The
is defined byP(y|z)n(x) = P(z|y)n(y), or more generally, algorithm was also generalized to apply to nonmonotonic and
PO (ylz)r(x) = PO (z|y)n(y), whereP® (y|x) denotes the continuous systems [11].
probability of a transition fromx: to ¢ in ¢ steps. This definition

in conjunction with the monotonic property implies V. PERFECTSAMPLING FROM CONTINUOUS STATE SPACES
() 7 (zin) 7 (gmin) The_ protocol_of CFTP may also be used to construct perfec_t
= < (6) sampling algorithms for continuous state spaces. However, di-

() miny ~ pP(t min = D@ min|max\
Palarn) — PO@mnlz) = PO (amin|eme) rect use of CFTP is prohibitive or impossible because of the un-

Fil's algorithm applies rejection sampling by choosingountable infinite number of states in the state space. It can be
P®(.|z™n) as a proposal density and sets impractical to implement the procedure, and/or the chains will
not coalesce in finite time. To circumvent the problem, a logical
- " I approach is to attempt a design that is based on discretization
P®)(gmin| gmax) of the continuous space. In this section, we restrict our attention
to algorithms for bounded continuous spaces. The extension to
unbounded spaces is done by dominating techniques that are
discussed in Section I1I-C.
m(x) PO (gmin|gmax) In [29], Murdoch and Green have developed several per-
L x PO (g|gmin) = J20) - : (1) fect sampling algorithms for continuous state spaces. They
(i) . . e
include themultigamma couplerthe rejection coupler and

In realizing the above rejection sampler, Fill's algorithm starthie Metropolis—Hastings couple®a common feature of these
from the minimal state of the Markov chain and mallésan- methods is a transition scheme that updates a subset of the
sitions, wherel” is a prespecified value. The value of the chaisupport into a single state. When the union of the subsets equals

7r(‘Tmin)

according to (6). Thus, a proposalfrom P(®)( - | z™m) is ac-
cepted as a sample fromwith probability
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the whole support, discretization of the continuous spacevidiere!( - ) is an indicator function. Furthermore, since the im-

accomplished. ages in reality are often composed of relatively smooth pieces,
Here, we explain the rejection coupler and thereby demosm-smooth prior is chosen as follows:

strate the basic idea. Suppose thét|y) represents the tran-

sition kernel of a Markov chain, whete y € S. In addition,

suppose also thatz|y) = cg(z|y), wherec is a normalizing p(x) xexp | Z Ti% 5 (20)

constant and where insteadidf:|y), g(x|y) is known. We also (i, )

assume that we can determine an upper bounding funktien

on g(x|y) such thaty(z|y) < h(x), Yy € S and that we can where (i, j) indicates all the neighboring pixel pairs in the

sample from the density(z) /v, wherev = [ h(z)dz. There- image that are adjacent in either the vertical or the horizontal

fore, given the statg at timet, a new state at time+ 1 is drawn directions, and3 > 0. The coefficient3 determines the degree

from i(x) /v as a proposal density, and the generated samplef the smoothness in that the larger the valug,dhe smoother

is accepted if the prior. In fact, the prior in (10) is also a simplified Ising
(zly) model, which is a useful Markov random field (MRF) model.
R< gh( z (8) Now, the posterior distribution is readily expressed as
x
where R ~ U(0, 1). We further notice that for the drawn  P(X|y) xp(y[x)p(x)
and R, any statey satisfying (8) would accept the same state NXN
Therefore, by solving (8) w.r.ty whenz and R are given, we x e 3 i+t log((1— e
can identify a subset af that shrinks to a single state This <P |/ % iy +g log((1=p)/p) EZ: it

is the basic idea of the discretization process, which in general
represents coupling of infinite number of states.

The rejection coupler operates as follows. It start$’ at 0
with supportS™? = S. During the update o&(T), first, a
sample and a random number are generated from /v and

[7(0, 1), respectively, and second, given the generated sam . : ) :
and the random number. a subsetf) is determined from L36l- These estimators involve evaluation of the posterior

(8). The procedure is repeated until the union of all the prSl_istribution, which for largeV is a computationally prohibitive
duced subsets equa?’. All the samples: that were drawn task. Alternatively, efficient perfect-sampling algorithms like
from h(-)/v represent the suppof”+1). This support is dis- the sandwiched CFTP can be applied to simulate the posterior

crete and is recorded together with the used random numbéhigiribution. Recall that the sandwiched CFTP requires a
If, at time 0, the number of statesd{? is 1, this single state is Monotonic Markov chain. For this problem, the monotonic
returned as a perfect sample, and the algorithm terminates. Gifain can be realized by the Gibbs sampler. The Gibbs sampler
erwise, the algorithm is restarted at tim@Z’, and it reuses the takes samples from the full conditional distributions which can
recorded random numbers for the updates ftem7 tot = 0. be obtained from (11) as

For problems with large dimensions, Murdoch and Green
proposed componentwise perfect sampling algorithms [29]. Thet.. = 1[X_v, ¥)

11)

To obtain an estimate of the true image, various Bayesian
estimators can be used including the maximanposteriori
P) and the marginal posterior mode (MPM) estimators

main idea of componentwise updating is to reduce the com- -1
plexity of sampling from high-dimensional spaces by applying L

a sequence of lower dimensional samplings. These methods in- — 1+exp _2/32 i+ log((1-p)/pP)y. (12)
herit the framework of the Gibbs sampler while using the per- (4, u)

fect sampling algorithms discussed above as building blocks.

Another componentwise method for sampling from continuo@dP(@u = —1x—u, ¥) = 1 —p(z, = 1lx_y, y), where
distributions was proposed in [27]. w=1,2 ..., N x N,andx_, denotes a vector of all the

components ix, exceptz,,. Accordingly, the updating function

VI. APPLICATIONS IN SIGNAL PROCESSING of the Gibbs sampler is

A. Restoration of Binary Images 2D = (x| RW)
Consider the restoration of a degradédk NV binary image, P L®
whose pixelsx are either black{1) or white (-1). Suppose = { 1_’1 gthRgansg(xu =1kx=,y) (13)

that the original image is contaminated by Bernoulli noise. More
specifically, the Bernoulli noise reverses independently and wit OF . .
probability p the value of each pixel to its complement. Thé/vqwere}? is a sample front/(0, 1). Now, we impose partial

0 ) . . order> on the NV x N binary state space such that> x if
likelihood of observingy whenx is the true image can then . . e

z; = 1 wheneveri; = 1, Vi. We can see that the distribution
be expressed as

NxN (12) is an increasing function of ,, on the partial order. This
ply|x) = H pl(m;#yi)(l _p)I(a:7-=y7-) is equalen_t to saying thazt(x__,,,,, R) = ¢(_x_,uy, R), and the
ol Markov chain so constructed is monotonic. Consequently, two

NxN extreme states on the state space can easily be determined; one
=pN¥N (1 —p)/p}zi H@i=ys) (9) is x™™ when all the pixels are black, and the othexig™™
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true image

*y

g

e

(a) p=0.1, B=0.45 (b) p=0.2, B=0.45 (c) p=0.3, p=0.45

_g

- \Fl

e=0.04834

Fig.5. Image inthe top row is a 64 64 binary image of a panda. The three images in the second row show the degraded image by Bernoulli noises with different
value ofp. The MPM restorations of the degraded images are plotted in the third row. Misclassification aa¢eslso provided for each restored image.

when they are all white. Now, we are able to implement the Ay amplitude of thekth user’s signal,

sandwiched CFTP by tracing two chains started from the twob;, € {—1, 1} bit transmitted by théth user;

extreme states and checking for coalescence=a0. n(t) additive white Gaussian noise with zero
We show the performance of the sandwiched CFTP method mean and variance?;

on a 64x 64 binary image of a panda. Different values were T’ symbol duration.

chosen fop in the three experiments. However, in all the case®/e assume here that all the parameters exceptbibeare

3 = 0.45, and 1000 samples from the posterior distributioknown, and our objective is to estimabe” = [b1bo - bg].
were collected. To recover the true image, MPM estimates wdfeom a Bayesian perspective, the optimum estimat® of
computed by using the obtained samples. In Fig. 5, the trthe set that maximizes the posterior distribution. The solution
image, degraded images, and the corresponding restored imdgads to the maximuna posteriori (MAP) detector. Now, if
are displayed. The misclassification rates in each experiment aominformative prior is chosen fds, the posterior distribution
also provided. The rates are defined as the ratio of incorrectf/b is

restored pixels and the total number of pixels.

, . p(bly(t), t € [0, T7)
B. Multiuser Detection

- 2
Op'gimum multiuser detection is the op.timum solu.tier.l tore- exp b /T _ i Apbisi(t)| dt
covering data transmitted by many users in a code-division mul- 202 Pt
tiple-access (CDMA) system [36]. In this subsection, we present v K
a perfect sampling approach to an approximate solution of op- e
timum multiuser detection. x eXp( <22 Aryrby — Z Z AkAlpklbkbl))
A K-user synchronous CDMA white Gaussian channel can k=1 =1
be modeled as [36] (15)

T .
wherepy; = fo sr(t)s(t) dt represents the crosscorrelation
t) = Z Apbrsi(t) 4+ n(t), te o, 7] (14) between thdcth and thelth signature waveform, angh. =

fo sr(t)y(t) dt is thekth matched filter output. Here, we show
how an eff|C|ent perfect sampling algorithm can be applied to
where calculate the output of the MAP detector.
y(t) received signal; First of all, due to the multidimensionality of the variable
sk (t) antipodal signature waveform of theth space, the Gibbs sampler is particularly preferable for con-

user; structing the Markov chain. The full conditional distributions
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required by the Gibbs sampler are readily derived from tr 10° ' -
posterior distribution (15) as

p(b; = by, y(t), t € [0, T]) Re

-1
K

2
= |1+exp| = | —Aivi+ Z A; Ay pirby (16)
g k=1, koki

. . No interference
fori =1, 2, ... K. Now, if we let3;;, = A; Awp;x, we would
’ Y Pin kPik —— MARP detector

notipe that wherg;, < 0 VL and k, the distributiqn (16).is . ~~~ Marginalized MAP detector
equivalent to (12). Thus, using analogous reasoningasinS 10 ——-  Matched filter

tion VI-A, we can show that in this problem, there is a monc ——  Decorelating detector
tonic Markov chain only wheis;;, < 0 V<, k. Since the am-
plitudes A; of the signals are assumed positive, the conditic . . . .
of B;x < 0 also implies negative crosscorrelation,mf < 0. %% 1 2
Therefore, an efficient sandwiched CFTP can only be applicu

if the crosscorrelations in the CDMA system are only negativeiy . BER of the different methods on a seven-user-equal-power system as
For problems with arbitrary crosscorrelations, an efficient pe#-function of SNR.

fect sampling solution is provided by the Gibbs coupler [18].

An important issue of the Gibbs coupler, as pointed out ifis procedure yields the marginalized MAP estimate of the
Section 11l is the specification of sandwich distributions on thg,nsmitted bits.

full conditional distributions. They are obtained by maximizing \ye present the results of several experiments that demon-
and minimizing (16) on the support bt ;. Here, the maximum gy o146 the performance of the MAP detector. In the first two ex-
and the minimum of (16) with respect ta.; can easily be de- periments, we chose a seven-user system whose common cross-
termined by only checking the sign 6. It thus follows that o rrelation of the spreading code was 0.1. Apparently, there

5 6 7 8 9 10
SNR(dB)

attimet, the sandwich distributions are is no monotonic Markov chain for this system. To compute a
® MAP estimate, 50 samples were collected. In the first experi-
L7 (b =1) ment, bit-error rates (BERs) of both the MAP and the marginal-

-1 ized MAP detectors of the first user were examined under dif-

2 ) ferent SNRs. The results are illustrated in Fig. 6. The results of
= |L+exp| — [~ Aivit S 1Bl Y Buby, the conventional matched filter and the decorrelating detector
kel kel [36] on the same user are also presented. The theoretical per-

formance in the absence of multiuser interference is plotted as a
lower bound. In order to compute the BER at a specific SNR for
Uf”(bi =1) any detector, Monte Carlo trials were performed. The number of
Monte Carlo trials was precomputed by assuring that with the
BER of the lower bound at this SNR, there would be at least 300

and

-1

= |1+exp 32 — Ay — Z | Bk | — Z /Jikbff) errors among the trials. We see that the curves corresponding to
7 kex(? kerly) the MAP and the marginalized MAP detectors are closely in-
tertwined, which indicates similar performance of these detec-
®) . . : tors. However, the BERs of the single-user matched filter and
yvhgreIil L2, Z(S %’, i+1,..., K} contains the the decorrelating detector are larger than those of the two MAP
indices of the elements §b;" },_; ;..; that have not coalescedyetectors, which is more explicitly shown at higher SNRs.
att, andIg) c{1,2,...,i—-1,i4+1,..., K} aretheindices In the second experiment, we introduced a near—far effect

of the remaining elements of the @ét)}{;17k¢i that have into the system where different energy levels were assigned
coalesced at. According to the algorithm then, at anythe to the seven users. Specifically, the three largest energy levels
support of theith component is updated according to (5), andiere 5 dB higher, and the three middle energy levels were 3
the coalesced stateiat 0 is recorded as a perfect sample frontlB higher than the smallest energy level, respectively. BERs of
the posterior (15). the MAP and the marginalized MAP detectors of the user with
Suppose that the desired number of sample¥.i©OnceN the smallest energy are plotted versus SNR in Fig. 7. Again,
samples are acquired, the MAP estimate is computed. Thereweenotice that the two MAP detectors have very similar perfor-
several approaches to find the MAP estimate. For instance, thance. For comparison, the results of the single-user matched
posterior probability of each perfect sample is computed, afifer and the decorrelating detector are also presented. As ex-
the MAP estimate is the one that has the largest posterior praected, the performance of the matched filter degrades dramati-
ability. As an alternative, one can consider the samples of eadily, whereas, due to resistance to near-far effect [36], the per-
b;,fori =1, 2, ..., Nindependently. Inthis case, the MAP esformance of the decorrelating detector remains the same as that
timate ofb; is set to be the sample that appears most frequenily.the first experiment. However, at every tested SNR, the two
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No interference
MAP detector
Marginalized MAP detector
Matched filter

Decorelating detector

-4 L L L L L L L L L

5
SNR(dB)

Fig. 7. BER of the user with smallest amplitude level as a function of SN
There were seven users with different amplitude levels.
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higher SNRs, the single-user matched filter and the decorre-
lating detector performed rather poorly.

VII. CONCLUSIONS

In this paper, we reviewed algorithms for perfect sampling
and showed examples of its use in signal processing. The em-
phasis in the review was given to CFTP and some of its exten-
sions as well as to Fill's interruptible algorithm. It should be
noted that there are also other Markov chain based approaches
to perfect sampling [1], [3], [23], [26], [31]. A new interrupt-
ible perfect sampler not based on Markov chains and called the
randomness recycler is presented in [10]. Many of the perfect
sampling methods, however, are not very practical, and there-
fore, their impact on many applied fields has been limited. This
is particularly true when sampling has to be performed on con-
tinuous state spaces. In our examples, for instance, some of the
R/ariables, like the Bernoulli probabilityand the Gaussian noise
variances?, which are both continuous variables, were assumed
known. In practice, this is rarely the case, but here, we had to as-

No interference
MAP
Marginalized MAP
Matched filter
Decorelating detector

10
(1]

Fig. 8. BER of the different methods on a 15-user-equal-power system as a
function of SNR. 2

MAP detectors outperform both the decorrelating detector and?3l
the matched filter. Furthermore, the BERs of the two MAP de-
tectors in this experiment are also smaller than those in the firs{4]
experiment. This is a notable feature of the optimum detectorstS]
and it is due to the increased energy level of the other users:
Note that the matched filter and the decorrelating detector do notse]
have this feature. This observation indicates that the two MAP
detectors by the Gibbs coupler correctly represent the optimunm
detectors.

Finally, in the third experiment, a more realistic scenario was €]
simulated, in which a 31-bit Gold sequence was used as th
spreading code for a 15-user system. We assumed that all users
were with equal power. To compute a MAP estimate for thig10]
experiment, 200 samples were used. The BERs of the MAP der,;
tectors, the matched filter, and the decorrelating detector were
calculated on the system, and the results are depicted in Fig. 8.
We can see that the MAP detectors have a similar performancgy,
which is very close to the lower bound. On the other hand, for

sume them as known because it would have been very difficult
to obtain perfect samples jointly with the available algorithms.
Another important weakness of the current perfect algorithms
T T m _ is that they cannot meet deadlines. This implies that in theory,

o they cannot be used for sequential signal processing. In the near
future, this may change, and with advances in the theory and
practice in the field, perfect sampling algorithms may become a
standard tool for researchers in many disciplines. One such dis-
cipline will certainly be statistical signal processing.
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