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We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS), for
joint estimation and decoding of space-time trellis codes (STTC). First, we provide background on SIS, and then we discuss its
application to space-time trellis code (STTC) systems. It is shown through simulations that SIS is suitable for joint estimation and
decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs
and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the
design is valid.
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1. INTRODUCTION

Space-time coding (STC) originally introduced by Foschini
[1] and further developed by Tarokh et al. in [2] provides
a framework for exploiting spatial and temporal diversity to
increase data rate in wireless communications. A general in-
troduction of space-time coding can be found in [3]. Among
families of space-time codes, we are interested in STTCs be-
cause of their many advantages over block STCs as pointed
out in [2].

It is generally assumed that STCs will be used in fading
environments, and therefore in decoding it is necessary to
obtain channel state information (CSI), that is, estimate of
the fading coefficients of the channel. In the literature, most
of the time it is assumed that CSI becomes available through
sending pilot sequences periodically from the transmit to the
receive side. When CSI is not available, we have to estimate
the channel, and that presents many challenges because the
wireless channel may vary with time or frequency or both,
and in systems with multiple transmit and receive antennas,
many channels need to be estimated. Some design efforts
have been directed to the construction of STCs which al-
low for circumventing channel estimation such as the unitary
ST-modulation scheme discussed in [4] or differential space-
time modulation considered in [5]. An interesting Kalman

filter space-time algorithm for joint estimation and decoding
of Alamouti’s block ST code [6] was proposed in [7], where
Kalman filtering is used for tracking the channel. We have not
seen similar work for STTCs. Here we consider the problem
of joint channel estimation and decoding of STTCs when no
pilot signal is available and the channel is modeled as time-
varying flat-fading channel. Because STTCs use complicated
modulation schemes, the observation at the receive side may
not be a linear function of the transmitted data. Also, the CSI
is hidden in the observation, and it is hard to use conven-
tional methods like the Kalman filter to solve this problem.
In this paper, we address joint estimation and detection of
STTC by the sequential importance sampling (SIS) method
combined with Kalman filtering.

The following text is a brief summary of SIS. The statisti-
cal property of many parameters in communication prob-
lems, like the fading coefficients in flat-fading channels,
channel impulse response in frequency selective fading chan-
nels, and the trellis coded user data can be characterized by
hidden Markov processes (HMPs). Consequently, many sys-
tems, including STTC systems, can be described adequately
by dynamic state space models (DSSMs) [8, 9], which use
state equations for describing the dynamics of the HMPs
{xt} of interest, and observation equations for representing
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the observations {yt} as functions of {xt}. In the Bayesian
framework, all information about the unknowns {xt} is in-
cluded in the posterior distribution, p(x0, . . . , xT |y0, . . . , yT),
up to time T , from which the marginalized posterior dis-
tribution of interest, p(xt |y0, . . . , yT) for all t ≤ T , can be
derived. However, the posterior density is usually high di-
mensional, and it is hardly ever possible to find the analyt-
ical expression for the density function, let alone to evaluate
it. Due to the properties of the HMP, the posterior distribu-
tion, p(x0, . . . , xT |y0, . . . , yT), can be factored in many ways
and each term after the factorization may be evaluated indi-
vidually. For example, if the posterior density is written as

p
(

x0, . . . , xT |y0, . . . , yT
)

∝ p
(

x0, . . . , xT−1|y0, . . . , yT−1
)
p
(

yT |xT−1
)
,

(1)

this factorization provides a way to evaluate the desired pos-
terior density recursively. However, except in the few special
cases like in the linear Gaussian DSSM when Kalman filter-
ing can be applied, there is usually no analytical solution
to evaluate it recursively. Recently, a variety of Monte Carlo
sampling methods, like importance sampling, Markov Chain
Monte Carlo (MCMC) including Gibbs sampling [10, 11,
12], have revived Bayesian signal processing with their ability
to sample from highly complicated probability density func-
tions and thereby allowing for the computation of complex
high dimensional integrals. In the literature, SIS [13, 14, 15],
was introduced for solving problems that can be described by
DSSMs without the strict restrictions imposed by the Kalman
filter. In communications, SIS methods have been used for
blind detection of user data [16, 17, 18]. Because there are
no mathematical approximations of the model, SIS methods
are found to perform better than traditional methods like the
Extended Kalman Filter (EKF) [19, 20] or the Gaussian Sum
Filter (GSF) [21]. It should be noted, however, that the sam-
pling based methods use approximations too in that they ap-
proximate relevant densities with samples from these densi-
ties. The good performance, versatility, and the potential for
implementation in VLSI make SIS methods very attractive.

This paper is organized as follows: Section 2 introduces
the basic concept of SIS, where many aspects of SIS are dis-
cussed. Section 3 elaborates the application of SIS to the joint
estimation and decoding of STTCs. In Section 4, we analyze
the problem of phase ambiguity and find that when the chan-
nel is temporally correlated, it is possible to design ST cod-
ing schemes that alleviate phase ambiguity. There we pro-
pose an ad hoc space-time coding scheme, which is effective
in combating phase ambiguity. Simulations are presented in
Section 5, and in Section 6, conclusions are drawn.

2. SEQUENTIAL IMPORTANCE SAMPLING

In this section, we provide some background of SIS and the
important special case of mixture SIS and Kalman filtering,
which is suitable for joint estimation and decoding of STTCs
in a time-varying flat-fading environment.

The SIS algorithm is applicable to systems that can be
described by DSSMs which consist of state and observation

equations, that is,

xt = f
(

xt−1,ut
)
, yt = g

(
xt , vt

)
, (2)

where f (·) is the state transition function, which defines how
the state vector xt evolves with time based on the previous
state vector xt−1 and the input noise vector ut at time t, and
g(·) is an observation function of xt and the observation
noise vector vt. We can see that the state transition function
defines a Markov process because, given the previous state
vector xt−1, the current state vector is no longer dependent
on other previous state vectors or observations. Note that the
state vector is not observed directly, and therefore the model
describes an HMP.

From Bayesian perspective, all information about the
state vectors is contained in the full posterior density
p(x0:t |y0:t) from which the filtering density p(xt |y0:t) and the
smoothing density p(xt |y0:T) for all t < T can be obtained.
Here, x0:t = {x0, . . . , xt} is the set of all state vectors from
time 0 to time t, and y0:t is defined similarly. When the full
posterior density is available, the expected value of any func-
tion of the state vectors, ξ(x0:t) can be evaluated by

Ex0:t |y0:t

(
ξ
(

x0:t
))

=
∫
ξ
(

x0:t
)
p
(

x0:t |y0:t
)
dx0:t . (3)

If a DSSM is linear and Gaussian, that is, both the state transi-
tion and the observation functions are linear and both noise
vectors ut and vt are Gaussian, the full posterior density of
interest, p(x0:t |y0:t), can be obtained using the Kalman fil-
ter. In other cases, if the DSSM is not linear and Gaussian,
approximations to the model must be made before apply-
ing the Kalman filter. Because of these approximations, the
performance of the Kalman filter is limited. On the other
hand, SIS can be used in such cases as discussed in [13, 16].
With SIS, the goal is to generate samples from p(x0:t |y0:t) that
are used for computation of statistical expectations as in (3).
However, it is generally hard to draw samples directly from
the posterior distribution, p(x0:t |y0:t), and instead, the im-

portance sampling method is employed. Samples, {x( j)
0:t }Jj=1,

where j = 1, 2, . . . , J is a sample index, are generated from
a proposal density function π(x0:t |y0:t), and subsequently
they are weighted according to the real posterior distribu-
tion p(x0:t |y0:t). The weight of a particular sample is given
by

w
( j)
t =

p
(

x( j)
0:t |y0:t

)
π
(

x( j)
0:t |y0:t

) . (4)

The expectation in (3) is then approximated using Monte
Carlo integration, that is,

Êx0:t |y0:t

(
ξ
(

x0:t
))

=
1
Wt

J∑
j=1

ξ
(

x( j)
0:t

)
w

( j)
t , (5)

where Wt =
∑J

j=1 w
( j)
t is the sum of the unnormalized

weights. In the literature, the weighted sample (x( j)
0:t , w

( j)
t ) is



Joint Estimation and Decoding of Space-Time Trellis Codes 307

also called a particle, and sometimes SIS is referred to as par-

ticle filtering. Note that in this paper, x( j)
t is called a sample

element.
An interesting characteristic of the full posterior density

function at time t is that it can be factored as a product of the
full posterior density of the previous time instant t−1 and an
incremental term,

p
(

x0:t |y0:t
) ∝ p

(
x0:t−1|y0:t−1

) × p
(

yt |xt
)
p
(

xt |xt−1
)
. (6)

If the incremental term p(yt |xt)p(xt |xt−1) can be evaluated at
each time instant, we can obtain the full posterior density re-
cursively. If the importance function is chosen in the form of

π
(

x0:t |y0:t
)
= π

(
x0:t−1|y0:t−1

)
π
(

xt
)
, (7)

we can derive an SIS algorithm which allows us to draw sam-
ples and evaluate their weights recursively. Suppose that we

have obtained the sample set {x( j)
0:t−1}Jj=1 properly weighted

with respect to p(x0:t−1|y0:t−1) from previous recursions.
Then at time t for the jth sample, we

(1) draw a new sample element x( j)
t from the incremental

proposal density π(xt),

(2) append the new sample element x( j)
t to x( j)

0:t−1 and ob-

tain the new sample x( j)
0:t , and

(3) evaluate the weight for the new sample x( j)
0:t according

to (4), that is,

w
( j)
t =

p
(

x( j)
0:t |y0:t

)
π
(

x( j)
0:t |y0:t

)

=
p
(

x( j)
0:t−1|y0:t−1

)
p
(

yt |x( j)
t

)
p
(

x( j)
t |x( j)

0:t−1

)
π
(

x( j)
0:t−1|y0:t−1

)
π
(

x( j)
t

)

= w
( j)
t−1

p
(

yt |x( j)
t

)
p
(

x( j)
t |x( j)

t−1

)
π
(

x( j)
t

) .

(8)

The same procedure is repeated for all J samples. The path
that each sample takes is also called a trajectory and so there
are totally J trajectories when running the SIS algorithm.
Note that the incremental proposal density function π(xt) is
simply referred to in the literature as the proposal density
function or importance function.

Next question of interest is the selection of the impor-
tance function, π(xt). First of all, π(xt) must have appro-
priate support. Second, we should be able to draw samples
from π(xt), and third, π(xt) should be easily computable.
There are many choices, two of which are the prior den-
sity function p(xt |xt−1) and the so-called “optimal” proposal
function p(xt |x0:t−1, y0:t). Intuitively, good proposal func-
tions take into account all the available observations and past
state vectors.

The optimal importance function is proportional to the
product of two density functions,

p
(

xt |x( j)
0:t−1, y0:t

) ∝ p
(

yt |xt
)
p
(

xt |x( j)
t−1

)
(9)

and after obtaining the new sample element x( j)
t , its weight

x( j)
0:t is assigned using (8)

w
( j)
t = w

( j)
t−1

p
(

yt |x( j)
t

)
p
(

x( j)
t |x( j)

t−1

)
p
(

x( j)
t |x( j)

0:t−1, y0:t
)

= w
( j)
t−1p

(
yt |x( j)

t−1

)
.

(10)

We can see that to compute w
( j)
t from w

( j)
t−1, we need to eval-

uate an integral because

p
(

yt |x( j)
t−1

)
=
∫
p
(

yt |xt
)
p
(

xt |x( j)
t−1

)
dxt . (11)

If xt is defined on a finite discrete space, there would be no
problem in computing (11) when the size of the space is small
because the integration simply becomes a sum of small num-
ber of proposal densities. When xt is defined on an infinite
discrete space or continuous space, there is in general no an-
alytical solution to (11).

2.1. Mixture SIS and Kalman filtering

An important special case of SIS is when the state vector can
be partitioned into two parts, where one of them is condi-
tionally linear and Gaussian given the other part. For exam-
ple, in wireless communications with flat fading, the obser-
vation is the product of the sent user signal and the fading
coefficients embedded in additive noise. The state vector xt

contains two parts (ht , st), where ht is the state vector of the
fading coefficients (channel state vector) and st is the user
state vector. The user state vector and channel state vector
can all be modeled as HMPs, that is,

st = z
(

st−1, dt
)
, (12)

ht = Fht−1 + Eut , (13)

where dt is the user data input at time t, z(·) is the state tran-
sition function of the user state vector, and E is a known ma-
trix. The observation equation can be written as

yt = C
(

st
)

Rht + vt , (14)

where C(·) is a matrix coding and modulation function of
the communication system and R is another known matrix
of model coefficients (their meaning will be explained in the
sequel). Given st, the DSSM is linear and Gaussian in ht, that
is, both noise vectors ut and vt are complex Gaussian and
the state transition and observation functions are linear and
are described by the state transition matrix F and matrix R.
Note that in most cases, one can find the unique inverse func-
tion of the state transition function of the user state vector,
dt = z−1(st , st−1), and then the inference of d0:t can be derived
from s0:t. Here the posterior density of interest is p(s0:t|y0:t),
and when applying the SIS algorithm, the optimal proposal

density for the jth sample is p(st |s( j)
0:t−1, y0:t), which can be ex-

panded according to
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p
(

st |s( j)
0:t−1, y0:t

) ∝ p
(

yt |st , s( j)
0:t−1, y0:t−1

)
p
(

st |s( j)
t−1

)

∝
[ ∫

p
(

yt |st ,ht
)
p
(

ht |s( j)
0:t−1, y0:t−1

)
dht

]

× p
(

st |s( j)
t−1

)
.

(15)

Given all the past user data s( j)
0:t−1, the DSSM defined by (13)

and (14) becomes linear Gaussian for the channel state vec-
tor ht, and therefore the density function p(ht |s( j)

0:t−1, y0:t−1)
can be evaluated using the predictive step of Kalman fil-
tering in terms of its mean and variance. In turn, because
p(yt |st ,ht) is a Gaussian function, the integration in (15) can
be carried out analytically. In essence, when the state vec-
tor is composed of two parts, we integrate out the part that
we are not interested in. This method is referred to as Rao-
Blackwellization in [22].

Based on this line of reasoning, a mixture of SIS and
Kalman filtering algorithm was developed in [16]. Sup-
pose that at time instant t for the jth trajectory, we have
obtained from previous recursions via Kalman filtering
and SIS the posterior estimate of the channel state vector

p(ht−1|s( j)
0:t−1, y0:t−1) and s( j)

0:t−1 weighted according to the pos-
terior distribution p(s0:t−1|y0:t−1). The following steps are
then performed:

(1) predict the current channel state vector using the
Kalman filter based on the previous sample and all

available observations, that is, find p(ht |s( j)
0:t−1, y0:t−1)

based on p(ht−1|s( j)
0:t−1, y0:t−1) and (13);

(2) sample from the posterior distribution p(s0:t |y0:t) us-
ing importance sampling. The optimal importance

function p(st |s( j)
0:t−1, y0:t) is given by (15);

(3) the weight of the drawn samples is computed by (11),
which involves integration. Note that, the transmitted
user signals belong to a finite signal set � and the in-
tegration becomes a summation, or

w
( j)
t ∝ w

( j)
t−1

∑
st

p
(

yt |s( j)
0:t−1, y0:t

)
; (16)

(4) compute the posterior probability of the channel state

vector p(ht |s( j)
0:t , y0:t) using the Kalman filter.

2.2. Delayed estimates

When there exists channel coding or Inter Symbol Inter-
ference (ISI), future observations, too, contain information
about the current state vector. In such cases, a delayed esti-
mate will be more accurate. There are two methods pertain-
ing to delayed estimation, one of which is the delayed weight
method and the other, the delayed sample method [16]. In
the following discussion, first we assume that the only un-
known portion of the state vector is the user state vector,
which belongs to a finite discrete space, that is, st ∈ �.

The distribution function of interest of the delayed
weight method is p(st|y0:t+q). It can be obtained through
marginalizing the full delayed posterior distribution,
p(s0:t+q|y0:t+q). If at time t + q, we have obtained samples

{s( j)
0:t+q}Jj=1 appropriately weighted with weights {w( j)

t+q}Jj=1,
the full posterior distribution at t + q is approximated by,

p̂
(

s0:t+q|y0:t+q
)
=

J∑
j=1

w
( j)
t+qIs( j)

0:t+q

(
s0:t+q

)
, (17)

where I(·) is an indicator function which equals to 1 when

s( j)
0:t+q = s0:t+q. Similarly, the distribution function of interest

can be approximated as

p̂
(

st |y0:t+q
)
=

J∑
j=1

w
( j)
t+qIs( j)

0:t+q

(
st
)
. (18)

The second method of delayed estimation comes from
the observation that we can improve sampling efficiency by
incorporating future observations to the proposal distribu-

tion, which becomes p(st|s( j)
0:t−1, y0:t+q). This proposal distri-

bution can be expanded according to

p
(

st |s( j)
0:t−1, y0:t+q

)
∝ p

(
st |s( j)

0:t−1, y0:t−1
)
p
(

yt:t+q|s( j)
0:t−1, st , y0:t−1

)
= p

(
st |s( j)

t−1

) ∑
st+1:t+q∈�q

p
(

yt:t+q|st+1:t+q, st , s( j)
0:t−1

)

× p
(

st+1:t+q|st
)

= p
(

st |s( j)
t−1

)
p
(

yt |st
)

×
∑

st+1:t+q∈�q

[ q∏
l=1

p
(

yt+l|st+l
)
p
(

st+l|st+l−1
)]
.

(19)

The evaluation of this proposal density is quite complex be-
cause in essence, the algorithm is propagated for all possible
future state vectors from t + 1 to t + q and then marginalized
for st. If the state vectors are continuous, the summation will
become integration in (19) and in most cases there will be no
analytical solution.

The delayed proposal distribution also needs to be
weighted according to the desired posterior distribution
p(st |y0:t+q), or

w
( j)
t =

p
(

s( j)
0:t |y0:t+q

)
π
(

s( j)
0:t−1|y0:t+q−1

)
p
(

s( j)
t |s( j)

0:t−1, y0:t+q
)

∝ w
( j)
t−1

∑
st:t+q∈�q+1 p

(
yt:t+q|st:t+q

)
p
(

st:t+q|s( j)
0:t−1

)
∑

st:t+q−1∈�q p
(

yt:t+q−1|s( j)
t:t+q−1

)
p
(

st:t+q−1|s( j)
0:t−1

) ,
(20)

where the denominator can be expanded as

∑
st:t+q−1∈�q

p
(

yt:t+q−1|s0:t+q−1
)
p
(

st:t+q−1|s( j)
0:t−1

)

=
∑

st:t+q−1∈�q

[ q−1∏
l=1

p
(

yt+l|st+l
)
p
(

st+l|st+l−1
)]

× p
(

yt |st
)
p
(

st |s( j)
t−1

)
.

(21)
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User data
s0, . . . , st

Space-time
trellis

encoder

c1(st)

...

cN (st)

T Antenna 1

T Antenna N

× +

α11,t v1,t

×

αN1,t

R Antenna 1

R Antenna N

Figure 1: STTC system.

Now we assume that the channel state vector is also un-
known and the two parts of the state vector are condition-
ally Gaussian. Then the proposal distribution for the delayed
sampling method can be derived similarly as the one of the
non-delay case, and it results in

p
(

st |s( j)
0:t−1, y0:t+q

)
=

∑
st+1,t+q∈�q

p
(

st , st+1:t+q|s( j)
0:t−1, y0:t+q

)
. (22)

The term inside the summation in (22) can be further ex-
pressed as

p
(

st , st+1:t+q|s( j)
0:t−1, y0:t+q

)
∝ p

(
yt+q|st+1:t+q, st , s( j)

0:t−1, y0:t+q−1
)

× p
(

st , st+1:t+q|s( j)
0:t−1, y0:t+q−1

)

=
[ ∫

p
(

yt+q|st+q,ht+q
)

× p
(

ht+q|st+1:t+q, st , s( j)
0:t−1, y0:t+q−1

)
dht+q

]

× p
(

st , st+1:t+q|s( j)
0:t−1, y0:t+q−1

)

=
q∏
l=0

[ ∫
p
(

yt+l|st+l ,ht+l
)

× p
(

ht+l|st+1:t+l , st , s( j)
0:t−1, y0:t+l−1

)
dht+l

]

× p
(

st , st+1:t+q|s( j)
0:t−1, y0:t−1

)
.

(23)

The probability density function of the channel state
p(ht+l|st+1:t+l , st , s( j)

0:t−1, y0:t+l−1) can be obtained using the pre-
diction step of Kalman filtering if the channel state is Gaus-
sian. The prediction can give the mean and covariance matrix
of the channel state, and the integral
∫
p
(

yt+l|st+l ,ht+l
)
p
(

ht+l|st+1:t+l , st , s( j)
0:t−1, y0:t+l−1

)
dht+l (24)

can be readily evaluated. The weights of the samples are ob-
tained similarly as in (20). Based on these derivations, an al-

gorithm was developed for the online estimation of user data
using the delayed sample method when the state vector can
be partitioned into two parts. The details of the algorithm
can be found in [16]. The complexity of the algorithm is pro-
portional to the size of the set �q. If the size of the set is mod-
erate, the algorithm is still practical; otherwise, the algorithm
is just too computationally intensive to be applied.

3. APPLICATION OF SIS ON JOINT ESTIMATION
AND DECODING OF STTCs

In Section 2, we showed that the SIS algorithm can be used
for systems described by DSSMs, and when the state vector
consists of two parts, that the mixture SIS and Kalman filter-
ing algorithm can be applied. Therefore, to use the SIS algo-
rithm, first we try to represent the STTC system as a DSSM.

Suppose that a communication system employs N trans-
mit and M receive antennas as in Figure 1. A sequence of user
data symbols, s0, . . . , st , where st ∈ �, is put through a trellis
space-time encoder. The new state vector of the trellis space-
time encoder at time t is determined according to the state
transition equation st = z(st−1, st), where st−1 is the previous
state, and st is the new user state. For example, in the case
of delayed diversity STTC, the state vector simply consists of
the last two user symbols, sTt = [st, st−1]. Based on the current
state vector, the space-time encoder then generates a set of N
symbols, cT(st) = [c1(st), . . . , cN (st)], to be transmitted by N
antennas where ci(·) denotes the code and modulation func-
tion of the ith antenna. Suppose αnm,t is the fading coefficient
from the nth transmit antenna to the mth receive antenna at
time t. When assuming ideal timing and frequency informa-
tion, the received signal in the flat fading environment at the
mth antenna can be written as

ym,t =
N∑
n=1

αnm,tcn
(

st
)

+ vm,t, m = 1, 2, . . . ,M, (25)

where vm,t ∼ �c(0, σ2
vm) is a complex Gaussian process pres-

ent at the mth receive antenna. Let αm,t = [α1m,t · · ·αNm,t]T
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represent the set of channel states from all transmit anten-
nas to the mth receive antenna. If we arrange all the channel
states at time t into a single NM × 1 vector αt = [α1,t · · ·αM,t],
all the received signals at time t can be written in the vector
form as

yt = C
(

st
)
αt + vt , (26)

where yt = [y1,t · · · yM,t]T is the received signal vector, and
vt = [v1,t · · · vM,t]T is the noise vector. The code and modula-
tion matrix is an M ×NM matrix of the form

CT(st
)
=




c(st) 0 · · · 0
0 c(st) · · · 0
...

...
...

...
0 0 · · · c(st)


 . (27)

Note that here 0 is an N × 1 all-zero vector. This somewhat
odd matrix representation is selected to simplify the descrip-
tion of our joint estimation and decoding algorithm.

The fading coefficients from the nth to the mth antenna
can be modeled as an ARMA process to match the power
spectral density of the channel [16]. An ARMA(r1, r2) pro-
cess can be represented as

αnm,t + φ1αnm,t−1+ · · · + φr1αnm,t−r1

= ρ0unm,t + · · · + ρr2unm,t−r2 ,
(28)

where unm,t is a unit variance i.i.d. complex Gaussian process
that drives the ARMA process, and {φi} and {ρi} are known
auto-regressive (AR) and moving-average (MA) coefficients.
In order to represent the ARMA process as a DSSM, we as-
sume equal orders of the AR and MA parts of the model, that
is r1 = r2 = r. Otherwise, we make the orders equal with zero
padding. The ARMA process can be described as a DSSM if
we introduce hnm,t = [hnm,t, . . . , hnm,t−r]T as the state vector
of dimension r + 1 for the AR part of the ARMA model (see
the appendix for more detailed information). The state tran-
sition equation is in the form of

hnm,t = Φhnm,t−1 + eunm,t, (29)

where

Φ =



−φ1 −φ2 · · · −φr 0

1 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0


 , e =




1
0
...
0


 . (30)

The observation equation of the ARMA DSSM is αnm,t =
ρThnm,t, where ρ is a vector of known MA coefficients, that
is, ρT = [ρ0, ρ1, . . . , ρr].

Considering all the fading coefficients involved, one can
represent the whole system in a compact DSSM form given
by

ht = Fht−1 + Eut , αt = Rht , (31)

where ht = [h11,t , . . . ,hN1,t , . . . ,h1M,t, . . . ,hMN,t]T is the ex-
tended state vector. The other symbols, R, F, E, in the above
equations are defined similarly (see the appendix).

Now the received signal vector can be written as

yt = C
(

st
)

Rht + vt . (32)

3.1. Mixture Kalman filtering and sequential
importance sampling for STTC

We have represented the STTC system by a DSSM, and we
notice that the state vector consists of two parts. One part
is the user state vector st, and the other is the channel state
vector ht, which is linear Gaussian given st. Consequently,
the mixture SIS and Kalman filtering algorithm can be ap-
plied. Define the set of all received signals at time t as y0:t =
{y0, y1, . . . , yt}, and define s0:t and h0:t similarly. Our goal is
to sample from the posterior distribution p(s0:t |y0:t). The al-
gorithm for doing it is summarized as follows: for the recur-
sion of the jth sample at the tth time instant:

(1) sample from the optimal proposal distribution follow-
ing (15). In the case of STTC, the proposal distribution

for st = ai ∈ � or equivalently st = z(ai, s( j)
t−1) can be

obtained by

π
( j)

t,st=z(ai,s
( j)
t−1)

= p
(

st |s( j)
0:t−1, y0:t

)

∝
∫
p
(

yt |st ,ht
)
p
(

ht |s( j)
0:t−1, y0:t−1

)
dht

× p
(

st |s( j)
t−1

)
.

(33)

In the above equation, the term p(ht |s( j)
0:t−1, y0:t−1) ∼

�c(µĥt
,Σĥt

) is calculated via the prediction step of
Kalman filtering given the previous elements of the
jth sample s0:t−1. Then we can find that the likelihood

p(yt |st ,ht) ∝ �c(µ
( j)
y,t ,Σ

( j)
y,t ) in terms of its mean and

covariance matrix

µ
( j)
y,t = C

(
st
)

Rµĥt
,

Σ
( j)
y,t = C

(
st
)

RΣĥt
RHC

(
st
)H + Qv.

(34)

Here, Qv is the covariance matrix of the received noise
vector of dimension M ×M. At the end of this step, we

have the jth sample as s( j)
0:t and π

( j)

t,st=z(ai,s
( j)
t−1)

for ai ∈ �;

(2) compute the weight of the jth sample according to
(16);

(3) update the estimate of the channel state vector proba-
bility given the new observation yt and the new sam-

ple s( j)
0:t to prepare for the next round of estimation

using the Kalman filter. It is easy to verify that the pos-
terior density of the channel state is proportional to
the product of the likelihood and the predictive chan-
nel density

p
(

ht |y0:t , s0:t
) ∝ p

(
yt |ht , st

)
p
(

ht |y0:t−1s0:t−1
)
. (35)
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The predictive density of the channel state vector is

Gaussian, that is, �c(µ
( j)

ĥt
,Σ

( j)

ĥt
). The likelihood func-

tion is proportional to a Gaussian with mean and co-
variance given by (34), and the posterior density of the
channel state vector is a complex Gaussian distribution
with mean and covariance

µht

(
s( j)

0:t

)
= µ

( j)

ĥt
+ K

[
yt − C

(
s( j)
t

)
Rµ( j)

ĥt

]
,

Σht

(
s( j)

0:t

)
= Σ

( j)

ĥt
− KC

(
s( j)
t

)
RΣ( j)

ĥt
,

(36)

where

K = Σ
( j)

ĥt
RHC

(
s( j)
t

)H

×
[
C
(

s( j)
t

)
RΣ( j)

ĥt
RHC

(
s( j)
t

)H + Qv

]−1 (37)

and (·)H stands for Hermitian transpose. Note that

C(s( j)
t ) need not be full rank to ensure the existence

of the matrix inversion in (37). Equation (37) is equiv-
alent to the Kalman filter equations and K is analogous

to the Kalman filter gain when the code matrix C(s( j)
t )

is known;
(4) predict the channel state vector for the next time in-

stant and calculate the mean and covariance matrix of
the prediction. The mean vector and covariance ma-
trix are

µĥt+1

(
s( j)

0:t

)
= Fµht

(
s( j)

0:t

)
,

Σĥt+1

(
s( j)

0:t

)
= FΣht

(
s( j)

0:t

)
FH + EQuEH.

(38)

Here Qu is the NM × NM covariance matrix of the
complex Gaussian noise process that drives the ARMA
process of the fading coefficients;

(5) draw inference about the transmitted data. According
to [16], the a posteriori symbol probability is estimated
by

p
(
st = ai|y0:t

) ∼= 1
Wt

∑
j

I
s

( j)
t

(
ai
)
w

( j)
t , ai ∈ �. (39)

Note that in the algorithm described above, it is not required
that the fading coefficients or the noise vector at the receive
antennas be independent as required in most other algo-
rithms.

Since the space-time code is trellis coded, besides the cur-
rent and previous received signals y0:t , future observations
hold information about the current user state, hence it is ap-
propriate to use the delayed importance function as well as
the delay weight method in evaluating the posterior density
function. The number of delays can be chosen according to
the constraint length of the trellis code.

4. PHASE AMBIGUITY

The fading coefficients and the modulated user data are the
unknowns to be estimated, and there may be multiple pairs

of solutions for an observation. For example, if (C(st),αt) is
the true solution for the observation equation

yt = C
(

st
)
αt + vt (40)

a phase shifted version (C̃(st), α̃t) = (C(st)Θ,Θ−1αt) will be
an equally likely solution, where Θ is a phase shifting matrix.
Such unfavorable condition is called phase ambiguity.

Let C0:T = {C(s0), . . . ,C(sT)} represent a sequence of ST
coded vectors and let α0:T = {α0, . . . ,αT} be the sequence of
channel state vectors from time 0 to T . Denote a phase shifted
but legitimate code vector sequence as

C̃0:T =
{

C
(

s0
)
Θ0, . . . ,C

(
sT
)
ΘT

}
. (41)

Define Θ0:T = {Θ0, . . . ,ΘT} as the phase difference sequence
between the pair (C0:T , C̃0:T). Suppose the phase shifted code
vector sequence and the accompanying phase shifted chan-
nel estimates α̃0:T = {Θ−1

0 α0, . . . ,Θ
−1
T αT} have the same like-

lihood as the true code vector sequence and channel vector
sequence, that is,

p
(

y0:T |C0:T ,α0:T
)
= p

(
y0:T |C̃0:T , α̃0:T

)
. (42)

This obviously is a major problem that needs consider-
ation. In the literature, unless unitary STC is employed, pi-
lot signal is used for channel estimation. However, unitary
STC or pilot signal are not necessarily the best strategies. To
reduce phase ambiguity while providing better coding gain,
here we opt to use an STTC designed using a new criterion
proposed in [23] and summarized here.

It is desirable to design a set of code vector sequences
so that with optimal joint estimation and decoding for
any pair (C0:T , C̃0:T), the condition p(C0:T ,α0:T |y0:T) >
p(C̃0:T , α̃0:T |y0:T) is met. With the assumption in (42) and be-
cause the code vector sequences are independent of the chan-
nel vector sequences, the above condition can be simplified
as

p
(

y0:T |C0:T ,α0:T
)
p
(

C0:T ,α0:T
)

> p
(

y0:T |C̃0:T , α̃0:T
)
p
(

C̃0:T , α̃0:T
)

⇐⇒ p
(

C0:T
)
p
(
α0:T

)
> p

(
C̃0:T

)
p
(
α̃0:T

)

⇐⇒ p
(
α0:T

)
> p

(
α̃0:T

)
.

(43)

The last step of the derivation is based on the assump-
tion that the user data sequences are i.i.d. and therefore
the prior probability for each code vector sequence is the
same. If the channel state vectors are i.i.d. in time, then the
condition in (43) cannot be met, the two sides are always
equal and there is nothing we can do in terms of ST de-
sign to solve the problem. On the other hand, if the channel
state vector is represented by an HMP as we have described,
then the condition can be further simplified using the chain
rule,
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T∏
t=1

p
(
αt |αt−1

)
>

T∏
t=1

p
(
α̃t |α̃t−1

)

⇐⇒
T∑
t=1

(
ht − Fht−1

)HQu
(

ht − Fht−1
)

<
T∑
t=1

(
Θ−1

t ht − FΘ−1
t−1ht−1

)HQu
(
Θ−1

t ht − FΘ−1
t−1ht−1

)
.

(44)

It can be verified that the only case when the above con-
dition is not satisfied is when the phase difference se-
quence is homogeneous, that is, Θ0 = · · · = ΘT .
Therefore, in designing the code vector sequence set, we
should avoid the situation when the phase difference se-
quences are homogeneous between any pair of code vec-
tor sequences. If this cannot be avoided completely, one
should try to alleviate frequent appearance of code vec-
tor sequences with homogeneous phase difference se-
quences.

Consider, for example, the 8PSK delay diversity STTC
with two transmit antennas as described in [2]. We refer to
this code as Tarokh STTC. The constraint length of the trellis
is two and the codes for the two transmit antennas are

c1
(

st
)
= e− j(3π/4)st , c2

(
st
)
= e j(π/4)st−1 , (45)

where st = [st, st−1]T , and each user data symbol st ∈ � =
{0, 1, . . . , 7}. The first two constellations in Figure 4 illus-
trate the two codes represented by (45). The phase shift-
ing matrix in this case has two elements and it is given by
Θ = diag{θ1, θ2}. A phase shifted version of the channel state
estimate will produce erroneous estimate of the transmitted
user data. For example, if the two channel estimates over two
consecutive time slots are phase shifted by π, then the es-
timate of st at t is ŝt,1 = c−1

1 (c1(st)e− jπ), and at t + 1, it is
ŝt,2 = c−1

2 (c2(st)e− jπ). It can be verified that for the code and
modulation function c1(·) and c2(·) in (45), the two estimates
of st are equal for all st ∈ �. Therefore, the phase shifted
channel estimate and ŝt are equally likely estimates of st . In
summary, for this STTC the condition for the occurrence of
homogeneous phase difference sequences is equivalent to the
following:

c−1
1

(
c1
(
st
)
e jθ1

)
= c−1

2

(
c2
(
st
)
e jθ2

)
, ∀θ1, θ2. (46)

To address the problem of phase ambiguity, one may design
space-time codes such that the probability of the condition
specified in (46) is minimized given a certain coding gain.
Define the degree of phase regularity as the number of pairs
of user data which have the same phase difference among all
the modulation constellations. For example, the phase dif-
ference of st = 2 and st = 4, is the same in constellations c1

and c2. We can find 12 pairs of such user data and the de-
gree of phase regularity is 12. To reduce the occurrence of
(46) is equivalent to reduce the degree of phase regularity. We
can reduce phase regularity by redesigning the constellation
and/or by increasing the number of constellations at the ex-
pense of coding, spatial, or temporal efficiency. The design of

temporal/spatial varying modulation constellations that best
explore the spatial and temporal diversities while balancing
the need of reducing phase regularity is a very challenging
task itself.

We consider the usage of pilot signal as a special case of
the general idea for reducing phase regularity by using differ-
ent constellations across different antennas or time slots. The
use of pilot signal can be viewed as a special constellation,
where all user data are modulated at one point, and the pilot
signal is transmitted periodically.

5. SIMULATION

We simulated a two transmit and one receive antenna STTC
system. The ARMA model for the fading coefficient is as de-
scribed in [16], and it is of order (3, 3). This model corre-
sponds to a fast fading scenario with a normalized Doppler
frequency (with respect to the symbol rate 1/T) fdT = 0.05.

We applied the mixture SIS and Kalman filtering algo-
rithm to the Tarokh STTC system described in Section 4. Due
to phase ambiguity, the algorithm invariably breaks down.
Figure 2 displays the tracking of the complex fading coeffi-
cients where the dotted lines represent the true channel, and
the solid lines show the estimated channel. Consequently,
the estimated user symbols are erroneous under the phase
shifted channel estimates. To alleviate phase ambiguity, first
we tried the traditional way of sending pilot signals. To ac-
commodate pilot signals, each time-slot was divided into two
sub-slots (an increase in bandwidth), and it was considered
that fading coefficients did not change between the sub-slots.
The first set of sub-slots were assigned to transmit user sig-
nals coded by Tarokh STTC, and the second set of sub-slots
were used to send pilot signals, that is, both transmit anten-
nas sent known signals to the receiver. In our scheme, the
pilot signals used the same amount of energy as the user sig-
nals. Pilot signals were inserted every other symbol because
of the considered fast fading channel. The tracking of the
channel is shown in Figure 3. We can see that phase ambi-
guity no longer exists. However, the performance of the al-
gorithm in terms of symbol error rate (SER) is not satisfac-
tory which is shown in Figure 6. In Section 4 we pointed out
that if we design the code vector sequences so that the phase
difference sequences are not homogeneous, phase ambiguity
can be avoided. Here we propose 4 ad-hoc designed 8PSK
constellations to be used when each time-slot is divided into
two sub-slots as in the case with pilot signals. The received
signal at time slot t can be described as

[
y1
t
y2
t

]
=
[
c1(st) c2(st−1)
c3(st−1) c4(st)

] [
α11,t

α12,t

]
+
[
v1
t
v2
t

]
. (47)

In the above equation, y1
t and y2

t represent the received
signals at two sub-time slots, where c1 and c2 have the same
definition as in (45), and c3 and c4 are defined as

c3 =
[
1, e(− jπ/4),− j, e(− jπ3/4), e( jπ/4), j, e( jπ3/4),−1

]
,

c4 =
[
1, e( jπ3/4),− j, e( jπ/4), e(− jπ3/4), j, e(− jπ/4),−1

]
.

(48)



Joint Estimation and Decoding of Space-Time Trellis Codes 313

20 30 40 50
Time t

60 70 80
−40

−20

0

20

40

Im
(h

1
)

Imaginary part

20 30 40 50 60 70 80
−40

−20

0

20

40

R
e(
h

1
)

Real part

Figure 2: Example of phase ambiguity.

The constellations of c1 to c4 are shown in Figure 4. It can be
verified that only two data pairs, (4, 6) and (5, 7), have the
same phase difference across all four constellations. The de-
gree of phase regularities is reduced to 2 as opposed to 12 in
the original Tarokh STTC. Unless a long string of user data
composed of only 4–7 occurs, which has very low probability
when the user data symbols are i.i.d., phase ambiguity can
be avoided. The tracking of the channel estimates is shown
in Figure 5, which verifies our analysis of phase ambiguity.
From Figure 6, we can see that the proposed system performs
much better than the system using pilot signals although the
two systems have the same time and frequency efficiency. In
general, we have found that using pilot signals is not neces-
sarily as efficient as using carefully designed space-time cod-
ing schemes.

It is well known that in the implementation of the SIS
method, as the recursions proceed, the variance of the sam-
ple weights increases. This means that only a few samples
have significant weights leading to poor estimates of the un-
knowns. This problem can be addressed by resampling [14],
which is a process of redrawing a new set of samples from
the old set where the variance of the new weights is smaller
than the variance of the old weights. During our simulations,
we found that we had to apply resampling frequently, which
is essential for good performance of the algorithm. We used
the same residual resampling process as described in [16] and
resampling was performed every 5 steps. Because the con-
straint length is one in the STTC, the number of delayed
weights and delayed samples was all selected as one. As a
lower bound, the results were compared with the Genie aided
case when a separated stream of known user data was space-
time coded in the same proposed scheme and sent through
the same channel for the estimation of the channel. The true
user data were then decoded using the additional transmitted
data. As we can see from Figure 6, there is a 3 dB performance
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Figure 3: Channel tracking with pilot signals.
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Figure 4: Constellations of the STTCs.
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Figure 5: Channel tracking of the proposed STTC.

gap between the two cases. If we take into account the total
amount of energy used for channel estimation in the Genie
aided case, the performance loss of 3 dB can be explained.
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Figure 6: Simulation result.
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Figure 7: Comparison of delayed samples and delayed weights.

For every simulated point, at least 100 symbol errors were
accumulated.

If the delayed weight and delayed sample methods are not
used, the performance deteriorates considerably. In Figure 7,
we compared the performance when different number of de-
layed samples ∆ = 0, 1 and delayed weights δ = 0, 1 were used
in the algorithm. The results in Figure 7 are consistent with
the ones in [16].

6. CONCLUSIONS

In this paper, we proposed and showed the viability of mix-
ture SIS and Kalman filtering algorithm for joint estimation
and decoding of STTCs. The channels in the system were
modeled as ARMA processes of known orders and model co-
efficients, and the whole system was represented by a DSSM.
Good results can only be obtained if the problem of phase
ambiguity is addressed appropriately. Four ad hoc designed
constellations were used in our simulations and the results
showed that the phase ambiguity was avoided.

Future research could extend to the design of STTCs that
can best explore the spatial/temporal diversity and reduce
phase ambiguity when using the SIS algorithm. Another di-
rection is to apply more computationally efficient delayed
sampling algorithms based on SIS for the joint estimation
and decoding of STTC.

APPENDIX

A.1. The construction of channel state vector hnm,t

The fading coefficients αnm,t when modeled as an ARMA
(r, r) process, are represented as

αnm,t+φ1αnm,t−1 · · · + φrαnm,t−r
= ρ0unm,t + · · · + ρrunm,t−r ,

(A.1)

where {ρi} and {φi} are the AR and MA coefficients, re-
spectively. In the Z domain, (A.1) becomes αnm(Z) =
(ρ(Z)/φ(Z))unm(Z). If we introduce a new entity, hnm(Z) =
u(Z)nm/φ(Z), we obtain αnm(Z) = ρ(Z)hnm(Z). In the time
domain, we have

hnm,t = −φ1hnm,t−1 · · · − φrhnm,t−r + unm,t,

αnm,t = ρ0hnm,t + · · · + ρrhnm,t−r .
(A.2)

If we let hnm,t = [hnm,t, . . . , hnm,t−r]T be the channel state vec-
tor, its dynamics in time is described by (29), and the fading
coefficient becomes αnm,t = ρThnm,t.

A.2. The construction of extended matrices

In this part we list the construction of R, E, and F. First, the
NM(r + 1) ×NM matrix R is represented as

RT =



ρ 0 · · · 0
0 ρ · · · 0
...

...
...

...
0 0 · · · ρ


 , (A.3)

where ρ is the (r + 1) × 1 vector as defined before, and 0 is
an all-zero vector of the same dimension. E is of dimension
NM(r + 1) ×NM and it is written as

E =




e 0 · · · 0
0 e · · · 0
...

...
...

...
0 0 · · · e


 , (A.4)

where 0 is also an (r+1)×1 all-zero vector. Finally, the square
matrix F of dimension NM(r+1)×NM(r+1) is constructed
according to

F =



Φ 0 · · · 0
0 Φ · · · 0
...

...
...

...
0 0 · · · Φ


 , (A.5)

where 0 is an (r + 1) × (r + 1) all-zero matrix.
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