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Multiuser Detection of Synchronous Code-Division
Multiple-Access Signals by Perfect Sampling
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Abstract—Code-division multiple-access (CDMA) is a multi-
plexing technique that shows significant advantages over analog
and conventional time-division multiple access (TDMA) systems.
This technology has become a driving force behind the rapidly
advancing communications industry. In order to recover the
transmitted signal at the receiver in a CDMA system, demodu-
lating techniques are engaged, where a prominent role is played by
the multiuser detector. In this paper, we introduce a class of novel
Bayesian multiuser detectors that are constructed by employing
perfect sampling algorithms: the sandwiched CFTP and the Gibbs
coupler. We show that the detector based on the sandwiched
CFTP can be applied to systems with negative cross-correlations,
whereas the Gibbs coupler detector can be used without restric-
tions. A salient feature of the proposed detectors is the use of
exact (perfect) samples from posterior distributions. This feature
provides them with several advantages over detectors based on the
Gibbs sampler. Simulation results on systems with and without
near–far resistance demonstrate improved performance of the
proposed detectors over some other popular detectors. In the
end, we also discuss some important computational issues of the
proposed detectors.

Index Terms—Code-division multiple-access, coupling from the
past, Gibbs coupler, Gibbs sampler, Markov chain Monte Carlo,
multiuser detection, perfect sampling.

I. INTRODUCTION

CODE-DIVISION multiple-access (CDMA) [1]–[3] is a
multiplexing technique that enables multiple users to

access a common channel simultaneously. In a CDMA system,
each user is assigned a unique signature waveform, and the
data message of the user is then spread by modulating the
signature waveform. Since the modulated signal has a much
wider bandwidth than that required for simple point-to-point
communications, a CDMA system is also referred to as spread
spectrum system. CDMA systems show significant advantages
over analog and conventional time-division multiple access
(TDMA) systems, including increased capacity, enhanced
privacy and security, and reduced effects of multipath fading.
As a result, the technology of CDMA has become a driving
force behind the rapidly advancing communications industry.

Recovery of transmitted signals at the receiver is achieved
by demodulation techniques. A widely used technique called
the single-user matched filter regards the CDMA channel as a
single-user channel and considers the detection problem of each
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user individually. As is well known, in the absence of user inter-
ference, the single-user matched filter is optimal in the sense of
minimizing the bit-error rate. However, this is no longer true in
CDMA systems where multiuser interference (MUI) is present.
The degraded performance of the single-user matched filter is
particularly emphasized in the presence of near–far effects. To
overcome these disadvantages of the single-user matched filter,
multiuser detectors have been developed [1], [4].

Multiuser detectors regard the MUI as additional informa-
tion rather than noise. Thus, better performance over single-user
detectors is achieved by processing this information. The op-
timum multiuser detector is, however, a combinatorial optimiza-
tion problem. Although it can be always solved by exhaustive
search [1], the computational complexity of exhaustive search
increases exponentially with the number of users and, there-
fore, makes it infeasible for systems with usual capacity. Due to
the complexity of the optimum detector, much effort has been
devoted to finding suboptimal linear detectors that can achieve
certain balance between performance and computational com-
plexity [5]. An example is the decorrelating detector, or decor-
relator, which is computationally simple and exhibits relatively
good near–far resistance. However, there is still a large margin
left between the performance of the linear detectors and the op-
timum detector.

In recent years, with the advent of powerful computers, much
attention has been given to multiuser detectors using nonlinear
methods. Among them are the detectors that employ the tech-
nique of successive interference cancellation [6]. They include
the multistage interference cancellation algorithm [7] and the
decorrelating decision-feedback scheme [8]. In addition, there
are detectors using the expectation-maximization (EM) algo-
rithm [9], genetic algorithms [10], neural networks [11], and
sampling-based methods.

Sampling-based methods, especially Markov chain Monte
Carlo algorithms (MCMCs) [12], have been intensively studied
in statistics during the past decade. These methods have
demonstrated excellent performance in solving high-dimen-
sional optimization and integration problems. Among them,
the Gibbs sampler [13] and the Metropolis–Hastings algorithm
[14] are the most popular algorithms. In the past few years,
they have penetrated the signal processing and communica-
tions community, and as a result, many applications of MCMC
methods in signal processing and communications can be found
in the literature. In a recent paper, a method based on Gibbs
sampling for joint multiuser channel parameter estimation and
signal detection has been proposed [15].

MCMC sampling, however, may generate samples from
desired distributions only approximately. Additionally, the
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generated samples are dependent, which may render bias and
larger variance in Monte Carlo computations. In 1996, Propp
and Wilson proposed a perfect sampling algorithm called
coupling from the past (CFTP) [16], which completely resolves
the drawbacks of MCMC in that it generates i.i.d. samples
exactly from a desired distribution. Their work has drawn much
interest, and as a result, further progress on perfect sampling
has been reported [17]–[19].

In this paper, we present a class of new multiuser detectors
that are developed under the Bayesian framework and imple-
mented by perfect sampling algorithms. We first discuss the
multiuser detector by the Gibbs sampler. Using the Gibbs sam-
pler as a building block, we show how the sandwiched CFTP can
be applied to a system with negative cross-correlations between
signature waveforms. Furthermore, we employ a new perfect
sampling algorithm called the Gibbs coupler and demonstrate
how a detailed scheme can be constructed for detection prob-
lems in general systems. Overall, a salient feature of the pro-
posed detectors is the use of exact samples from the posterior
distributions. This advantage improves the performance of the
new detector over the one based on Gibbs sampling.

The paper is organized as follows. The problem of optimum
multiuser detection is addressed in Section II. A background of
perfect sampling is provided in Section III, where the Gibbs
sampling algorithm, CFTP, and the Gibbs coupler are intro-
duced. In Section IV, the implementation of the Gibbs coupler
on multiuser detection of synchronized CDMA signals is care-
fully studied. Simulation results are presented in Section V.

II. OPTIMUM MULTIUSER DETECTION

A -user synchronous CDMA system with white Gaussian
noise can be modeled as

(1)

where
received signal;
antipodal signature waveform of theth user;
amplitude of the th user’s signal;
bit transmitted by the th user;
additive white Gaussian noise with zero
mean and variance ;
symbol duration.

The main interest in multiuser detection is to detect correctly
the transmitted symbols by each user. In a real system, the am-
plitudes of the users’ signals and the noise variance are also un-
known to the receiver, and they can be estimated from pilot sig-
nals. The estimation of these parameters is not of concern in this
paper; see [20]–[22] for detailed discussions of this issue. Here,
we assume that all the parameters except thes are known,
and our objective is to estimate . The
conventional single-user matched filter makes the decision on
each user’s symbol separately, and the estimate of theth user
is expressed as

sgn (2)

where is the th matched filter output.
Note that the single-user matched filter does not exploit any in-
formation about the users’ correlations and regards the users’ in-
terference simply as noise. Therefore, the single-user matched
filter is not optimal in the presence of multiuser interference,
which exists in CDMA systems. To achieve optimum detec-
tion, one must employ a multiuser detection strategy. From a
Bayesian perspective, the optimum decision is made using the
posterior distribution of . Since nothing is knowna priori
about , a noninformative prior is chosen for, and thea pos-
teriori distribution of can be expressed as

(3)

where represents the crosscorrelation
between the th and the th signature waveform. Under the
Bayesian paradigm, we adopt themaximum a posteriori(MAP)
detector [23] and themarginalized posterior mode(MPM)
detector [23], [24]. The MAP detector is the set of
symbols that maximizes the posterior distribution (3), i.e.,

(4)

and the MPM detector calculates the marginalized posterior
mode, i.e.,

sgn

(5)
for all , where denotes the th ele-
ment of . Clearly, the MAP detection is basically a com-
binatorial optimization problem, and the solution can be ob-
tained by exhaustive search. Exhaustive search over a variable
space with large dimension, however, is computationally pro-
hibitively expensive because it involves the calculation of 2
terms. Similarly, the MPM detector requires a multidi-
mensional summation that again involves the calculation of 2
terms. The overwhelming computational requirements of the
optimum solution has been driving the research on linear and
nonlinear suboptimal solutions with lower complexity. In re-
cent years, more attention has been given to nonlinear detectors,
which usually provide better performance than linear detectors.
Among the nonlinear detectors, the ones based on MCMC al-
gorithms are of particular interest here.

III. B ACKGROUND ONPERFECTSAMPLING ALGORITHMS

A. Markov Chain Monte Carlo

In Bayesian analysis, it is very important to optimize
or integrate over the posterior distribution , where

represents a vector of unknown



1726 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

variables, and denotes the observation data. For practical
problems, the dimension of the unknownsis usually large.
Then, the required high-dimensional optimization and inte-
gration impose a great challenge to conventional numerical
techniques, and quite often, these techniques fail to provide
satisfactory solutions. Nonetheless, Monte Carlo methods,
especially those based on Markov Chain Monte Carlo (MCMC)
sampling, have shown excellent performance. Their develop-
ment has provided the impetus for the recent boom of Bayesian
applications in statistical signal processing.

In the multiuser detection problem, our interest lies in em-
ploying Monte Carlo methodology to solving the integrals (sum-
mation) and maximization of the posterior distributions. Unlike
the conventional numerical methods that are deterministic in na-
ture, the Monte Carlo methods adopt a stochastic approach. To
illuminate the general idea of Monte Carlo integration and opti-
mization, suppose that we are interested in finding the solutions
to the following problems:

(6)

and

(7)

where is some function of . The key for Monte Carlo
solutions is the generation of random samples from
the posterior distributions , where denotes the number
of generated samples. The solution can be approximated by

(8)

and it converges to the true value as . The approach
is calledstochastic exploration[25] since it tries to explore the
whole variable space of the unknowns in a random fashion. This
methodismoreeffectivewhenthevariablespaceisdiscreteandfi-
nite.AnotherMonteCarlooptimizationapproach is referred toas
stochastic approximation[25], and it uses randomly drawn sam-
ples to approximate the posterior distributions. In this paper, we
use the stochastic exploration approach to define the MAP de-
tector.TheMonteCarloapproximationofcanbeobtainedfrom

(9)

It isshownthatbythestronglawof largenumbers,thisapproxima-
tionconverges to almostsurelyand inmeansquareas
[26], [27]. In general, if the variable space ofis continuous,
theMonteCarloapproachapproximates theoriginalhigh-dimen-
sional optimizations and integrations by much simpler discrete
optimizations and summations. Further, when the variable space
of isdiscrete, the computational complexityof the MonteCarlo
optimization is a function of the sample size, which is usually
far smaller than the size of the discrete variable space.

Very often, however, direct sampling from is ex-
tremely difficult. By contrast, MCMC methods can obtain
samples from such distributions by constructing a homoge-
neous Markov chain on the support of, where the equilibrium
distribution of the chain is [14], [26]–[29]. The chain
starts from some initial state, but it takes some transition
time that is believed to be long enough for the chain to have
converged. This transition time is called “burn-in” period.

One main drawback of MCMC sampling is that the burn-in pe-
riod isunknown.Thus, thegeneratedsamplescanonlybeconsid-
ered to approximately follow the stationary distribution. In addi-
tion,MCMCmethodsusuallyproducehighlycorrelatedsamples.
The correlation between the samples makes the stochastic explo-
ration lessefficientsince if thechain is trapped insomelocalmax-
imum, it tends to stay around the local maximum for a long time
before it gets out. Although much work was devoted to overcome
these problems, there was not much success until a complete so-
lution was proposed by Propp and Wilson [16]. Their method is
known as perfect sampling and is calledcoupling from the past
(CFTP). CFTP is briefly discussed in Section III-C.

B. Gibbs Sampler

Among all the MCMC algorithms, the Gibbs sampler seems
to be the most popular one. The Gibbs sampler was first intro-
duced by Geman and Geman [13] in their study of image restora-
tion. With Gibbs sampling, we usually avoid drawing all the vari-
ables at the same time and, instead, sample them a few at a time
only. Thereby, a high-dimensional sampling is converted to sev-
eral lower dimensional samplings, which essentially simplifies
the original problem. The Gibbs sampler has the unique feature
that it accepts all the proposed samples from the intermediate dis-
tributions. To illustrate the algorithm in some detail, suppose that
we want to sample from the posterior distribution . Given
somearbitrarystartingvalue , theGibbssamplerobtainssam-
ples according to the following iterative procedure.

At the th iteration
Sample from

Sample from

...
...

Sample from

Apparently, for its implementation, the full conditional distri-
butions , for are required, where

denotes all the components ofexcept . In addition, these
full conditional distributions should be easy for sampling. The
joint distribution of the obtained sequence is shown to con-
verge to as [13], [30]. For more information on
Gibbs sampling, see [26], [27], [29], and [31].

C. Perfect Sampling Algorithms

Perfect sampling algorithms refer to algorithms that can
generate exact samples from a desired distribution by running
Markov chains. The first perfect sampling algorithm was pro-
posed by Propp and Wilson and is known as CFTP [16]. CFTP
was originally designed to generate samples from discrete state
spaces, but later, its concept was extended to accommodate
sampling from continuous state spaces [18], [19]. Our interest
in this paper includes algorithms on state spaces of the form

, where is an integer. For further references
regarding perfect sampling on both discrete and continuous
state spaces, see [32]–[34].

Now, we explain the CFTP algorithm. Suppose that the de-
sired discrete state spaceis of size . The basic idea
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of CFTP is to initiate Markov chains at every possible state
in the state space from some time in the past and run them
to time 0. It is noted that all the Markov chains should have the
desired distribution as their stationary distribution and at any
instant of time , the same random seed and updating func-
tion are applied to every chain to determine their new
states. Suppose that there comes a timewhen all the chains
have reached the same state. Now, if we restart all the
chains from the infinite past but keep the same random seeds

and update functions for the transitions during
to , these chains will coalesce toand at the latest at.

The reason is the following. When the chains that started from
the infinite past reach time , they only occupy a subset of
the states. Since the chains that originally started from

with random seeds and update functions
coalesce to at time , so must the subset of the chains
started from with the random seeds and update func-
tions . The coalescence atimplies that the effect of
the initial states has actually worn off. Apparently, since the
chains that have started in the infinite past have coalesced,is
a steady state that comes from the desired distribution. To avoid
bias, coalescence is always examined at time . Therefore,
the objective is to find the starting time from which all the

chains will coalesce by time 0. With this objective, the CFTP
algorithm is implemented by the following iterative scheme:

CFTP( )
,

while

if then
return( )

else
CFTP( with ).

We further elaborate on the CFTP algorithm with an example.
In Fig. 1, we display a realization of a CFTP algorithm with the
trajectories of the Markov chains. The variable space of interest
contains eight different states, each of which is represented by
a vector of three binary symbols. These states are listed on the
vertical axis of the figure. The CFTP trial contains four itera-
tions, each of which is depicted in a sub-figure. In each itera-
tion, eight Markov chains are started (one from each state). A
perfect sample was obtained when the algorithm was restarted
at time 4.

It has been shown in [16] that CFTP produces a perfect
sample in finite time with probability 1. For problems with
large state spaces, the implementation of CFTP often becomes
prohibitive due to the heavy computational burden in tracing
all the chains. Propp and Wilson pointed out that a practically
efficient simulation can be accomplished when the designed
Markov chain ismonotonic[16], [33]. A monotonic Markov
chain has an updating function that preserves the partial order

on its state space, that is, for all
whenever . According to the partial order, a maximal and
a minimal state can be determined on the state space. Then, at
any instant of time, the monotonicity will cause all the chains

Fig. 1. Realization of the CFTP algorithm. In (a), (b), and (c), the chains did
not coalesce byt = 0. In (d), a perfect sample was generated when the algorithm
started at time�4.

starting from different states to besandwichedbetween the two
paths that started from the extreme states. Obviously, when
these two extreme paths coalesce at time 0, all the other paths
coalesce into the same state as well. Therefore, an efficient
CFTP can be carried out by a sandwiched algorithm where only
chains from the two extreme states are traced and examined
for coalescence by time 0. The sandwiching effect can also be
seen in Fig. 1, where the Markov chains are monotonic. It is
obvious that the chains are sandwiched between the two chains
initiated from [1 1 1] and . Successful attempts
at applying the sandwiched CFTP have been made in analyses
of binary images based on the Ising model [16], [33].

D. Gibbs Coupler

In the previous section, we have indicated that efficient CFTP
algorithms exist only for monotonic Markov chains. However,
in many cases, monotonic Markov chains are either difficult to
construct or even do not exist for the considered problem. In [35]
and [36], component-updating perfect sampling schemes have
been proposed. A prominent feature of the algorithms is that
they are computationally much more efficient than the CFTP
when the chains are neither monotonic nor antimonotonic. Here,
we refer to these schemes as the Gibbs coupler because they
combine features of both the CFTP and the Gibbs sampler. Like
the Gibbs sampler, the Gibbs coupler is designed for problems
with large number of variables, and for its implementation, full
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conditional distributions are needed. However, in contrast to the
Gibbs sampler, the Gibbs coupler generates i.i.d. samples ex-
actly from desired distributions. Now, we explain the Gibbs cou-
pler in more detail. Let denote the
support of at time , where ,1 represents
the support of component at time . Then, at any transition
, the Gibbs coupler only examines the proposals of the com-

ponents and records in the possible values
that the th component could take from running the Gibbs sam-
pler given . In the case, when the variable space is

binary, can only be 1 , {1}, or { 1, 1}. Finally, at time
, if is shrunk to a singleton, then the unique state is

a perfect sample from the desired distributions. We outline the
Gibbs coupler algorithm with the following chart:

Gibbs coupler( ):

while
,

while
update using

if size of all for is
equal to 1 then

return ( )
else
Gibbs coupler ( with ).

We can see that the overall framework of the algorithm still
follows that of the CFTP. This framework actually guarantees
that unbiased samples from the stationary distribution are ob-
tained if coalescence occurs. However, unlike the CFTP, the
main coupling method of the Gibbs coupler is component based.

IV. M ULTIUSER DETECTION BY PERFECTSAMPLING

A. Gibbs Sampling Multiuser Detector

Prior to the discussion of multiuser detection by perfect sam-
pling, we discuss multiuser detection by Gibbs sampling. The
Gibbs sampling scheme described in this section will be used to
construct the Markov Chains when applying perfect sampling
algorithms. As has been indicated in Section III-A, our objec-
tive is to draw samples from the posterior distribution, and once
the desired number of samples is acquired, the proposed detec-
tors are easily obtained. To implement the Gibbs sampler, we
need the full conditional distributions derived from the poste-
rior distribution. For our multiuser detection problem, they can
be directly obtained from (3) as

(10)

1S is also called asummary statein [37] because it summarizes the state
of x .

where , and

(11)

The distributions described by (10) are Bernoulli distributions,
and drawing a sample from them is analogous to a coin-tossing
experiment, i.e.,

if
otherwise

(12)

where is a random number from . In fact, (12) is also
the updating function of the Markov chain. Now, once we know
how to draw samples from the full conditional distributions, the
Gibbs sampling from (3) is simple and follows the standard iter-
ative procedure described in Section III-B. One interesting ob-
servation here is that has exactly the same expression as that
of the decision statistics in a multistage detector. The only differ-
ence is that in the Gibbs sampling detector, thes are the most
recent samples, whereas in a multistage detector, they are the
estimates obtained from the previous stage. In both cases, (11)
can be considered to be a process of removing the interference
of other users from the signal of the desired user. A multistage
detector uses it to make a hard decision after interference cancel-
lation, whereas the Gibbs sampler does not make any decision
directly with . Instead, affects the posterior probabilities of
the symbols that theth user could have transmitted. After sev-
eral iterations, a final decision, say, using the MAP estimator
on , is made. Therefore, we view the Gibbs sampler as a sto-
chastic version of the multistage detector. Intuitively, we find
the Gibbs sampler scheme more versatile than the multistage
detector, although in some cases, it might not be as efficient.

One important parameter of the Gibbs sampler is the length
of burn-in period since only samples after the burn-in period are
considered to be samples from the true distribution. In practice,
the burn-in period is usually estimated heuristically [15]. Quite
often, however, suchad hocestimates can be poor. The ultimate
remedy to this problem is perfect sampling.

B. Multiuser Detection by the Sandwiched CFTP

It was stated before that the sandwiched CFTP is only ap-
plicable when a monotonic Markov chain exists. To apply the
sandwiched CFTP, we first need to choose an algorithm to con-
struct the Markov chains. From the discussion in the last sec-
tion, the Gibbs sampler is a natural choice. Next, we need to
examine if monotonicity exists on the updating function (12) of
the Gibbs sampler. It turns out that monotonicity associated with
(12) holds only for a system with negative and equal cross-cor-
relations, i.e., for and with the assump-
tion that all the s are positive. This can be seen if we impose
a partial order on such that if whenever

. Then, probability (10) becomes an increasing function
of on such a partial order. As a result, it can be deduced that

if , which complies with the defini-
tion of monotonicity. Under this partial order, the two extreme
states can easily be determined as and

. Then, the perfect samples are
generated by following the scheme described in Section III-C.
There, only two chains are checked for coalescence: the chains
initiated from the two extreme states and .
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We note that sandwiched algorithms can always be used,
regardless of the existence of monotonicity on variable spaces.
They can be employed whenever there exist two chains that
always sandwich the remaining chains during the chain propaga-
tion.Bysandwiching,wemeanthat twoof thechainsalwayshave
the largest and the smallest probability of generating a 1 by the
Gibbs sampling transition. We observe that with the Gibbs sam-
pler, thechains from the all 1states and all1 states sandwich the
probabilities of all the other chains in cases of unequal negative
cross-correlation. This implies that in our problem, we can relax
the condition of equal negative crosscorrelations and allow for
unequal negative cross-correlations. Hence, we conclude that
the sandwiched CFTP is applicable to multiuser systems with
negative crosscorrelations and that the two sandwiching chains
are the ones initiated from the all 1 and all1 states.

C. Multiuser Detection by Gibbs Coupling

In the last section, it was pointed out that the sandwiched
CFTP is possible for the special case of negative cross-corre-
lations. In general, however, the s can be either positive or
negative. Therefore, the sandwiched CFTP algorithm is not ap-
propriate in a general situation. To find a more general perfect
sampling algorithm, we turn our attention to the Gibbs coupler.

In [35] and [36], detailed Gibbs coupler algorithms are con-
structed for problems modeled by Markov random fields where
neighboring properties can be used to facilitate the computa-
tion. However, these algorithms are not suited for the multiuser
detection problem because here, no such neighboring proper-
ties are assumed. Hence, a special algorithm is needed to apply
the Gibbs coupler to multiuser detection. We show in the sequel
how it can be designed.

From the overall framework of the Gibbs coupler described
in Section III-D, we can see that one critical issue is the effi-
cient determination of the support content for all s at every
time instant . Efficient updates can be achieved by introducing
sandwich distributionsat every update. At any instant of time,
sandwich distributions and are defined by

(13)
with ,where
denotes the collection of supports of at time with the indi-
vidual component supports at timebeing 1 , {1}, or { 1,
1}. We notice that the definition (13) indicates that the two sand-
wich distributions bound all the probabilities of for
every Markov chain in between. Therefore, if the same random

number for the th update at time, is less than or equal
to (greater than or equal to ),
can only be equal to 1 (1), which will be the case with all
the other Markov chains. On the other hand, if is between

and , the value of will be uncer-
tain. In this case, we leave the support as { 1, 1}. Thus,
the update of the support can be formulated as

if

if
otherwise

(14)
It is obvious that the choice of sandwich distributions will affect
the rate of coalescense. If the distributions are chosen according
to

(15)

and

(16)

they achieve the largest probability of coalescense, and hence,
their use leads to fastest coalescense. We also notice that for as
long as the calculation of the sandwich distributions is straight-
forward, the Gibbs coupler is computationally much more
efficient than the CFTP, especially for high-dimensional state
spaces. This is because the Gibbs coupler algorithm only needs
to calculate the two sandwich distributions for every transition,
and the CFTP must calculate the transition probabilities of all
the Markov chains.

The key of the implementation of the Gibbs coupler in our
multiuser detection problem is the determination of the sand-
wich distributions on the full conditional distributions. Recall
that the full conditional distributions are defined by (10). We
notice that the maximum and the minimum in (10) with re-
spect to can easily be determined only by checking the
sign of . Thus, at time , the sandwiched distributions
defined by (15) and (16) are readily derived as (17) and (18),
shown at the bottom of the page, where ,

contains the indices of the el-
ements in that have not coalesced at time, and

contaiins the indices of
the remaining elements in (the ones that have co-
alesced at time). Then, at any time, the algorithm updates
the support of theth component according to (14), and the co-
alesced state at time 0 is recorded as a perfect sample from the
posterior distribution (3).

(17)

and

(18)
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From the above discussion, we can see that the Gibbs cou-
pler is actually equivalent to the sandwiched CFTP in the case
of negative cross-correlation. In that case, the sandwich distri-
butions of the Gibbs coupler are always equal to the transition
distributions of the two sandwiching chains in the sandwiched
CFTP. Hence, the Gibbs coupler may be viewed as a general
perfect algorithm for multiuser detection.

Note that the Gibbs coupler scheme introduced here is com-
putationally very simple and much more efficient than the CFTP.
However, as with other perfect sampling algorithms, the coa-
lescing time of the Gibbs coupler is a random variable, and
except for systems with negative cross-correlations where the
Gibbs coupler is equivalent to the sandwiched CFTP, the con-
vergence rate of the Gibbs coupler is usually smaller than that of
the CFTP. In general, the Gibbs coupler has a relatively fast con-
vergence if the Gibbs samplers in the corresponding CFTP algo-
rithms mix rapidly. In [35], for problems with Markov random
fields, it is argued that fast coalescence of the Gibbs coupler is
expected if the interaction of the field is weak. Analogously, in
multiuser detection, fast coalescence is expected when there are
small cross-correlations in the system.

D. Calculating the Proposed Detectors

In the previous sections, we discussed the methods for
drawing perfect samples from posterior distributions. Next,
we show several ways of computing the output of Bayesian
detectors.

First of all, we need to collect a certain number of samples for
the Monte Carlo approximation that we suppose is equal to.
There are two ways of obtaining the samples. If i.i.d. samples
are desired, each sample is drawn by an independent Gibbs cou-
pler. Although, in general, these samples will provide more ac-
curate results, in many cases, the computational requirement to
obtain them might be overwhelming. Another way of drawing
samples is to use the Gibbs coupler only as a gauge to detect
convergence (burn-in) of the Gibbs sampler. More specifically,
we first obtain a perfect sample from the Gibbs coupler, and
then, we switch to the Gibbs sampler using the obtained perfect
sample, as an initial state. Note that the subsequentsamples
generated by the Gibbs sampler are also exact samples from the
posterior distributions, but they are correlated. Obviously, this
approach represents a tradeoff between performance and com-
putational intensity.

Once the samples are acquired, we can compute both the
MAP and MPM detectors according to the Monte Carlo approx-
imations. To compute the MAP detector, the posterior proba-
bility of each obtained sample is calculated, and the MAP de-
tector is the one that yields the largest posterior probability. On
the other hand, to compute the MPM detector, say, for theth
user, one only needs to consider the sample value ofin each
sample, and the MPM detector of is set to

sgn (19)

where is the th sample value of .
With the two approaches of drawing samples and the two cri-

teria, we can define four detectors.

Fig. 2. BERs of the proposed detectors of the first user as functions of SNR.
There are 31 users with equal power.

1) MAP detector using the Gibbs coupler (MAP-GC);
2) MAP detector using the Gibbs coupler and Gibbs sampler

(MAP-GCGS);
3) MPM detector based on the Gibbs coupler (MPM-GC);
4) MPM detector based on the Gibbs coupler and Gibbs

sampler (MAP-GCGS).

V. SIMULATION RESULTS

We conducted several experiments that demonstrate the per-
formance of the proposed Bayesian detectors and compare it
with the performance of other existing techniques.

The first two experiments were designed to study the pro-
posed detectors on systems with negative cross-correlations.
In these experiments, a 31-bit Gold sequence was used as
the spreading code of a 31-user system. As was indicated in
Section IV-B, monotonic Markov chains can be constructed
for these systems, and the Gibbs coupler scheme is equivalent
to the sandwiched CFTP algorithm. In the first experiment,
the users had equal power. Bit error rates (BERs) of the
MAP-GCGS and MPM-GCGS detectors were examined under
different SNRs. In formulating the decisions, the detectors
used 300 samples. The results of the first user are illustrated
in Fig. 2. The results of the the decorrelating detector and
the multistage (two-stage and three-stage) detectors with
decorrelating first stage are also presented. The theoretically
attainable performance in the absence of multiuser interference
is plotted as a lower bound. To compute the BER at a tested
SNR, Monte Carlo trials were performed, where the number
of trials was precomputed by assuring that there would be at
least 200 errors among the trials with no MUI. From the plot,
we see that the curves corresponding to the MAP-GCGS and
the MPM-GCGS detectors almost overlap, which indicates
similarity in the performance of these detectors. In addition,
the BERs of the two detectors are almost the same as the BER
of the single user, especially at high SNRs. Compared with
other tested detectors, the proposed detectors always perform
better, and the performance improvement is especially evident
at higher SNRs.
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TABLE I
AVERAGE COALESCING TIME T OF THE GIBBS COUPLER AT EACH TESTED

SNRIN THE FIRST EXPERIMENT

Fig. 3. BERs of the proposed detectors on the first user as functions of power
of the interference users.’ There are 31 users, and SNR of the first user is 8 dB.

In Table I, we have listed the average coalescing times (ex-
pressed in steps) of the Gibbs coupler at each SNR. Surpris-
ingly, in all the cases, these times are very small. Compared with
the time needed to generate the desired 300 samples that follow
the first perfect sample, the computation for detection of coa-
lescence is considerably smaller. Therefore, in this experiment,
the use of the Gibbs coupler is preferred over the Gibbs sampler
because for a small price, we can obtain perfect samples from
the posterior distributions.

In the second experiment, we studied the near–far effect in
the above 31-user system. This time, the SNR of the first user
was fixed at 8 dB, and the strength of the remaining 30 users
was allowed to vary from 10 dB below to 6 dB above that
of the first user. Again, the BERs of the MAP-GCGS and the
MEM-GCGS detectors were examined. The results are depicted
in Fig. 3 along with those of the decorrelator and the multistage
detectors. Since the decorrelator is near–far resistant, we see that
the BERs of the decorrelator do not change with the change of
interference strength. The BERs of the decorrelator, however,
are too large and too far away from the bound. Notice that the
other tested detectors dramatically outperform the decorrelator.
What is more, they all approach the single-user lower bound
when the powers of the interference users are at 6 dB. The two
Bayesian detectors have lower BERs than the two multistage
detectors throughout the tested region. Their performance gain
over the multistage detectors is maximal when the interference
users have a power of6 dB below that of the first user.

In the next two experiments, we tested the proposed de-
tectors in a scenario that would allow for gaining insight into
asynchronous and bandwidth efficient systems. We adopted

Fig. 4. BERs of the proposed detectors of the first user as functions of the
SNR. There are four users with equal power. The cross-correlation matrix of
the signature waveform is given by (20).

TABLE II
AVERAGE COALESCING TIME T OF THE GIBBS COUPLER AT EACH TESTED

SNRIN THE EXPERIMENT WITH A FOUR-USER-EQUAL-POWERSYSTEM

the system setting used in [8, ex. 2]. To be specific, there were
four users in the system, and the cross-correlation matrix of the
corresponding signature waveforms was given by

(20)

Throughout these two experiments, 11 samples were recorded
for the Monte Carlo computation. First, there were four users
with equal power. We evaluated the BERs of MAP-GC,
MPM-GC, and MAP-GS of the first user for various SNRs. The
results are shown in Fig. 4. In the figure, we also plotted the
curve corresponding to the optimum MAP detector, which was
computed by exhaustive search. The results demonstrate that
the BER of the MAP-GC detector is slightly better than that
of the MPM-GC and MAP-GCGS detectors and that it almost
overlaps with that of the optimum detector. Again, even though
the multistage detectors are clearly better than the decorrelator,
their performance is inferior to that of the proposed detectors
at high SNRs. For example, we observe that for the same noise
level, the proposed detectors have a gain in signal power of 0.5
dB at BER of 10 and 1.5 dB around BER of 10. Similarly,
we also recorded the average convergence times of the Gibbs
coupler at various SNRs, and they are presented in Table II. It is
interesting to notice that unlike in the first experiment, the time

increases with the increase of SNR. To explain the effect,
we need to consider the relationship between the coalescing
times and the users’ cross-correlations, as well as the effect
of the noise on this relationship. First, recall that the Gibbs
coupler has slower coalescing times on systems with higher
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Fig. 5. BERs of the proposed detectors of the first user as functions of the
SNR difference between the interference users and the first user. There are
four users in the system, and the SNR of the first user is fixed at 10 dB. The
cross-correlation matrix of the signature waveform is given by (20).

cross-correlations between the users’ signature waveforms.
Second, note that the noise would make the cross-correlations
less effective. This means that with the increase of noise level,
the detectors tend to underestimate the cross-correlations of
the system. In the extreme, when the noise level is very high,
the detectors would simply consider the multiusers’ signals
as independent. In this experiment, when the SNR is low,
the detectors simply see low cross-correlations in the system,
and therefore, coalescing is relatively fast. With the increase
of SNR, the high cross-correlations of the users’ waveforms
become more effective in slowing down the coalescence.

In the next experiment, we tested the near–far effect on this
four-user system. Again, we fixed the SNR of the first user, this
time at 10 dB, and let the SNRs of the remaining users vary. The
experimental results are illustrated in Fig. 5. We see that with the
increase of interference strength, the proposed detectors and the
multiuser detectors have better performance. In addition, they
are all able to achieve the single user bound when the SNR of
the interference is 6 dB above that of the first user. It is clear that
the multistage detectors improve significantly over the matched
filter and the decorrelator. In addition, the proposed detectors
provide further reduction of BERs, and they almost perform as
the optimum detector.

We then wanted to compare the raw Gibbs sampler detec-
tors with our proposed detectors. The objective of this exper-
iment was to demonstrate and further stress the advantages of
the perfect sampling solutions over the Gibbs sampler from both
computational and performance perspectives. In the experiment,
we continued to use the above four-user system setting, but we
focused on a specific scenario of equal-power users with SNR
fixed at 8 dB. We applied the Gibbs sampler on the system and
computed the MAP and the MPM detectors using 11 samples
after burn-in. Note that the burn-in period is vaguely defined
and that Markov chains converge gradually. For convenience,
we denoted the two detectors by “MAP-GS” and “MPM-GS,”
respectively. In Fig. 6, we plotted the BERs of the MAP-GS and

Fig. 6. BERs of the detectors obtained by the Gibbs sampler as functions of
burn-in period. There are four equal-power users at 8 dB. The cross-correlation
matrix of the signature waveform is given by (20).

the MPM-GS detectors as functions of the “burn-in” period. For
comparison, we also displayed the BERs of the MAP-GCGS
and the MPM-GCGS. Several observations can be made from
the figure. First of all, the BERs of both the MAP-GS and the
MPM-GS detectors approach that of the MAP-GCGS detector
as the burn-in period increases. The reason is that with the in-
crease of the burn-in, the subsequent samples are closer to the
true posterior distribution, which in turn results in better ac-
curacy in the calculation of the MAP and the MPM detectors.
Second, it takes both detectors almost 300 burn-in iterations to
approach the performance of the MAP-GCGS detector. Clearly,
this time is much longer than the average coalescing time of the
Gibbs coupler that is only about 18 iterations in duration. Can
we then claim that the actual convergence time of the Gibbs sam-
pler is longer than the coalescing time of the Gibbs coupler? Our
answer is no. Rather, we see an equivalence between the con-
vergence time of the Gibbs sampler and the coalescing time of
the Gibbs coupler. We elaborate on this point in the following.
Since Monte Carlo trials are run to compute a BER, intuitively,
we think that there is a strong correlation between the changes in
BER and the actual number of converged trials. To be specific,
the more trials converged, the better the BER of the detector.
Now, from the average coalescing time of the Gibbs coupler,
we conjecture that there was a considerable amount of trials that
converged by the 18th iteration. As a result, there would be a big
improvement in BER if the detectors used generated samples
after the 18th iteration. We find that our conjecture agrees with
the scenario shown in Fig. 6, where big improvements in BERs
of the two Gibbs sampler detectors indeed happen before and
around the 18th burn-in iteration. After 18 iterations of burn-in,
the BER curves decrease rather gradually and stretch on until
about 300 iterations, when the change becomes close to steady.
This indicates that there was also a great number of trials that
converged after 18 iterations and that by the 300th iteration, al-
most all the trials converged. Even though we cannot prove our
claim, it is quite reasonable to think that the actual mean conver-
gence time of the Gibbs sampler is not 300 iterations and that it
is comparable with the mean coalescing time of the Gibbs cou-
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pler. Then, why does it take 300 burn-in steps for all the Gibbs
sampler trials to approach the performance of the MAP-GCGS
detector? The reason is the way thead hocburn-in is used in
the experiment. There, as well as in practice, once anad hoc
burn-in period is determined, it is applied to all the Gibbs sam-
pler trials. These trials are independent of each other, and some
of them may converge faster, whereas others converge slowly,
and the time of convergence is longer than the applied burn-in
period. However, to achieve an equivalent performance as with
converged samples, this “one-size-fits-all” burn-in period must
be at least as long as the burn-in period of the trial with slowest
convergence. We have indicated that in our experiment, 300 is
the approximate duration of the burn-in period of the trials with
slowest convergence. Consequently, the two Gibbs sampler de-
tectors require a burn-in period of 300 iterations for each trial
to approach the performance of the Gibbs coupler detector. As
has been stressed throughout this paper, the determination of
the burn-in period in Gibbs sampling with certainty is an un-
solved problem. Withad hocapproaches, we will either over-
estimate or underestimate the burn-in period. With an underes-
timated burn-in period, the performance of the corresponding
Monte Carlo approximation is degraded. On the other hand, as
is demonstrated in the experiment, to guarantee good perfor-
mance, we will have to choose a much overestimated burn-in
interval for most of the trials. Apparently, this entails a waste
of computation for most of the trials. In this respect, the perfect
sampling algorithms like the Gibbs coupler have clear advan-
tage over Gibbs sampling because they are able to determine the
coalescence for each trial separately. Therefore, they not only at-
tain better performance but may also be computationally more
efficient than the Gibbs sampler.

Now, we turn to the third observation. We see that the two
detectors based on Gibbs sampling cannot approach the BER
of the MAP-GC detector, which has a smaller BER than that of
the MAP-GCGS detector. The difference between the two de-
tectors based on Gibbs coupling is that the MAP-GC detector
uses independent samples, and the MAP-GCGS detector oper-
ates with correlated samples that are generated from a single
Markov chain. The problem of using samples from a single
Markov chain is that once the chain enters a high density re-
gion, it tends to stay there for a long period before it moves out
of the region. As a result, the collected samples could all come
from the same high-density region. If this high-density region
is near a local optimum but not within the maximum density re-
gion as desired, the subsequent Monte Carlo approximation for
the MAP or the MPM detectors would be biased. One solution
to the problem is to increase the sample size so that the number
of samples can be large enough to include the maximum den-
sity region. Apparently, in our case, the detectors based on Gibbs
sampling used more than 11 samples to match the performance
of the MAP-GC. This observation suggests that detectors based
on Gibbs coupling can achieve the same performance as the de-
tectors based on Gibbs sampling with fewer samples, which is
clearly another advantage.

In the last experiment, we examine the effect of the cross-cor-
relation on the coalescing time. Since the coalescing time of the
Gibbs coupler is a random variable and very difficult to analyze,
we studied it through examples. In the experiment, we fixed the

Fig. 7. Plot of CPU time for computing the MAP-GC detector as a function
of different crosscorrelations. There are five users.

number of users to , and set equal cross-correlation be-
tween the waveforms of the users’ signatures. We recorded the
mean CPU time for computing the output of the MAP-GC de-
tector as a function of increase cross-correlations. The results
are displayed in Fig. 7. We notice that the CPU time increases
rapidly with the increase of cross-correlations. This result im-
plies that the detectors computed by the Gibbs coupler are more
fit for systems with small cross-correlations.

VI. CONCLUSION

We applied perfect sampling algorithms including the
sandwiched CFTP and the Gibbs coupler to compute the
MAP and MPM detectors for synchronous CDMA signals. We
introduced several methods for drawing samples and discussed
the corresponding detectors. Numerical simulation results for
equal-power and near-far effect scenarios on a 31-user system
demonstrated better performance of the proposed detectors
over the decorrelator and multistage detectors. Simulations
also showed better performance of the proposed detectors in
potentially asynchronous channels. An experiment was also
conducted to illustrate several advantages of Gibbs coupling
over Gibbs sampling when used for multiuser detection. Finally,
we briefly addressed computational issues of the proposed
methods. We indicated that the computational time of the Gibbs
coupler algorithm increases rapidly with the cross-correlations
between the waveforms of the users’ signatures.
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Prof. Djurić has served on numerous Technical Committees for the IEEE
and SPIE and has been invited to lecture at universities in the United States
and overseas. He was Associate Editor of the IEEE TRANSACTIONS ONSIGNAL

PROCESSINGand is currently Treasurer of the IEEE Signal Processing Confer-
ence Board. He is also Vice Chair of the IEEE Signal Processing Society Com-
mittee on Signal Processing Theory and Methods and a Member of the American
Statistical Association and the International Society for Bayesian Analysis.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


