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Multiuser Detection of Synchronous Code-Division
Multiple-Access Signals by Perfect Sampling

Yufei Huang and Petar M. DjurjcSenior Member, IEEE

Abstract—Code-division multiple-access (CDMA) is a multi- user individually. As is well known, in the absence of user inter-
plexing technique that shows significant advantages over analog ference, the single-user matched filter is optimal in the sense of
and conventional time-division multiple access (TDMA) systems. inimizing the bit-error rate. However, this is no longer true in

This technology has become a driving force behind the rapidly . . :
advancing communications industry. In order to recover the CDMA systems where multiuser interference (MUI) is present.

transmitted signal at the receiver in a CDMA system, demodu- The degraded performance of the single-user matched filter is
lating techniques are engaged, where a prominent role is played by particularly emphasized in the presence of near—far effects. To
the multiuser detector. In this paper, we introduce a class of novel gvercome these disadvantages of the single-user matched filter,

Bayesian multiuser detectors that are constructed by employing multiuser detectors have been developed [1], [4].

perfect sampling algorithms: the sandwiched CFTP and the Gibbs . L .
coupler. We show that the detector based on the sandwiched . Multiuser deteCFors regard the MUI as additional 'nforma'
CFTP can be applied to systems with negative cross-correlations, tion rather than noise. Thus, better performance over single-user

whereas the Gibbs coupler detector can be used without restric- detectors is achieved by processing this information. The op-
tions. A salient feature of the proposed detectors is the use of timum multiuser detector is, however, a combinatorial optimiza-
exact (perfect) samples from posterior distributions. This feature tion problem. Although it can be always solved by exhaustive

provides them with several advantages over detectors based on the . . .
Gibbs sampler. Simulation results on systems with and without search [1], the computational complexity of exhaustive search

near—far resistance demonstrate improved performance of the increases exponentially with the number of users and, there-
proposed detectors over some other popular detectors. In the fore, makes it infeasible for systems with usual capacity. Due to
end, we also discuss some important computational issues of thethe complexity of the optimum detector, much effort has been
proposed detectors. devoted to finding suboptimal linear detectors that can achieve
Index Terms—Code-division multiple-access, coupling from the certain balance between performance and computational com-
past, Gibbs coupler, Gibbs sampler, Markov chain Monte Carlo, yjexity [5]. An example is the decorrelating detector, or decor-
multiuser detection, perfect sampling. S . . o -
relator, which is computationally simple and exhibits relatively
good near—far resistance. However, there is still a large margin
|. INTRODUCTION left between the performance of the linear detectors and the op-

ODE-DIVISION multiple-access (CDMA) [1]-[3] is a “”I‘“m det‘fCtor- I . t A
multiplexing technique that enables multiple users to nrecentyears, wi € advent of poweriul computers, muc

access a common channel simultaneously. In a CDMA systé t’ent|on has been given to multiuser detectors using nonlinear

each user is assigned a unique signature waveform, and %thOdf' Among' th‘?”t‘ afre the detectolrls :.hat Zmr.l)_lﬁy the ;[egh-
data message of the user is then spread by modulating e olt.sijcces's;vefln erierence Cﬁmt(.:e a :on [tr]] 7ey lng Ltjhe
signature waveform. Since the modulated signal has a m multistage interference cancellation algorithm [7] and the

wider bandwidth than that required for simple point-to-poir ecorrelating decision-feedback scheme [8]. In addition, there

communications, a CDMA system is also referred to as spreﬁg detectors using the expectation-maximization (EM) algo-

spectrum system. CDMA systems show significant advantadg m [9]’ genetic algorithms [10], neural networks [11], and
mpling-based methods.

over analog and conventional time-division multiple acceggSampling based methods, especially Markov chain Monte
TDMA) systems, including increased capacity, enhanced ) ' . : :
( ) sy g pacty arlo algorithms (MCMCs) [12], have been intensively studied

privacy and security, and reduced effects of multipath fading. L .
As a result, the technology of CDMA has become a drivin statistics during the past decade. These methods have
' emonstrated excellent performance in solving high-dimen-

force behind the rapidly advancing communications industry.", | optimizati d int i bl A th
Recovery of transmitted signals at the receiver is achiev tpnal optimization and integration probiems. Among them,

by demodulation techniques. A widely used technique callj Gibbs sampler [13] and the Metropolis—Hastings algorithm

the single-user matched filter regards the CDMA channel a ¢] are the most popular algorithms. In the past few years,

single-user channel and considers the detection problem of eHl:W have per.wetrated the signal processing apd communica-
tions community, and as a result, many applications of MCMC
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generated samples are dependent, which may render biasahdrey; = fOT srp(T)y(t)dr is the kth matched filter output.
larger variance in Monte Carlo computations. In 1996, Propyote that the single-user matched filter does not exploit any in-
and Wilson proposed a perfect sampling algorithm callddrmation about the users’ correlations and regards the users' in-
coupling from the past (CFTP) [16], which completely resolvetgrference simply as noise. Therefore, the single-user matched
the drawbacks of MCMC in that it generates i.i.d. samplditer is not optimal in the presence of multiuser interference,
exactly from a desired distribution. Their work has drawn mualthich exists in CDMA systems. To achieve optimum detec-
interest, and as a result, further progress on perfect sampltitmn, one must employ a multiuser detection strategy. From a
has been reported [17]-[19]. Bayesian perspective, the optimum decision is made using the
In this paper, we present a class of new multiuser detect@ussterior distribution ofb. Since nothing is knowra priori
that are developed under the Bayesian framework and impésoutb, a noninformative prior is chosen for, and thea pos-
mented by perfect sampling algorithms. We first discuss theriori distribution ofb can be expressed as
multiuser detector by the Gibbs sampler. Using the Gibbs sgjns|y(7)) 7 €[0, 7]

pler as a building block, we show how the sandwiched CFTP can . I 2
be applied to a system with negative cross-correlations between x exp b / y(r) — Z Abrsi(r)| dr
signature waveforms. Furthermore, we employ a new perfect 202 Jo | —
sampling algorithm called the Gibbs coupler and demonstrate X
how a detailed scheme can be constructed for detection prob- x exp 1 9 Z Aryrb
lems in general systems. Overall, a salient feature of the pro- 202 =
posed detectors is the use of exact samples from the posterior K K
distributions. This advantage improves the performance of the _ Z Z AkAlpklbkbl>>
new detector over the one based on Gibbs sampling. Py
The paper is organized as follows. The problem of optimum (3)

multiuser dete'ctio.n is adtjres;ed in Sgction I A background\%erepkl _ fT su()si(t)dr represents the crosscorrelation
perfec_t samplm_g is provided in SeCt'On lll, where the G.'b etween thdct% and thelth signature waveform. Under the
sampling algorithm, CFTP, and the Gibbs coupler are 'ntr%'ayesian paradigm, we adopt tiiaximum a posterioiMAP)

duced. In Section IV, the implementation of the Gibbs COUpI%retector [23] and themarginalized posterior mod¢MPM)
on multiuser detection of synchronized CDMA signals is Carutector [23], [24]. The MAP detectds,, 4p is the set of

fully studied. Simulation results are presented in Section V. symbols that maximizes the posterior distribution (3), i.e.,

II. OPTIMUM MULTIUSER DETECTION Prap = arg {be?f?ﬁ}Kp(bW(T))} €011 4
A K-user synchronous CDMA system with white Gaussia®d the_z MPM detector calculates the marginalized posterior
noise can be modeled as mode, i.e.,
K (B ) =s bp (b
MPM ) =Sgn wp(bly()) | ,7 € [0, 7]
y(’/‘) = ZAkbksk(T) + 7’L(7‘), TE [07 T] (1) k bc[zl:,l}K
k=L A (5)
where forallk =1,2,... K, where(byspas ) denotes théth ele-
y(r) received signal: ment ofby, pys . Clearly, the MAP detection is basically a com-
sk(7) antipodal signature waveform of theh user: b|_natgr|t;all opkt:mlza_mon prot;:erg,hand Fhe solutlkc])n can be le;)I
A, amplitude of thekth user's signal; tained by exhaustive search. Exhaustive search over a variable
: . i space with large dimensids, however, is computationally pro-
b € {—1,1} bit transmitted by théth user; - : L S b
ddit hite G . . ith hibitively expensive because it involves the calculation of 2
n(7) adartive (\jN : e. at;ssmn noise with zerQg g, Similarly, the MPM detectdsy; 5, requires a muItiQi-
mean an va_nanoe ' mensional summation that again involves the calculatiorf'of 2
T symbol duration.

o i ) o terms. The overwhelming computational requirements of the
The main interest in multiuser detection is to detect correctlyiimum solution has been driving the research on linear and

the transmitted sym?o_ls by each user. In a real system, the a{gpjinear suboptimal solutions with lower complexity. In re-
plitudes of the users’ signals and the noise variance are also ggnt years, more attention has been given to nonlinear detectors,
known to the receiver, and they can be estimated from pilot signich usually provide better performance than linear detectors.

nals. The estimation of these parameters is not of concern in thigong the nonlinear detectors, the ones based on MCMC al-
paper; see [20]-{22] for detailed discussions of this issue. Heggyithms are of particular interest here.

we assume that all the parameters exceptbifseare known,

and our objective is to estimaké’ = [b; by -+ b ]. The ll. BACKGROUND ONPERFECTSAMPLING ALGORITHMS

conventional single-user matched filter makes the decision on ]

each user's symbol separately, and the estimate dfttheser A- Markov Chain Monte Carlo

is expressed as In Bayesian analysis, it is very important to optimize
X or integrate over the posterior distributionx|y), where
by, = sgn(yx) (2 xT =[xy x2 --- xzn] represents avector &f unknown



1726 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

variables, andy denotes the observation data. For practical One main drawback of MCMC sampling is that the burn-in pe-
problems, the dimension of the unknowi¥sis usually large. riodisunknown. Thus, the generated samples canonly be consid-
Then, the required high-dimensional optimization and intered to approximately follow the stationary distribution. In addi-
gration impose a great challenge to conventional numerid¢adn, MCMC methods usually produce highly correlated samples.
techniques, and quite often, these techniques fail to providibe correlation between the samples makes the stochastic explo-
satisfactory solutions. Nonetheless, Monte Carlo methodationless efficientsinceifthe chainistrappedinsomelocalmax-
especially those based on Markov Chain Monte Carlo (MCM@num, it tends to stay around the local maximum for a long time
sampling, have shown excellent performance. Their develdpefore it gets out. Although much work was devoted to overcome
ment has provided the impetus for the recent boom of Bayestiese problems, there was not much success until a complete so-
applications in statistical signal processing. lution was proposed by Propp and Wilson [16]. Their method is
In the multiuser detection problem, our interest lies in enknown as perfect sampling and is calleslipling from the past
ploying Monte Carlo methodology to solving the integrals (Sun{CFTP). CFTP is briefly discussed in Section III-C.
mation) and maximization of the posterior distributions. Unlike
the conventional numerical methods that are deterministic in & Gibbs Sampler
ture, the Monte Carlo methods adopt a stochastic approach. Tamong all the MCMC algorithms, the Gibbs sampler seems
illuminate the general idea of Monte Carlo integration and optie be the most popular one. The Gibbs sampler was first intro-
mization, suppose that we are interested in finding the solutiomgced by Geman and Geman [13] in their study of image restora-
to the following problems: tion. With Gibbs sampling, we usually avoid drawing all the vari-
Jo = arg max p(x|y) (6) ables atthe same time and, instead, sample them a few at a time
and x only. Thereby, a high-dimensional sampling is converted to sev-
eral lower dimensional samplings, which essentially simplifies
Jr :/ Fx)p(x|y)dx (7) the original problem. The Gibbs sampler has the unique feature
x thatitaccepts all the proposed samples from the intermediate dis-
tributions. Toiillustrate the algorithm in some detail, suppose that
we want to sample from the posterior distributjgix|y ). Given
somearbitrary starting valsé® , the Gibbs sampler obtains sam-
ples according to the following iterative procedure.

where f(x) is some function ok. The key for Monte Carlo
solutions is the generation of random samglgs)} from
the posterior distributiong(x|y), wherel denotes the number
of generated samples. The solutién can be approximated by

Jo ~ arg {xc[lil(%)iwlp(X|Y)} (8)

At the tth iteration

and it converges to the true value @6 — oc. The approach Sample wgt) from p (z1]e

is calledstochastic exploratiof25] since it tries to explore the
whole variable space of the unknowns in a random fashion. ThiSample xét) from p lex?),xg_l), . ,x%‘”, y)
methodis more effective whenthe variable space is discrete andfi- .

nite. Another Monte Carlo optimization approachisreferredtoas - @

stochastic approximatiof25], and it uses randomly drawn sam- Sample z’ from p (37 N
ples to approximate the posterior distributions. In this paper, we o ) » o
use the stochastic exploration approach to define the MAP deApparently, for its implementation, the full conditional distri-

t—1 t—1 t—1
(=1) L0-1) (t-1)

el )

7

0,000 y)

tector. The Monte Carlo approximationffcan be obtainedfrom butionsp(zi|x i, y), fori =1, 2,..., N are required, where
M x_; denotes all the components:oéxceptr;. In addition, these

Jp & iZf (X(t)) _ (9) full conditional distributions should be easy for sampling. The
M — joint distribution of the obtained sequenc®’ is shown to con-

Itis shown thatbythe strong law of large numbers, this approximégrge top(x|y) ast — oo [13], [30]. For more information on

tion convergestd; almostsurelyandinmeansquaréés— oo Gibbs sampling, see [26], [27], [29], and [31].

[26], [27]. In general, if the variable space ®fis continuous, ) .

the Monte Carlo approach approximates the original high-dimeft: Perfect Sampling Algorithms

sional optimizations and integrations by much simpler discretePerfect sampling algorithms refer to algorithms that can

optimizations and summations. Further, when the variable sp@smerate exact samples from a desired distribution by running

of xis discrete, the computational complexity ofthe Monte Carldlarkov chains. The first perfect sampling algorithm was pro-

optimization is a function of the sample si&&, which is usually posed by Propp and Wilson and is known as CFTP [16]. CFTP

far smaller than the size of the discrete variable space. was originally designed to generate samples from discrete state
Very often, however, direct sampling frop(x|y) is ex- spaces, but later, its concept was extended to accommodate

tremely difficult. By contrast, MCMC methods can obtairsampling from continuous state spaces [18], [19]. Our interest

samples from such distributions by constructing a homogie- this paper includes algorithms on state spaces of the form

neous Markov chain on the supportgfwhere the equilibrium {—1,1}®, where N is an integer. For further references

distribution of the chain ig(x|y) [14], [26]-[29]. The chain regarding perfect sampling on both discrete and continuous

starts from some initial state, but it takes some transitictate spaces, see [32]-[34].

time that is believed to be long enough for the chain to haveNow, we explain the CFTP algorithm. Suppose that the de-

converged. This transition time is called “burn-in” period. sired discrete state spaseis of sizeM = |S|. The basic idea
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of CFTP is to initiated Markov chains at every possible state ,, @ 111 @

in the state spac® from some time-7"in the past and run them

to time 0. It is noted that all the Markov chains should have tt '
desired distribution as their stationary distribution and at ar ,_,, 111
instant of timet, the same random seé{*) and updating func-

tion® (-, R(t)) are applied to every chain to determine their ne, *--!
states. Suppose that there comes a tirnen all the chains & _ . 1
have reached the same stateNow, if we restart all thelM/
chains from the infinite past but keep the same random se¢ -''-! S
R® and update function® (-, R®) for the transitions during
—T to %, these chains will coalesce tand at the latest &t
The reason is the following. When the chains that started fr¢ -1-1-1; 5 Ty o o
the infinite past reach time-7', they only occupy a subset of Time Time

the M states. Since thé/ chains that originally started from

—T with random seed®® and update function® (-, R®)) o o

coalesce tar at time, so must the subset of th& chains T 1
started from—7" with the random seedB(*) and update func-
tions® (-, R®)). The coalescence aimplies that the effect of
the M initial states has actually worn off. Apparently, sinceth 111 -
chains that have started in the infinite past have coalegcid,

a steady state that comes from the desired distribution. To av £
bias, coalescence is always examined at tirae0. Therefore, * -111 -1
the objective is to find the starting timeZ” from which all the
M chains will coalesce by time 0. With this objective, the CFT
algorithm is implemented by the following iterative scheme:  -1-11 -1-11

States
States

-1-11 -1-11

States

-11-1 -11-1

-1-1-1

-1-1-1
CFTP(T) -3 -2 Time -1 0 -4 -3 T-Irzne -1 o
t— -1, & « S
while ¢t <0 Fig. 1. Realization of the CFTP algorithm. In (a), (b), and (c), the chains did
tet41 not coalesce by = 0. In (d), a perfect sample was generated when the algorithm

started at time-4.
Sy — </)(St—1’ Ut)
if |S] =1 then

return( Sp) starting from different states to Isandwichedetween the two
else paths that started from the extreme states. Obviously, when
CFTP(T" with T’ > T). these two extreme paths coalesce at time 0, all the other paths

coalesce into the same state as well. Therefore, an efficient

We further elaborate on the CFTP algorithm with an exampl&" TP can be carried out by a sandwiched algorithm where only
In Fig. 1, we display a realization of a CFTP algorithm with th hains from the two extreme states are traced and examined

trajectories of the Markov chains. The variable space of inter af coalescence by time 0. The sandwiching effect can also be

contains eight different states, each of which is represented nin Fig. 1, where the Markov. chains are monotonic. It IS
a vector of three binary symbols. These states are listed on ious that the chains are sandwiched between the two chains

vertical axis of the figure. The CFTP trial contains four iteranitiated from[111]and -1 —1 —1J. Successful attempts

tions, each of which is depicted in a sub-figure. In each iterdt @PPlying the sandwiched CFTP have been made in analyses
tion, eight Markov chains are started (one from each state).2APinary images based on the Ising model [16], [33].
perfect sample was obtained when the algorithm was restarted |
at time —4. D. Gibbs Coupler

It has been shown in [16] that CFTP produces a perfectinthe previous section, we have indicated that efficient CFTP
sample in finite time with probability 1. For problems withalgorithms exist only for monotonic Markov chains. However,
large state spaces, the implementation of CFTP often becoriremany cases, monotonic Markov chains are either difficult to
prohibitive due to the heavy computational burden in tracirgpnstruct or even do not exist for the considered problem. In [35]
all the chains. Propp and Wilson pointed out that a practicaliyhd [36], component-updating perfect sampling schemes have
efficient simulation can be accomplished when the designbden proposed. A prominent feature of the algorithms is that
Markov chain ismonotonic[16], [33]. A monotonic Markov they are computationally much more efficient than the CFTP
chain has an updating function that preserves the partial orgéren the chains are neither monotonic nor antimonotonic. Here,
=< on its state space, that i$(x,R) < @(y,R) for all R we refer to these schemes as the Gibbs coupler because they
wheneverr < y. According to the partial order, a maximal andcombine features of both the CFTP and the Gibbs sampler. Like
a minimal state can be determined on the state space. ThenhatGibbs sampler, the Gibbs coupler is designed for problems
any instant of time, the monotonicity will cause all the chainwith large number of variables, and for its implementation, full
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conditional distributions are needed. However, in contrast to there: = 1,2, ... K, and

Gibbs sampler, the Gibbs coupler generates i.i.d. samples ex- K
actly from desired distributions. Now, we explain the Gibbs cou- 7 = Ay — Z Ai Ay priby. (11)
pler in more detail. Le8® = {8 s{" ... 8} denote the k=1 ki

support ofx at timet, whereSi(t) 1i=1,2,..., N represents The distri_butions described by (1Q) are Bernoulli distr@bution_s,
the support of componeny; at timet. Then, at any transition and d_rawmg_a sample from them is analogous to a coin-tossing
t, the Gibbs coupler only examines the proposals of the coffXPeriment i.e.,

ponents and records & ¢ = 1,2, ..., N the possible values 5. — { L if Ui <p(bi=1lb,y(r)),7 €[0,T] (12)

that theith component could take from running the Gibbs sam- ’ L, otherwise

pler givenx'") € S ;. In the case, when the variable space ¥hereU; is arandom number froi(0, 1). In fact, (12) is also
binary S® can only be{—1}, {1}, or { —1, 1}. Finally, at time the updating function of the Markov chain. Now, once we know

t = 0, if S© is shrunk to a singleton, then the unique state Eow to draw samples from the full conditional distributions, the

a perfect sample from the desired distributions. We outline t ébbs sampling from (;3) Is s_imple Eflnd follows the_ standa_rd iter-
Gibbs coupler algorithm with the following chart: ative procedure described in Section 1lI-B. One interesting ob-

servation here is that has exactly the same expression as that
of the decision statistics in a multistage detector. The only differ-
ence is that in the Gibbs sampling detector,itheare the most
recent samples, whereas in a multistage detector, they are the
. estimates obtained from the previous stage. In both cases, (11)
t—t+1, 10 . . .
. ; can be considered to be a process of removing the interference
while ¢ <= N . . :
o of other users from the signal of the desired user. A multistage
update S;” using . Iy :
’ S(t’l)) detector uses itto make a hard decision after interference cancel-
ey Sy

Gibbs coupler( 1):
t — =T
while ¢ <0

o) ot-1) s
p (“771|Sl e S S lation, whereas the Gibbs sampler does not make any decision

if size of all Si(o) for ¢ = 1,2,...,N is directly withz;. Insteady; affects the posterior probabilities of
equal to 1 then the symbols that thé&th user could have transmitted. After sev-
return ( S©) eral iterations, a final decision, say, using the MAP estimator
else onb,, is made. Therefore, we view the Gibbs sampler as a sto-
Gibbs coupler (77 with 17 > T). chastic version of the multistage detector. Intuitively, we find

the Gibbs sampler scheme more versatile than the multistage

We can see that the overall framework of the algorithm stfi€tector, although in some cases, it might not be as efficient.
follows that of the CFTP. This framework actually guarantees ON€ important parameter of the Gibbs sampler is the length
that unbiased samples from the stationary distribution are ¢i-Purn-in period since only samples after the burn-in period are
tained if coalescence occurs. However. unlike the CETP. thghsidered to be samples from the true distribution. In practice,
main coupling method of the Gibbs coupler is component basdle burn-in period is usually estimated heuristically [15]. Quite

often, however, sucad hocestimates can be poor. The ultimate

IV. MULTIUSER DETECTION BY PERFECTSAMPLING remedy to this problem is perfect sampling.

A. Gibbs Sampling Multiuser Detector B. Multiuser Detection by the Sandwiched CFTP

Prior to the discussion of multiuser detection by perfect sam-It was stated before that the sandwiched CFTP is only ap-
pling, we discuss multiuser detection by Gibbs sampling. Thdicable when a monotonic Markov chain exists. To apply the
Gibbs sampling scheme described in this section will be usedsandwiched CFTP, we first need to choose an algorithm to con-
construct the Markov Chains when applying perfect samplirsgruct the Markov chains. From the discussion in the last sec-
algorithms. As has been indicated in Section IlI-A, our objedion, the Gibbs sampler is a natural choice. Next, we need to
tive is to draw samples from the posterior distribution, and onexamine if monotonicity exists on the updating function (12) of
the desired number of samples is acquired, the proposed detee-Gibbs sampler. It turns out that monotonicity associated with
tors are easily obtained. To implement the Gibbs sampler, \{&2) holds only for a system with negative and equal cross-cor-
need the full conditional distributions derived from the posteelations, i.e., fop;; = p < 0 Vi # j and with the assump-
rior distribution. For our multiuser detection problem, they cation that all theAs are positive. This can be seen if we impose

be directly obtained from (3) as a partial order orb such thatb = b if b, = —1 whenever
p(b; = 1|b_,),y(7), 7 € [0,T] b; = —1.Then, prob_ability (10) becomes an increasing function
K of b; on such a partial ordgr. As a result, it can be deduced that
1 @(b,U) < &(b,U)if b < b, which complies with the defini-
= | 245y — 2 A; Ay pribi N ) = N - .
XD 5,2 Y k=;#i kPkiDk tion of monotonicity. Under this partial order, the two extreme
L states can easily be determinedds,. = [1 1 --- 1] and
_ [1 Texp <_%7Z>} (10) bl =[-1 -1 = —1]. Then, the p_erfec_t samp_les are
o generated by following the scheme described in Section IlI-C.

18™ s also called aummary statén [37] because it summarizes the state_Th(_are’ only two chains are checked for coalescence: the chains
of z;. initiated from the two extreme states,.. andb,;,.
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We note that sandwiched algorithms can always be usetymber for theith update at time, RZ@ is less than or equal
regardless of the existence of monotonicity on variable spacgs. (" (»; = 1) (greater than or equal " (z; = 1)), 2"
They can be employed whenever there exist two chains thah only be equal to 11), which will be the case with all

always sandwich the remaining chains during the chain propagde other Markov chains. On the other handgif’ is between
tion. By sandwiching, we mean that two of the chains always haxet)(xi =1) andlfﬁt)(wi = 1), the value of=? will be uncer-

the largest and the smallest probability of generating a 1 by the | this case. we leave the supp@ff) as {-1, 1}. Thus
Gibbs sampling transition. We observe that with the Gibbs sale. | date of the'su Oﬂft) can be formulated a’s '
pler, the chains fromthe all 1 states and-allstates sandwich the P Ppary

. t t
probabilities of all the other chains in cases of unequal negative,, O o {1}, it RV < LY (2;=1)
cross-correlation. This implies that in our problem, we canrela®i = =% (S—i’ R; )I (-1}, it RV > U (z;=1)-
the condition of equal negative crosscorrelations and allow for {-1,1}, otherwise

unequal negative cross-correlations. Hence, we conclude that _ S (14)
the sandwiched CFTP is applicable to multiuser systems wifiiS 0bvious that the choice of sandwich distributions will affect

negative crosscorrelations and that the two sandwiching chalig rate of coalescense. If the distributions are chosen according
are the ones initiated from the all 1 and-all states. to

Lgt) (z;=1)= (1>nin(t> {p (xz = 1|x(_tz>} (15)
C. Multiuser Detection by Gibbs Coupling e8]
In the last section, it was pointed out that the sandwiched @ and ®
CFTP is possible for the special case of negative cross-corre- Ui (i =1) = e {P (972 = 1|X—i)} (16)
X_;€0

lations. In general, however, thg;s can be either positive or i .
negative. Therefore, the sandwiched CFTP algorithm is not 4J€Y achieve the largest probability of coalescense, and hence,

propriate in a general situation. To find a more general perfé ir use leads to fastest coalescense. We also notice that for as
sampling algorithm, we turn our attention to the Gibbs Coup|égng as the calcplation of the s_andwich dis'tributions is straight-
In [35] and [36], detailed Gibbs coupler algorithms are Coﬁgrward, the Gibbs coupler is computationally much more

structed for problems modeled by Markov random fields Whe?gﬁdent than the CFTP, especially for high-dimensional state

neighboring properties can be used to facilitate the compufaces- This is because the Gibbs coupler algorithm only needs
calculate the two sandwich distributions for every transition,

tion. However, these algorithms are not suited for the muItius'i—f‘)rd he C cul h . babiliti £ all
detection problem because here, no such neighboring proger= the CFTP must calculate the transition probabilities of &
fYMarkov chains.
I

ties are assumed. Hence, a special algorithm is needed to a X . . )
P g FS he key of the implementation of the Gibbs coupler in our

the Gibbs coupler to multiuser detection. We show in the sequel’ ' - . S
how it can be designed. multiuser detection problem is the determination of the sand-

From the overall framework of the Gibbs coupler describe\'ﬁiCh distributions. on the _fuII. conditional dist.ributions. Recall
in Section 1lI-D, we can see that one critical issue is the effll af[ the full cond|t|opal distributions are defm_ed by (1(.))' We
cient determination of the support contéiﬁf) for all is at every notice that the maximum and the.m|n|mum in (10) V‘_"th re-
time instantt. Efficient updates can be achieved by introducing_peCt tob_; can easily be determined only by checking the

. I ; : fA; Appr:. Thus, at timef, the sandwiched distributions
sandwich distributionat every update. At any instant of time 'gn O1A; A P ! T :
sandwich distributionigt)(-) andU(t)(_) are defined by defined by (15) and (16) are readily derived as (17) and (18),

shown at the bottom of the page, whete= A; Appr;, IV C

LY @=1)<plai=1y) <UP(z;=1),i=1,2,...,N {1,2,...,i—1i+1,... K} contains the indices of the el-

(13)
withy € %), wheras®) = {55”, S...88. 80, ,5}@3}
denotes the collection of supportsxof; at timet with the indi-
vidual component supports at timdeing{—1}, {1}, or { —1,

ements in{béf)}{?'zljk#i that have not coalesced at timieand

IV c {1,2,...,i—1,i+1,..., K} contaiins the indices of
the remaining elements ifb."” 1—1 1z (the ones that have co-

alesced at time). Then, at any time, the algorithm updates

1}. We notice that the definition (13) indicates that the two sandlhe support of théth component according to (14), and the co-

wich distributions bound all the probabilities ef = 1 for

alesced state at time 0 is recorded as a perfect sample from the

every Markov chain in between. Therefore, if the same randgposterior distribution (3).

(®) (t)
L7 (b;=1) = |1+exp = —Aiyi + Z | Bre| + Z Brby; a7
i keIl kel
and
i, -1
() _ (t)
Ui (bz 1) 1+ exp ? _Aiyi — Z |/3Z| — Z ﬁkbk (18)
i keIl kelly
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From the above discussion, we can see that the Gibbs ¢/ 1’
pler is actually equivalent to the sandwiched CFTP in the ca
of negative cross-correlation. In that case, the sandwich dist | S
butions of the Gibbs coupler are always equal to the transitis
distributions of the two sandwiching chains in the sandwiche
CFTP. Hence, the Gibbs coupler may be viewed as a gene
perfect algorithm for multiuser detection.

Note that the Gibbs coupler scheme introduced here is coé
putationally very simple and much more efficientthanthe CFT |
However, as with other perfect sampling algorithms, the co . Decorelator
lescing time of the Gibbs coupler is a random variable, ar =—=a 2stage
except for systems with negative cross-correlations where t | .{ |¢—= 3 stage
Gibbs coupler is equivalent to the sandwiched CFTP, the cc N MQZ‘_‘Z’;CC%%
vergence rate of the Gibbs coupler is usually smaller than that — NoMUI
the CFTP. In general, the Gibbs coupler has a relatively fastcc 44 . . . . .
vergence if the Gibbs samplers in the corresponding CFTP al¢ SNF?(C,B)
rithms mix rapidly. In [35], for problems with Markov random
fields, it is argued that fast coalescence of the Gibbs couplerFig. 2. BERs of the proposed detectors of the first user as functions of SNR.
expected if the interaction of the field is weak. Analogously, ii"e" aré 31 users with equal power.

multiuser detection, fast coalescence is expected when there are ) ]
small cross-correlations in the system. 1) MAP detector using the Gibbs coupler (MAP-GC);

2) MAP detector using the Gibbs coupler and Gibbs sampler
(MAP-GCGS);
3) MPM detector based on the Gibbs coupler (MPM-GC);

In the previous sections, we discussed the methods for4) MPM detector based on the Gibbs coupler and Gibbs
drawing perfect samples from posterior distributions. Next, sampler (MAP-GCGS).

we show several ways of computing the output of Bayesian
detectors.

First of all, we need to collect a certain number of samples for
the Monte Carlo approximation that we suppose is equto ~ We conducted several experiments that demonstrate the per-
There are two ways of obtaining the samples. If i.i.d. samplé&&mance of the proposed Bayesian detectors and compare it
are desired, each sample is drawn by an independent Gibbs d#iip the performance of other existing techniques.
pler. Although, in general, these samples will provide more ac- The first two experiments were designed to study the pro-
curate results, in many cases, the computational requiremen@@sed detectors on systems with negative cross-correlations.
obtain them might be overwhelming. Another way of drawind) these experiments, a 31-bit Gold sequence was used as
samples is to use the Gibbs coupler only as a gauge to det8gt spreading code of a 31-user system. As was indicated in
convergence (burn-in) of the Gibbs sampler. More Speciﬁca||§,ection IV-B, monotonic Markov chains can be constructed
we first obtain a perfect sample from the Gibbs coupler, ar@r these systems, and the Gibbs coupler scheme is equivalent
then, we switch to the Gibbs sampler using the obtained perféetthe sandwiched CFTP algorithm. In the first experiment,
sample, as an initial state. Note that the subseqiiesamples the users had equal power. Bit error rates (BERs) of the
generated by the Gibbs sampler are also exact samples fromVHP-GCGS and MPM-GCGS detectors were examined under
posterior distributions, but they are correlated. Obviously, thififferent SNRs. In formulating the decisions, the detectors
approach represents a tradeoff between performance and céﬁﬁd 300 Samples. The results of the first user are illustrated
putational intensity. in Fig. 2. The results of the the decorrelating detector and

Once theM samples are acquired, we can compute both tHee multistage (two-stage and three-stage) detectors with
MAP and MPM detectors according to the Monte Carlo approﬁlecorrelating first stage are also presented. The theoretically
imations. To compute the MAP detector, the posterior probattainable performance in the absence of multiuser interference
bility of each obtained sample is calculated, and the MAP dis plotted as a lower bound. To compute the BER at a tested
tector is the one that yields the largest posterior probability. fNR, Monte Carlo trials were performed, where the number
the other hand, to compute the MPM detector, say, forithe Of trials was precomputed by assuring that there would be at
user, one only needs to consider the sample value iof each least 200 errors among the trials with no MUI. From the p|0t,

D. Calculating the Proposed Detectors

V. SIMULATION RESULTS

sample, and the MPM detector &fis set to we see that the curves corresponding to the MAP-GCGS and
the MPM-GCGS detectors almost overlap, which indicates
M - . . ..
(B ) — sgn 1 Zb(t) (19) similarity in the performance of these detectors. In addition,
MPM )= — the BERs of the two detectors are almost the same as the BER

of the single user, especially at high SNRs. Compared with
wherebgt) is thetth sample value of;. other tested detectors, the proposed detectors always perform

With the two approaches of drawing samples and the two chetter, and the performance improvement is especially evident
teria, we can define four detectors. at higher SNRs.
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TABLE | 10 T T T T
AVERAGE COALESCING TIME 1" OF THE GIBBS COUPLER AT EACH TESTED
SNRIN THE FIRST EXPERIMENT -

dB 0 2 4 6 8 10

T || 3.731 | 4.064 | 3.8427 | 3.3212 | 2.8548 | 2.8376

Matched filter

107 T T T : — |- Decorelating detector
e elating detector
Decor 9 107 |6—= 2 stage

o——o 2 stage o  3stage
a——=a 3 stage g

BER
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w10 : SNR(dB)
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Fig. 4. BERSs of the proposed detectors of the first user as functions of the
SNR. There are four users with equal power. The cross-correlation matrix of
the signature waveform is given by (20).

TABLE I
AVERAGE COALESCING TIME T' OF THE GIBBS COUPLER AT EACH TESTED
3 ) ) ) ) ) ) SNRIN THE EXPERIMENT WITH A FOUR-USEREQUAL-POWER SYSTEM
-10 -8 -6 -4

-2 0
SNR, -SNR, (dB)
dB 0 2 4 6 8 10

Fig. 3. BERSs of the proposed detectors on the first user as functions of power T
of the interference users.’ There are 31 users, and SNR of the first user is 8 dB.

2.3123 | 2.5738 | 3.1 | 5.8346 | 18.2608 | 52.5285

In Table I, we have listed the average coalescing times (dRe system setting used in [8, ex. 2]. To be specific, there were
pressed in steps) of the Gibbs coupler at each SNR. SurpfRur users in the system, and the cross-correlation matrix of the
ingly, in all the cases, these times are very small. Compared wa@responding signature waveforms was given by

the time needed to generate the desired 300 samples that follow 7T -1 3 3

the first perfect sample, the computation for detection of coa- _iy-1 7 3 -1 (20)
lescence is considerably smaller. Therefore, in this experiment, p= 71 3 3 7 -1

the use of the Gibbs coupler is preferred over the Gibbs sampler 3 -1 -1 7

because for a small price, we can obtain perfect samples fr@tmoughout these two experiments, 11 samples were recorded
the posterior distributions. for the Monte Carlo computation. First, there were four users

In the second experiment, we studied the near—far effectviith equal power. We evaluated the BERs of MAP-GC,
the above 31-user system. This time, the SNR of the first u3dPM-GC, and MAP-GS of the first user for various SNRs. The
was fixed at 8 dB, and the strength of the remaining 30 useesults are shown in Fig. 4. In the figure, we also plotted the
was allowed to vary from-10 dB below to 6 dB above that curve corresponding to the optimum MAP detector, which was
of the first user. Again, the BERs of the MAP-GCGS and theomputed by exhaustive search. The results demonstrate that
MEM-GCGS detectors were examined. The results are depicted BER of the MAP-GC detector is slightly better than that
in Fig. 3 along with those of the decorrelator and the multistagd the MPM-GC and MAP-GCGS detectors and that it almost
detectors. Since the decorrelator is near—far resistant, we seedlatlaps with that of the optimum detector. Again, even though
the BERSs of the decorrelator do not change with the changetbé multistage detectors are clearly better than the decorrelator,
interference strength. The BERs of the decorrelator, howevtreir performance is inferior to that of the proposed detectors
are too large and too far away from the bound. Notice that tathigh SNRs. For example, we observe that for the same noise
other tested detectors dramatically outperform the decorrelatexel, the proposed detectors have a gain in signal power of 0.5
What is more, they all approach the single-user lower boun at BER of 10 and 1.5 dB around BER of I8. Similarly,
when the powers of the interference users are at 6 dB. The twe also recorded the average convergence times of the Gibbs
Bayesian detectors have lower BERs than the two multistageupler at various SNRs, and they are presented in Table II. It is
detectors throughout the tested region. Their performance gaiteresting to notice that unlike in the first experiment, the time
over the multistage detectors is maximal when the interferen€eincreases with the increase of SNR. To explain the effect,
users have a power ef6 dB below that of the first user. we need to consider the relationship between the coalescing

In the next two experiments, we tested the proposed démnes and the users’ cross-correlations, as well as the effect
tectors in a scenario that would allow for gaining insight intof the noise on this relationship. First, recall that the Gibbs
asynchronous and bandwidth efficient systems. We adoptamlipler has slower coalescing times on systems with higher
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Fig. 6. BERs of the detectors obtained by the Gibbs sampler as functions of

) . . burn-in period. There are four equal-power users at 8 dB. The cross-correlation
Fig. 5. BERs of the proposed detectors of the first user as functions of theytrix of the signature waveform is given by (20).

SNR difference between the interference users and the first user. There are
four users in the system, and the SNR of the first user is fixed at 10 dB. The

cross-correlation matrix of the signature waveform is given by (20). the MPM-GS detectors as functions of the “burn-in” period. For
comparison, we also displayed the BERs of the MAP-GCGS
cross-correlations between the users’ signature waveforraad the MPM-GCGS. Several observations can be made from
Second, note that the noise would make the cross-correlatioms figure. First of all, the BERs of both the MAP-GS and the
less effective. This means that with the increase of noise lewsIPM-GS detectors approach that of the MAP-GCGS detector
the detectors tend to underestimate the cross-correlationsasfthe burn-in period increases. The reason is that with the in-
the system. In the extreme, when the noise level is very higirease of the burn-in, the subsequent samples are closer to the
the detectors would simply consider the multiusers’ signalsie posterior distribution, which in turn results in better ac-
as independent. In this experiment, when the SNR is loayracy in the calculation of the MAP and the MPM detectors.
the detectors simply see low cross-correlations in the systeBgcond, it takes both detectors almost 300 burn-in iterations to
and therefore, coalescing is relatively fast. With the increaapproach the performance of the MAP-GCGS detector. Clearly,
of SNR, the high cross-correlations of the users’ waveforntisis time is much longer than the average coalescing time of the
become more effective in slowing down the coalescence.  Gibbs coupler that is only about 18 iterations in duration. Can
In the next experiment, we tested the near—far effect on thig then claim that the actual convergence time of the Gibbs sam-
four-user system. Again, we fixed the SNR of the first user, thiger is longer than the coalescing time of the Gibbs coupler? Our
time at 10 dB, and let the SNRs of the remaining users vary. Theswer is no. Rather, we see an equivalence between the con-
experimental results are illustrated in Fig. 5. We see that with thiergence time of the Gibbs sampler and the coalescing time of
increase of interference strength, the proposed detectors andlieeGibbs coupler. We elaborate on this point in the following.
multiuser detectors have better performance. In addition, th&ince Monte Carlo trials are run to compute a BER, intuitively,
are all able to achieve the single user bound when the SNRveé think that there is a strong correlation between the changes in
the interference is 6 dB above that of the first user. Itis clear tHAER and the actual number of converged trials. To be specific,
the multistage detectors improve significantly over the matchéte more trials converged, the better the BER of the detector.
filter and the decorrelator. In addition, the proposed detectd¥®ew, from the average coalescing time of the Gibbs coupler,
provide further reduction of BERs, and they almost perform &g conjecture that there was a considerable amount of trials that
the optimum detector. converged by the 18th iteration. As a result, there would be a big
We then wanted to compare the raw Gibbs sampler detétyprovement in BER if the detectors used generated samples
tors with our proposed detectors. The objective of this expeafter the 18th iteration. We find that our conjecture agrees with
iment was to demonstrate and further stress the advantagethefscenario shown in Fig. 6, where big improvements in BERs
the perfect sampling solutions over the Gibbs sampler from baththe two Gibbs sampler detectors indeed happen before and
computational and performance perspectives. In the experimergund the 18th burn-in iteration. After 18 iterations of burn-in,
we continued to use the above four-user system setting, buttive BER curves decrease rather gradually and stretch on until
focused on a specific scenario of equal-power users with SdRout 300 iterations, when the change becomes close to steady.
fixed at 8 dB. We applied the Gibbs sampler on the system ambis indicates that there was also a great number of trials that
computed the MAP and the MPM detectors using 11 samplesnverged after 18 iterations and that by the 300th iteration, al-
after burn-in. Note that the burn-in period is vaguely defineghost all the trials converged. Even though we cannot prove our
and that Markov chains converge gradually. For convenienadgim, it is quite reasonable to think that the actual mean conver-
we denoted the two detectors by “MAP-GS” and “MPM-GS,gence time of the Gibbs sampler is not 300 iterations and that it
respectively. In Fig. 6, we plotted the BERs of the MAP-GS anid comparable with the mean coalescing time of the Gibbs cou-
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pler. Then, why does it take 300 burn-in steps for all the Gibt **
sampler trials to approach the performance of the MAP-GCC
detector? The reason is the way ti@ hocburn-in is used in ab
the experiment. There, as well as in practice, oncadaioc
burn-in period is determined, it is applied to all the Gibbs san ,
pler trials. These trials are independent of each other, and s
of them may converge faster, whereas others converge slové
and the time of convergence is longer than the applied burng 2r
period. However, to achieve an equivalent performance as ws
converged samples, this “one-size-fits-all” burn-in period mu"1
be at least as long as the burn-in period of the trial with slowe
convergence. We have indicated that in our experiment, 30C
the approximate duration of the burn-in period of the trials wit |
slowest convergence. Consequently, the two Gibbs sampler
tectors require a burn-in period of 300 iterations for each tri , . . s .
to approach the performance of the Gibbs coupler detector.  °* o O ssareton o3 035
has been stressed throughout this paper, the determination of
the burn-in period in Gibbs sampling with certainty is an ur"Eig._?. Plot of CPU time for computing the MAP-GC detector as a function

. o of different crosscorrelations. There are five users.
solved problem. Wittad hocapproaches, we will either over-
estimate or underestimate the burn-in period. With an underes-
timated burn-in period, the performance of the correspondingmber of users té& = 5, and set equal cross-correlation be-
Monte Carlo approximation is degraded. On the other hand, taegen the waveforms of the users’ signatures. We recorded the
is demonstrated in the experiment, to guarantee good perfagean CPU time for computing the output of the MAP-GC de-
mance, we will have to choose a much overestimated burnt@etor as a function of increase cross-correlations. The results
interval for most of the trials. Apparently, this entails a wastere displayed in Fig. 7. We notice that the CPU time increases
of computation for most of the trials. In this respect, the perfetapidly with the increase of cross-correlations. This result im-
sampling algorithms like the Gibbs coupler have clear advaplies that the detectors computed by the Gibbs coupler are more
tage over Gibbs sampling because they are able to determinefihior systems with small cross-correlations.
coalescence for each trial separately. Therefore, they not only at-
tain better performance but may also be computationally more VI. CONCLUSION

efficient than the Gibbs s-ampler. ) We applied perfect sampling algorithms including the
Now, we turn to the third observation. We see that the tWo, ,qwiched CETP and the Gibbs coupler to compute the
detectors based on Gibbs sampling cannot approach the BgRp and MPM detectors for synchronous CDMA signals. We

of the MAP-GC detector, which has a smaller BER than that afioquced several methods for drawing samples and discussed
the MAP-GCGS detector. The difference between the two dgie corresponding detectors. Numerical simulation results for

tectors based on Gibbs coupling is that the MAP-GC detecigg,a|.power and near-far effect scenarios on a 31-user system

uses independent samples, and the MAP-GCGS detector opglnonstrated better performance of the proposed detectors
ates with correlated samples that are generated from a singlg, he decorrelator and multistage detectors. Simulations
Markov chain. The problem of using samples from a singlgs, showed better performance of the proposed detectors in

Markov chain is that once the chain enters a high density r€5entially asynchronous channels. An experiment was also

gion, it tends to stay there for a long period before it moves opfnqycted to illustrate several advantages of Gibbs coupling

of the region. As a result, the collected samples could all corgge Gibbs sampling when used for multiuser detection. Finally,
from the same high-density region. If this high-density regiofe priefly addressed computational issues of the proposed
is near a local optimum but not within the maximum density rgxethods. We indicated that the computational time of the Gibbs

gion as desired, the subsequent Monte Carlo approximation fof njer algorithm increases rapidly with the cross-correlations
the MAP or the MPM detectors would be biased. One solutigfnveen the waveforms of the users’ signatures.

to the problem is to increase the sample size so that the number
of samples can be large enough to include the maximum den-
sity region. Apparently, in our case, the detectors based on Gibbs
sampling used more than 11 samples to match the performanc&he authors thank the anonymous referees for their sugges-
of the MAP-GC. This observation suggests that detectors bagies and comments.
on Gibbs coupling can achieve the same performance as the de-
tectors based on Gibbs sampling with fewer samples, which is REFERENCES
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