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Recent developments have demonstrated that particle filter-
ing is an emerging and powerful methodology for sequen-
tial signal processing with a wide range of applications in
science and engineering. It has captured the attention of

many researchers in various communities including those of signal pro-
cessing, statistics, and econometrics, and this interest stems from its po-
tential for coping with difficult nonlinear and/or non-Gaussian
problems. Based on the concept of sequential importance sampling and
the use of Bayesian theory, particle filtering is particularly useful in deal-
ing with nonlinear and non-Gaussian problems. The underlying princi-
ple of the methodology is the approximation of relevant distributions
with random measures composed of particles (samples from the space of
the unknowns) and their associated weights.

In this article, first we present a brief review of the particle filtering the-
ory, and then we show how it can be used for resolving many problems in
wireless communications. We demonstrate its application to blind equal-
ization, blind detection over flat fading channels, multiuser detection,
and estimation and detection of space-time codes in fading channels.

Introduction
Particle filtering is a sequential Monte Carlo methodology where the ba-
sic idea is the recursive computation of relevant probability distributions
using the concepts of importance sampling and approximation of proba-
bility distributions with discrete random measures. The earliest applica-
tions of sequential Monte Carlo methods were in the area of growing
polymers [19], [49], and later they expanded to other fields including
physics and engineering. Sequential Monte Carlo methods found limited
use in the past, except for the last decade, primarily due to their very high
computational complexity and the lack of adequate computing resources
of the time. The fast advances of computers in the last several years and
the outstanding potential of particle filters have made them recently a
very active area of research. Their potential for parallel implementation
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represents additional impetus for their development. The
current interest in particle filtering for signal processing
applications was brought on by [17]. Recent reviews and
accounts of new developments on the subject can be
found in [3], [10], and [11].

A large portion of the theory on sequential signal pro-
cessing is about signals and systems that are represented
by state-space and observation equations, that is, equa-
tions of the form

x f x u

y g x v

t t t t

t t t t

=
=

−( 1 , )
( , )

(1)

where y t is a vector of observations, x t is a state vector,
g t ()⋅ is a measurement function, f t ()⋅ is a system transition
function, u t and vt are noise vectors, and the subscript t
denotes time index. The first equation is known as state
equation, and the second, as measurement equation. The
standard assumptions are that the analytical forms of the
functions and the distributions of the two noises are
known. Based on the observations y t and the assump-
tions, the objective is to estimate x t recursively.

The method that has been investigated the most and
that has been most frequently applied in practice is the
Kalman filter [1]. The Kalman filter is optimal in the im-
portant case when the equations are linear and the noises
are independent, additive, and Gaussian. In this situation,
the distributions of interest (filtering, predictive, or
smoothing) are also Gaussian and the Kalman filter can
compute them exactly without approximations. For sce-
narios where the models are nonlinear or the noise is
non-Gaussian, various approximate methods have been
proposed of which the extended Kalman filter is perhaps
the most prominent of all [1].

The particle filtering method has become an impor-
tant alternative to the extended Kalman filter. With parti-
cle filtering, continuous distributions are approximated
by discrete random measures, which are composed of
weighted particles, where the particles are samples of the
unknown states from the state space, and the particle
weights are “probability masses” computed by using
Bayes theory. In the implementation of particle filtering,
importance sampling plays a crucial role and, since the
procedure is designed for sequential use, the method is
also called sequential importance sampling. The advan-
tage of particle filtering over other methods is in that the
exploited approximation does not involve linearizations
around current estimates but rather approximations in
the representation of the desired distributions by discrete
random measures.

In this article we discuss the use of particle filtering in
several important problems in wireless communications.
Figure 1 presents a diagram that sorts out the addressed
problems into two groups, one related to single-user sys-
tems, and the other to multiple access systems. For single
user systems, the interest revolves around detection in flat
fading and equalization, where the emphasis of the latter
is on time-invariant, time-variant channels, and orthogo-
nal frequency division multiplexing (OFDM) systems.
For multiple access systems, the focus is on particle filter-
ing for multiuser detection in code division multiple ac-
cess (CDMA) systems and space-time decoding in fading
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Notation

ak kth coefficient of an autoregressive (AR) process
bk kth coefficient of a moving-average (MA) process
C chip-rate (processing) gain
C code and modulation matrix
c()⋅ code and modulation function
ft()⋅ system transition function at time t
g t()⋅ measurement function at time t
h t communication channel at time t
m running index for particles or trajectories
K number of users in a CDMA system
L order of communication channel
� symbol alphabet
M total number of particles
� ( , )µ σ2 Gaussiandistributionwithmeanµ andvarianceσ2

� c ( , )µ σ2 complex Gaussian distribution with meanµ and
variance σ2

NT number of transmit antennas
N R number of receive antennas
π()⋅ importance sampling function
p ()⋅ probability distribution function
ra order of an AR process
rb order of an MA process
R correlation matrix
� channel covariance matrix
s t symbol transmitted at time t
σ2 noise variance
t discrete time index, where t ∈�

T size of a frame of symbols
Ts symbol duration
τ continuous time index
u t system noise vector at time t
vt observation noise vector at time t
wt

m( ) weighting coefficient of particle m at time t
wt

m*( ) nonnormalized weighting coefficient of particle
m at time t

x t system state vector at time t
x0:t { , , , },x x x0 1 K t a trajectory of states
x t

m( ) mth particle at time t
x0:

( )
t

m mth trajectory of particles
ξ k signature of kth user in CDMA transmission
y t observation vector at time t
y0:t { , , , },y y y0 1 K t a sequence of observations
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channels. In all these cases, the first step is de-
fining the problem with state-space represen-
tation. For example, a general baseband
communications model for a fading channel
can be written as

x f x u

s h

t t t t

t t t ty v

=

= +
−( , )1

�

(2)

where yt is the discrete time signal received
at the receiver, and x t is the state of the sys-
tem composed of vectors of transmitted
symbols s t and fading channel coefficients
h t . The state varies in time according to a
known function f t which describes a
Markov process driven by the noise u t . Fi-
nally, vt is additive channel noise. The pri-
mary objective is to sequentially detect the transmitted
symbols and/or estimate the channel as the observa-
tions arrive. From a Bayesian point of view, this implies
obta in ing es t imates o f p s yt t t( , | ):h 0 , where
y y y yt t0 0 1: { , , , }= K , which is exactly what particle fil-
ters are designed for. Many other problems in wireless
communications can be described similarly as by (2),
some of which are presented in the sequel.

Fundamentals of Particle Filtering
Consider a system/signal with a state-space representa-
tion given by (1). As already pointed out, the main task of
sequential signal processing is the estimation of the state
x t recursively from the observations y t . In general, there
are three probability distribution functions of interest,
and they are the filtering distribution p t t( | ):x y 0 ; the pre-
dictive distribution p t l t( | ):x y+ 0 , l ≥1; and the smoothing
distribution p t T( | ):x y 0 , where T t> . All the information
about x t regarding filtering, prediction, or smoothing is
captured by these distributions, respectively, and so the
main goal is their tracking, which is obtaining p t t( | ):x y 0
from p t t( | ):x y− −1 0 1 , p t l t( | ):x y+ 0 from p t l t( | ):x y+ −1 0 , or
p t T( | ):x y 0 from p t T( | ):x y+1 0 . The algorithms that exactly
track these distributions are known as optimal algo-
rithms. In many practical situations, however, the opti-
mal algorithms are impossible to implement, primarily
because the distribution updates require integrations that
cannot be performed analytically or summations that are
impossible to carry out due to the number of terms in the
summations.

For the joint a posteriori distribution of x 0 , x1 , K, x t ,
in case of independent noise samples which are assumed
throughout the article, we can write

p p p pt t
k

t

k k k k( | ) ( | ) ( | ) ( | ): :x y x y y x x x0 0 0 0
1

1∝
=

−∏ .
(3)

It is straightforward to show that a recursive formula for
obtaining p t t( | ): :x y0 0 from p t t( | ): :x y0 1 0 1− − is given by

p
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(4)

Since the transition from p t t( | ): :x y0 1 0 1− − to p t t( | ): :x y0 0 is
often analytically intractable, we resort to methods that
are based on approximations.

In particle filtering, the distributions are approximated
by discrete random measures defined by particles and
weights assigned to the particles. If the distribution of in-
terest is p x( ) and its approximating random measure is

{ }χ =
=

x wm m

m

M( ) ( ),
1 (5)

where x m( ) are the particles, w m( ) are their weights, and
M is the number of particles used in the approximation, χ
approximates the distribution p x( ) by

( )p x w x x
m

M
m m( ) ( ) ( )≈ −

=
∑

1

δ
(6)

where δ()⋅ is the Dirac delta function. With this approxi-
mation, computations of expectations (which involve
complicated integrations) are simplified to summations,
that is, for example,

E g X g x p x dx( ( )) ( ) ( )=∫ (7)

is approximated by

( )E g X w g x
m

M
m m( ( )) ( ) ( )≈

=
∑

1

.
(8)

The next important concept used in particle filtering is
the principle of importance sampling. Suppose we want
to approximate a distribution p x( )with a discrete random
measure. If we can generate the particles from p x( ), each
of them will be assigned a weight equal to 1/ M. When
direct sampling from p x( ) is intractable, one can generate
particles x m( ) from a distribution π( )x , known also as
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importance function, and assign (nonnormalized)
weights according to

w
p x

x
m*( ) ( )

( )
=

π (9)

which upon normalization become
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(10)

Suppose now that the posterior distribution
p t t( | ): :x y0 1 0 1− − is approximated by the discrete random
measure χ t t

m
t

m
m
Mw− − − ==1 0 1 1 1{ , }:

( ) ( )x . Note that the trajecto-
ries or streams of particles x 0 1:

( )
t

m
− can be considered parti-

cles of p t t( | ): :x y0 1 0 1− − . Given the discrete random
measure χ t −1 and the observation y t , the objective is to
exploit χ t −1 in obtaining χ t . Sequential importance sam-
pling methods achieve this by generating particles x t

m( )

and appending them to x 0 1:
( )

t
m

− to form x 0:
( )

t
m , and updating

the weights wt
m( ) so that χ t allows for accurate estimates

of the unknowns of interest at time t.
If we use an importance function that can be factored

as
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we can augment the trajectory x 0 1:
( )

t
m

− with x t
m( ) , where

( )x x x yt
m
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m
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and easily associate with it an updated weight wt
m( ) ob-

tained according to
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The sequential importance sampling algorithm can
thus be implemented by performing the following two
steps for every t:
� 1) Draw particles x x x yt

m
t t

m
t

( ) ( )
:~ ( | , ),π −1 0 where

m M=1 2, , ,K .
� 2) Compute the weights of wt

m( ) according to (15).
The importance function plays a very important role in

the performance of the particle filter. This function must
have the same support as the probability distribution that
is being approximated. In general, the closer the impor-
tance function to that distribution, the better the approxi-

mation is. In the literature, the two most frequently used
importance functions are the prior and the optimal im-
portance function. The prior importance function is
given by p t t

m( | )( )x x −1 , and it implies particle weight up-
dates by

( )w w pt
m

t
m

t t
m( ) ( ) ( )|∝ −1 y x . (16)

The optimal importance function minimizes the vari-
ance of the importance weights conditional on the trajec-
tory x 0 1:

( )
t

m
− and the observations y 0:t and is given by

p t t
m

t( | , ):
( )

:x x y0 1 0− [11]. When the optimal function is
used, the update of the weights is carried out according to

( )w w pt
m

t
m

t t
m( ) ( ) ( )|∝ − −1 1y x . (17)

Note that implementations of particle filters with prior
importance functions are much easier than those with op-
timal importance functions. The reason is that the com-
putation of p t t

m( | )( )y x −1 requires integration.
A major problem with particle filtering is that the dis-

crete random measure degenerates quickly. In other
words, all the particles except for a very few are assigned
negligible weights. The degeneracy implies that the per-
formance of the particle filter will deteriorate. Degener-
acy, however, can be reduced by using good importance
sampling functions and resampling.

Resampling is a scheme that eliminates particles with
small weights and replicates particles with large weights.
In principle, it is implemented as follows:
� 1) Draw M particles, x t

m*( ) from the discrete distribu-
tion χ t .
� 2) Let x xt

m
t

m( ) *( )= , and assign equal weights (1 / M)
to the particles.

The idea of resampling is depicted in Figure 2 with
M =10 particles. There, the left column of circles repre-
sents particles before resampling, where the diameters of
the circles are proportional to the weights of the particles.
The right column of circles are the particles after
resampling. In general the large particles are replicated
and the small particles are removed. For example, the
“blue” particle with the largest weight is replicated three
times and the “yellow” particle, two times, whereas the
green particles, which have small weights, are removed.
Also, after resampling all the circles have equal diameters,
that is, all the weights are set to1/ .M In Figure 3, we rep-
resent pictorially the random measures and the actual
probability distributions of interest as well as the three
steps of particle filtering: particle generation, weight up-
date, and resampling. In the figure, the solid curves repre-
sent the distributions of interest, which are approximated
by the discrete measures. The sizes of the particles reflect
the weights that are assigned to them. Finally in Figure 4,
we display a flowchart that summarizes the particle filter-
ing algorithm. At time t, a new set of particles is gener-
ated, and their weights are computed. Thereby we obtain
the random measure χ t , which can be used for estimation
of the desired unknowns. Before we proceed with the
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generation of the set of particles for time instant t +1, we
estimate the effective particle size (a metric that measures
the degeneracy of the particles [29], [36]). If the effective
particle size is below a predefined threshold, resampling
takes place; otherwise we proceed with the regular steps
of new particle generation and weight computation.

Recently, a special class of particle filters that approxi-
mate the posterior distributions by single Gaussians has
been introduced [30]. Although in their derivation it is as-
sumed that all the relevant distributions are Gaussian, as is
done with some other filters including the extended
Kalman filter and its variants, they are distinguishable in
that the updating of the filtering and predictive distribu-
tions is accomplished by propagating particles. This entails
advantages of easier implementation than is the case with
the standard particle filters and improved performance
over other Gaussian based approximation filters. The
Gaussian particle filter has also been used as a building
block for more complex filters called Gaussian sum particle
filters [31]. These filters approximate the filtering and pre-
dictive distributions by weighted Gaussian mixtures and
basically represent banks of Gaussian particle filters.

Before we continue with the presentation of applica-
tions of particle filtering to communication problems, we
summarize the procedure for developing particle filtering
algorithms. The procedure involves the following steps:
� 1) description of the problem by a discrete state-space
model as in (1)
� 2) selection of a proposal function for particle generation
� 3) derivation of the equations for the weight update.

Additional issues are the choice of resampling algo-
rithm and the schedule for resampling. We proceed with
showing how these steps are applied to resolving the
problem of blind equalization.

Blind Equalization
When digital symbols are transmitted over fre-
quency-selective channels, inter-symbol interference
(ISI) occurs, which has a detrimental effect on the detec-
tion at the receiver. To allow for symbol detection with
reasonable error, channel equalization is needed to re-
verse the effect of ISI. A popular equalization technique
applies the principle of maximum-likelihood estimation
that results in the Viterbi algorithm for symbol detec-
tion. When the channel parameters are unknown, they
are first estimated, usually from training data whose
transmission contributes to significant overheads and
bandwidth-inefficient communication.

Blind equalization involves detection of transmitted
symbols without using training data. This can be accom-
plished either without explicit estimation of the channel
parameters or by joint symbol detection and channel pa-
rameter estimation.

Recently, several researchers have employed particle fil-
tering for problems of blind equalization. The flexibility of
particle filtering has allowed for the application of several

variants of blind equalization including ones that involve
time-invariant channels, [38], [41], time-varying channels
[4], [5], [15], [16], additive Gaussian and non-Gaussian
channels [44], as well as OFDM systems [55].

For the convenience of discussing in greater detail
some of the work done in equalization, we adopt the fol-
lowing signal model. When digital symbols s t are trans-
mitted over a frequency selective channel, the received
signal can be represented as

y s h v vt t l
l

L

t l t t t t= + = +−
=

−

∑
0

1

, h s�

(18)

where yt is the received signal at time instant t,
s t t t t Ls s s� = ⋅⋅⋅− − +[ ]1 1 , h t t th h� = [ , ,0 1 ⋅⋅⋅ ht L, ]−1 are the co-
efficients of the unknown finite impulse response (FIR)
channel impulse response, L is the length of the channel,
and vt is an additive noise which is usually considered as a
zero mean Gaussian process with a known variance σ v

2 .
The objective is to detect the transmitted symbols by first
obtaining the posterior distribution p s yt t( | ): :0 0 and then
using it to perform detection.
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� 2. A schematic description of resampling.
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Time-Invariant Channels
When the channels are time invariant, we have h ht = . If
we assume Gaussian priors for the channel coefficients,
we can analytically marginalize them and directly draw
samples from the posterior distribution of the symbols
only. This allows for performing equalization without ex-
plicitly estimating the channel coefficients. In other
words, as per (15), for the update of the weighting coeffi-
cients we would use

w
p y s y p s s

st
m t t

m
t t

m
t

m

t
m

( ) :
( )

:
( )

:
( )

(

( | , ) ( | )
(

∝ − −0 0 1 0 1

π )
:

( )
:

( )

| , )s y
w

t
m

t
t

m

0 1 0
1

−
− .

(19)

Following [41] and with the assumption that the data
symbols s t ∈ − +{ , }1 1 are independent identically distrib-
uted (i.i.d.) uniform random variables, we can write the
state-space model of the observed data as

s Fs u

h s
t t t

t t ty v

= +

= +
−1

�

(20)

where F is an L L× state transition matrix given by

F =
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(21)

vt v~ ( , )� 0 2σ , and u t tsT = [ ... ]0 0 . If we assume that the
channel coefficients have a Gaussian prior distribution,
h h~ ( , )� − −1 1� , it can be shown that the posterior distri-
bution of the channel, p s ym

t
m

t( | , )( )
:

( )
:h 0 0 , which corre-

sponds to the mth trajectory of symbols, s t
m

0:
( ) , is Gaussian,

that is, p s ym
t

m
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m
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( ) ( )h h0 0 = � � . The mean and
the covariance matrix are recursively updated by
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In [38] and [41], it is shown that we can obtain an ana-
lytical expression for the likelihood function,
p y s yt t

m
t( | , ):

( )
:0 0 1− , by marginalizing out the channel coef-

ficient, i.e.,
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The optimal importance function is proportional to

the likelihood function, or,
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It is readily shown that the function has the form
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and that the updating of the particle weights is carried out
by

( )(w w p y s s y
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When the particles and weights of
all the trajectories are obtained, sym-
bol detection can be carried out using
smoothing. Smoothing in this con-
text has been addressed in [8] and
[9], where the emphasis is on the
methods for fixed-lag blind equaliza-
tion and the interest lies in obtaining
the smoothing distr ibution
p s yt l t( | ):− 0 , where l is the fixed lag,
followed up by detection of s t l− .

An interesting extension of the
equalization algorithm is its modifica-
tion to cope with unknown channel
orders. The problem can be resolved
by employing a marginalization strat-
egy where the unknown channel order
is marginalized. Another possibility is
to estimate the channel order with the
transmitted symbols.

Time-Variant Channels
For time-varying channels, such as
mobile communication channels,
symbol detection and channel esti-

mation can be performed jointly following the concept of
mixture Kalman filtering (MKF) [6], [11]. The problem
is again formulated by writing the channel model as a
state equation. As before, the channels are represented as
FIR filters, but now they have time varying complex coef-
ficients whose magnitudes are randomly varying Ray-
leigh processes. The coefficient variations can be
approximately modeled as autoregressive-moving aver-
age (ARMA) processes given by

h a h b ut l k
k

r

t k l k
k

r

t k l

a b

, , ,= − +
=

−
=

−∑ ∑
1 0 (26)

where ht l, is the lth coefficient at time t, b0 1= , and ut l, is
the driving noise process of the lth coefficient. The pa-
rameters a a1 2, ,K, a ra

, and b b1 2, ,K, brb
are functions of

the fading rate of the channels and can be evaluated if the
Doppler spread of the channels and the symbol rate are
known. Suppose for clarity of presentation that the varia-
tion of the channel is modeled as an autoregressive pro-
cess (AR) (all the bk s except b0 in (26) are zero). Then, if
we define the channel state as x h h ht t t t ra

� � � �= ⋅⋅⋅− − +[ ]1 1 ,
where h t t t t Lh h h� = −[ , , , ], , ,0 1 1K (that is, x t is an r La ×1
vector), we obtain the following state-space model:

s Fs z
x Ax Du

s x

t t t

t t t

t t t ty v

= +
= +

= +
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−

~
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1
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(27)
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Here s t i s an r La ×1 vector defined by
s t t t t Ls s s� = ⋅⋅⋅ ⋅⋅⋅− − +[ ]1 1 0 0 , ~F is an r L r La a× matrix
given by

~F

F 0 0
0 0 0

0 0 0

=

⋅⋅⋅



















L

L

M M M M

where F is defined by (21), z t is an r La ×1 vector whose
elements are all equal to zero except for the first one which
is equal to s t , and u t is an L×1zero mean Gaussian noise
vector whose covariance matrix has diagonal elements
proportional to the power of each lag. The matrix A has
dimensions r L r La a× and is constructed from the coeffi-
cients of the AR process according to

A

I I I
I 0 0

0 0 I 0

=

− − ⋅⋅⋅ ⋅⋅⋅ −
⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅
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(28)

and D is an r L La × matrix given by

D

I
0

0

=



















M

where I and 0 in the above expressions are the identity and
zero matrices of sizes L L× .

Now the objective is to jointly estimate the state of the
channel x t and to detect the transmitted symbols s t . It
should be noted that given the transmitted symbols, the
state-space model becomes a linear Gaussian model and
the posterior distribution of the channel p s yt t t( | , ): :x 0 0 is
Gaussian for all t. This permits recursive estimation of the
channel parameters using Kalman filtering [16].

We consider the importance function
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where as before we assume that the symbols are i.i.d. uni-
form random variables. The last term can be expressed as
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(30)
where the second factor of the integrand is the predictive
distribution of the Kalman filter. Then, the expression for
the importance function can be rewritten as
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where, for clar i ty, � c t t

m
ty( ; , )( )s x� σ 2 and

� c t t
m

t
m( ; , )( ) ( )x � � denote that yt and x t have complex
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m( ) are the predictive mean
and covariance of x t of the mth trajectory, respectively.
Similarly, we can show that the corresponding weights
can be computed from
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(32)
When implementing the algorithm, for each particle

we evaluate the predictive mean and covariance of two
Kalman filters, each corresponding to the symbols s t =1
and s t = −1, respectively. Then we draw samples using
(31) and calculate the weights by (32). Finally, the
Kalman filters corresponding to the sampled symbols are
updated. Once the particles with their corresponding
weights are obtained, the symbol is estimated using the
maximum a posteriori (MAP) criterion. If needed, a min-
imum mean square error (MMSE) (or other type) esti-
mate of the channel state can be obtained from the mean
updates of the posterior distribution of x t .

Unlike other standard methods, particle filtering can
easily be extended to non-Gaussian noises. In [44], the
additive complex noise is modeled as a mixture of J zero
mean Gaussians having different variances. There, a la-
tent variable λ t is defined to indicate the distribution of
vt . The procedure draws particles from an importance
function p s s yt t t

m
t

m
t( , | , , ):

( )
:

( )
:λ λ1 1 1 1 0− − , and the particles are

used for approximation of the joint posterior distribution
p s yt t t( , | ):λ 0 from which the MAP estimates of the sym-
bols are obtained. It is reported that the algorithm out-
performs existing methods based on Gaussian noise [44].

Recently, a similar treatment has been extended to
OFDM systems over frequency selective channels [55].
One important difference with the above treatment is that
the received signal yt is considered to be an observation in
the frequency domain where the index t there represents
different subcarriers. In such systems the observed signals
of all the subcarriers are simultaneously received. The
channel parameters are assumed to have Gaussian a priori
distribution which allows for, as discussed earlier, the per-
formance of symbol detection without explicitly deter-
mining the channel parameters.

Blind equalization for satellite communications was
considered in [33]. There, a state equation was developed
for a nonlinear satellite channel consisting of a cascade of
linear filters and a memoryless nonlinear traveling wave
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tube amplifier. The state equation coupled with the ob-
servation, which consists of the state variable embedded
in additive Gaussian noise, provided a dynamic
state-space model for the system. With the assumption
that all the system parameters and noise variances are
known, a generic particle filtering detector employing the
prior importance function was applied to combat the
nonlinear distortion of the channel.

Simulations
In our experiment we have simulated a scenario of a
time-invariant channel with an impulse response of
length L=3. We assumed a Gaussian prior for the channel
coefficients, h h~ ( , )� − −1 1� , where

h − −=
















=


1 1

1
0
0

010000 0 0
0 024569 0
0 0 005475

,
.

.
.

�















.

This choice of prior mean and covariance matrix corre-
sponds to an environment with a strong line of sight com-
ponent and two weaker, zero-mean paths. This is a fairly
realistic scenario for an indoor communication system,
for instance. The numerical values of the means and vari-
ances of the channel taps are selected to yield the delay
power profile in Figure 5.

To estimate the bit error rate (BER) under this channel
model, we have randomly generated 5,000 signal bursts
of duration T = 40 (i.e., 200,000 bits). A new sample
channel is drawn from the above prior distribution for
each burst. At the receiving end, we have simulated three
equalizers:
� A one-shot linear MMSE (LMMSE) equalizer: This
equalizer has perfect knowledge of the channel response,
and it represents a Wiener matrix-filter that processes all
the observations in a single burst at once [41]. Clearly,
this is not a realistic receiver, but it yields a lower bound
on the BER of simpler LMMSE equalizers.
� The maximum likelihood equalizer (MLE): It, too, has
perfect knowledge of the channel impulse response and is
implemented via the Viterbi algorithm. This is the opti-
mal sequence detector and, therefore, it yields a lower
bound on the BER.
� The blind MAP equalizer: It is implemented via the se-
quential importance resampling (SIR) algorithm [17].
The number of particles is M =300 and resampling is
carried out each time the effective particle size goes below
the threshold ε =025. M. (The effective sample size is de-
fined by M w

t t
m

m

M

eff =
=∑1
1

2/ ( )( ) .) The importance dis-
tribution is the optimal one.

The estimated BER curves are shown in Figure 6.
Each point in the plots results from a trimmed average
over the set of 2,500 signal bursts. Extreme simulation
samples (the highest 0.5% and smallest 0.5%) have
been discarded.

Blind Detection over Flat Fading Channels
In this section, we discuss in detail the applications of par-
ticle filters to detection over flat fading channels. Figure 7
shows the baseband communications system block dia-
gram over a frequency flat fading channel. The input sig-
nal to the system is a sequence of symbols s t , transmitted
after bandlimiting the pulses using a pulse shaping filter
g( )τ . The symbol period is T s , and the channel is repre-
sented by the complex time varying process h( )τ and the
additive noise v( )τ .

Fading, which is the variation of the received complex
amplitude, is a result of the multipath nature of the chan-
nel. Signals arriving at the receiver via multiple paths have
different complex gains and add up, resulting in a fading
channel. The time variation in the number of paths, am-
plitudes, and mainly the phases of the multiple paths pro-
duces a fading process with random nature. When the
multiple paths arrive roughly within the same symbol pe-
riod, the received signal does not undergo distortion in
frequency and hence is called frequency flat or
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� 5. Delay power profile of the three-tap channel.

� 6. BERs of different equalizers.
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nondispersive fading. The fading process, however, is
highly correlated and characterized by its bandwidth or
Doppler frequency denoted as f d . The random nature of
the fading is described by the distribution of the process
at each time instant. When the real and complex compo-
nents are Gaussian, the resulting amplitude is Rayleigh
distributed, while a line-of-sight component results in
Ricean fading. For a more elaborate discussion on fading
channels; see, for example, [43] and [50].

It is important to note that the multiple paths arrive in
the same symbol period, and therefore there is no ISI.
The receiver observes both a random complex gain for
the transmitted symbol and additive channel noise. While
the Jakes model [25] is often used to model the flat fading
channel, a Markov model is preferred herein to obtain a
state-space model. The flat fading process can be gener-
ated by filtering complex white noise by a low pass filter,
whose spectral characteristics match that of the fading
process [27]. As mentioned in the previous section, an
AR (or ARMA) model adequately represents the fading
process [50], [56], [60]. The AR (ARMA) parameters
are chosen to match the spectral characteristics with those
of the fading process. A simpler method, which uses a
two-path model to build AR(2) and AR(3) processes can
be found in [12] and [56] respectively; the results there
closely approximate more complex path models.

The state-space representation of the baseband com-
munications system can thus be given by

h Ah u

s h
t t t

t t t ty v

= +

= +
−1

�

(33)

where s t ts� = [ ]0 0 0K , and the channel
h t t t t rh h h

a

� = − −[ ]1 K is modeled as an autoregression
with

A =

− − − −

















−a a a ar ra a1 2 1 0
1 0 0 0 0

0 0 0 1 0

L
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L

where the AR parameters may be known or unknown,
and u t tu� = [ ]0 0K , where ut is complex white and
Gaussian with variance σ u

2 . This is a reasonable assump-
tion, since the AR parameters depend on the second or-

der statistics of the channel and hence do not
change as rapidly as the channel gain.

Our goal is to estimate the Bayesian poste-
rior distribution p s yt t t( , | ):h 0 . For achieving
this, we discuss two groups of algorithms of
which the first assumes that the AR coeffi-
cients are known and the second that they are
unknown.

Known AR Coefficients
Detector I
Detector I employs the prior distribution as the impor-
tance sampling function, i.e.,

( )
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(34)

where the last equality is due to the Markovian nature of
the channel and assuming that the transmitted bits are in-
dependent of the channel and each other and are identi-
cally distributed. The weight update equation can then be
written as
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This detector can be used for both linear and nonlinear
channel models. It can also be applied to channels with
more general fading characteristics than the ones of Ray-
leigh fading, for as long as the fading process can be repre-
sented by a Markov model. This detector can also be used
for non-Gaussian noise channels.

Detector II
Here the importance sampling function is the optimal
function given by [11]
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Thus, a sample s t
m( ) is first obtained from

( ) ( )p s y p y s p s

s h

t t
m

t t t t
m

t

t t
m

v

| , | , ( )

,

( ) ( )

( )

h h− −

−

∝

= +

1 1

1
2

� σ( )σ u tp s2 ( )
(38)

followed by a sample from p s yt t
m

t
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m , where
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� 7. Continuous-time model of the communication system.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 17:44:58 UTC from IEEE Xplore.  Restrictions apply. 



�

� �

t
m

u

t
m

t
m

v

t
m

t
m t

( )
( ) ( )

( ) ( )

= +










=

−

−

1
2 2

1

1

σ σ
I

s s

Ah

�

( ) ( )

.
m

u

t
m

t

v

y
σ σ2 2

+










s

(39)

The weight update equation is given by
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In the last expression, � ( ; , )( ) ( )y s ht t
m

t
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v u− +1
2 2σ σ are

Gaussian probability distribution functions with mean
s ht

m
t

m( ) ( )
−1 and variance σ σv u

2 2+ and computed at yt . This
detector is optimal in the sense described earlier. The gen-
eralization to non-Rayleigh fading channels and
non-Gaussian channel noises is straightforward.

Detector III
This detector combines a bank of weighted Kalman filters
and a particle filtering algorithm. It obtains the posterior
distribution of the transmitted symbols by marginalizing
the channel [7], [44]. Given the transmitted symbols, the
state-space model in (33) is linear, and hence a Kalman fil-
ter can be used to track the channel. For the posterior of
the symbol s t , we can write
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and p s yt t
m

t( | , ):
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:h 0 1 0 1− − is obtained from the Kalman filter.
The weight update is given by
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In [7], extensions to non-Gaussian channel noise and coded
symbols are provided. Non-Rayleigh fading channels can
also be tracked using Gaussian sum particle filters [32].

Unknown AR Coefficients—Blind Detection
In the previous subsection we have assumed that the AR
(or ARMA) coefficients of the channel model are known.
In practice, however, the channel statistics are unknown,
which implies that the channel model coefficients must be
estimated. One approach to their estimation is by using

pilot signals. For accurate estimation, long sequences of
pilot signals may be required, especially for slow fading
channels. Further, for nonstationary channels, pilot sig-
nals must be constantly retransmitted. An attractive alter-
native is to build a receiver for joint channel coefficients
estimation and symbol detection.

The presence of unknown model coefficients does not
allow for a direct extension of the above proposed particle
filters. In particular, there are three related difficulties.
First, the use of the prior importance function results in
inefficient implementations, whereas the employment of
the posterior importance function is prohibited. Second,
ambiguities arise between the symbols and the model co-
efficients (for phase-shift keying (PSK) modulated sig-
nals, there are also phase ambiguities). Third, if the model
coefficients are static parameters, they may create prob-
lems because the diversity of their representations impov-
erishes after resampling. To provide particle filters with
more diversity, rejuvenation procedures are required.

Detector I (RLS Based)
A blind algorithm for joint channel estimation and detec-
tion was first presented in [34]. The algorithm is a hybrid
method which updates the unknown AR coefficients us-
ing the recursive least squares (RLS) method, while the
channel and the symbols undergo particle filtering up-
dates. The prior is used as importance sampling function,
and the AR coefficients are marginalized as follows:
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where a� = [ , , ]a a ra1 K . This results in a hybrid algo-
rithm, which is a weighted bank of RLS filters that up-
date a, and whose weights are computed recursively
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m

t t
m

t
m( ) ( ) ( ) ( )| ,∝ −1 . (46)

Detector II
Another blind particle filtering detector was reported in
[21]. The detector adopts an AR(2) model for the fading
channel

h a h a h ut t t t= − − +− −1 1 2 2 . (47)

The parameters a1 and a 2 are obtained from

( )a r a rd d d1 2
22 2 2= − =cos /πΩ and (48)

where rd is the pole radius of the AR(2) model, and
Ω d df T= is the normalized maximum Doppler fre-
quency. The expressions described by (48) impose an in-
teresting and important relationship between the
underlying fading channel and the model coefficients. By
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considering the physical communication system, the rela-
tionship enables us to combat the ambiguity between the
symbols and the coefficients and to implement a fully
blind detector. Furthermore, to achieve efficient imple-
mentation, the detector first marginalizes out ht using
MKF, and then employs a hybrid importance function for
s t and the model coefficients a1 and a 2 [22]. The hybrid
importance function is expressed as
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where a t t ta a= [ , ]1 2
� , and the last equality is obtained

based on the state equations a at t1 1 1, ,= − and a at t2 2 1, ,= − .
The corresponding weights are computed by
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Note that, as suggested by its name, the hybrid impor-
tance function (49) is a combination of the posterior and
the prior importance functions. As opposed to the poste-
rior importance function, it is easily implementable be-
cause the sampling from (49) and the computation of the
weight in (50) can be readily carried out. Finally, to over-
come the impoverishment of the particle representation
in a generic implementation, an auxiliary particle filter
with a smoothing kernel can be applied.

Detector III
In addition to linear models, alternative modeling of fad-
ing channels may be preferred, especially if one wants to
capture the nonlinearities of channels. A wavelet-based
nonparametric modeling of fading channels was used in
[18] where the fading process is decomposed using wave-
let expansions, i.e.,

ht t t=� �� (51)

where �t is the wavelet basis vector at time t, and � t de-
notes the wavelet coefficients, where the two vectors are
of size k. A blind receiver employing MKF was proposed
for joint estimation of the wavelet coefficients and symbol
detection. What is more, the receiver treats kas a static un-
known parameter and evolves according to k kt t= −1 . As a
result, the blind receiver updates the number of wavelets
dynamically and requires no channel statistics.

Some Examples
In this subsection, we present results of two sets of experi-
ments. In all the simulations, it is assumed that data are
transmitted continuously without pilot symbols or any
form of reinitialization bits in between. Hence, the data
are transmitted even during harsh conditions when the
instantaneous signal-to-noise ratio (SNR) is very low,
which happens during zero fading.

Rayleigh Fading with Gaussian Channel
Noise—AR Parameters Known
The first experiment considered a Rayleigh fading channel
with additive Gaussian noise. A binary PSK (BPSK) mod-
ulation scheme was used for data transmission, with the
symbols s t = −1 and s t =1 being equally likely. Data were

differentially encoded to mitigate the phase
ambiguity problem. All three detectors were
implemented for a channel with normalized
Doppler spreads set to f d =0001. , which corre-
sponds to slow fading, and f d =001. , which is a
fast fading scenario. An AR(3) process was
used to model the channel, where the AR coef-
ficients are a function of the Doppler spread
and are obtained from the method suggested in
[56]. The particle filter detectors were com-
pared with the clairvoyant detector, which per-
forms matched filtering and detection
assuming that the channel is known exactly at
the receiver. Thus, it serves as an unachievable
upper performance bound. The number of par-
ticles chosen for Detectors I and II was
M =1 000, , while for Detector III was M =50.

In Figure 8, BERs as functions of SNR for
the slow fading case ( f d =0001. ) are plotted.
The ARcoefficients are given by( , , )a a a1 2 3 ≡
( . , . , . )− −29916 29833 09917 . From the figure,
it can be seen that Detectors II and III per-
form similarly. However, it was observed that
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as the SNR was increased, Detector II degraded in per-
formance. Detector I does not work well in slow fadings
compared to the other two detectors.

Figure 9 shows the BERs as functions of SNR for the
fast fading case, where f d =001. . The AR coefficients are
given by ( , , ) ( . , . , . )a a a1 2 3 29145 28344 09197≡ − − . De-
tectors I and II have equally good performance and are
only slightly better than Detector III.

Rayleigh Fading with Gaussian Channel
Noise—AR Parameters Unknown
Figure 10 displays the BER performance versus SNR of
the blind Detector II described earlier. The fading process
was generated using the Jakes’ method with
eight oscillators and Ω d =003. . We can see that
Detector II clearly outperforms the differen-
tial detector and performs closely to the lower
bound achieved by the pilot aided MKF. For
the pilot aided MKF, 1,000 pilot symbols were
first used to estimate the AR coefficients (the
modified covariance method [20], [26] was
employed for the estimation), and then MKF
was implemented with the estimated coeffi-
cients set as true coefficients.

Particle Filtering
for Multiuser Detection
Multiuser detection (MUD) has received a
great deal of attention since the 1980s due to
its potential for increasing CDMA system ca-
pacity. A specific feature of MUD is that it
does not treat the multiple access interference
(MAI) present in CDMA systems as noise but
as information. Since the optimum MUD is
exponential in complexity, numerous approxi-
mate detectors have been developed to reduce
that complexity. However, the performance of
these detectors is suboptimal since they use in-
terim hard decisions.

Application of particle filtering to MUD
requires a representation of the system by a dy-
namic state-space model. Since the symbols of
a CDMA system are uncorrelated across dif-
ferent time slots, it is not obvious how to con-
struct such representation.

The earliest application of particle filters to
MUD appeared in [2] and subsequently in
[45]. The state-space model is constructed us-
ing time dynamics of the fading channels, and
the symbols of all the users at a time slot are
treated as one super symbol. As a result, the
super symbol has a large alphabet whose size
grows exponentially with the number of users.
Recently in [58] and [59], an alternative
state-space representation of CDMA systems
was proposed. It is based on whitened matched

filter (WMF) outputs, where the dynamics of the system
evolves with user index. This representation allows for an
efficient application of particle filtering. Here we also note
that MUD methods based on Markov chain Monte Carlo
sampling were also proposed [53], [54].

State-Space Representations
Consider a synchronous CDMA system with chip-rate
(processing gain) C and K users. Let T s denote symbol
duration and ξ τk ( )the normalized deterministic signature
waveform assigned to the kth user. Here τ∈[ , ]0 T s and
k K∈{ , , }1 K . Let s k ( ) { , }τ ∈ − +1 1 be the symbol transmit-
ted by the kth user, hk ( )τ the fading coefficient of the kth
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� 9. BER performance of Detectors I, II and III over flat Rayleigh fading with
fd = 001. for differentially encoded BPSK signaling.

� 10. BER performances of Detector II, the pilot aided MKF, and the differential
detector. The fading channel was generated by Jakes’ method and
Ω d = 003. .
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user, and v( )τ the received zero mean complex white
Gaussian noise with variance σ v

2 . We can express the re-
ceived signal, y( )τ , as

y h s v t T
k

K

k k k s( ) ( ) ( ) ( ) ( ) [ , ]τ τ τ ξ τ τ= + ∈
=
∑

1

0 .
(52)

After sampling at the system chip rate and modeling the
Rayleigh flat fading channels of all users as ARMA pro-
cesses as in (26), the ARMA coefficients are chosen to fit
the spectra of the fading processes. Here, without loss of
generality, we assume that r r ra b= = . We can write for
the state-space representation

�t t t= +−

~A Euρ 1 (53)

h Bt t= � (54)

where�t t t t r t K t r
� = ⋅⋅⋅ ⋅⋅⋅− − −[ ], , , , ,ρ ρ ρ ρ ρ1 1 1 1 2 is an auxiliary

state vector of size ( )r K+ ×1 1introduced to facilitate the
representation, and h t t K th h= ⋅⋅⋅[ ], ,1

� is the fading coef-
ficient vector of all users. The matrices~A and Bare known
and of sizes ( ) ( )r K r K+ × +1 1 and K r K× +( )1 , respec-
tively, where ~A is a block diagonal matrix, i.e.,~ { , , , }A A A A= diag K , with A being an( ) ( )r r+ × +1 1 ma-
trix defined by (28), and

B

b 0 0
0 b 0

0 0 b

� =



















L

L

M M M M

L

where b� = ⋅⋅⋅[ ]b b br0 1 is a vector of the MA parameters
of the ARMA process. Finally, E is an ( )r K K+ ×1 matrix
with zero elements except for ones at positions
(( ) , )k r k− +1 1 , where k K=1 2, , ,K , and u t is a K ×1noise
vector. The observations can now be written as

y vt t t t= +s B�� � (55)

where s t
� = [ , , ], ,s st K t1 K , and � is a K K× diagonal ma-

trix of spreading codes.
In the algorithm from [2] and [45], (53) and (55)

form the representation of the system that evolves based
on the chip duration, whereas the parameter of interest s t
is static within each symbol time. Samples of s t are taken
from an alphabet of size 2 K , and the channel state is inte-
grated out. This is equivalent to the MKF algorithm pro-
posed in [6] and [11]. With large number of users, the
alphabet of s t grows exponentially and the calculation of
the importance weight becomes computationally very ex-
pensive. In [45] and [46], it was found that deterministic
methods which preserve the most likely particles were the
most efficient.

In the algorithm from [58] and [59], WMF outputs
were utilized for the system representation because they

are sufficient statistics of the transmitted symbols [52].
We can express the matched filter output as

y RH s vt t t t= + (56)

where R is the crosscorrelation matrix whose ijth element
is def ined by R ij i=< ξ , ξ ξ τ ξ τ τj i

T

j
s d>=∫0

( ) ( ) ,
Ht t K th h= ⋅⋅⋅diag{ , , }, ,1 is the diagonal matrix of the chan-
nel fading coefficients which are considered static within
each symbol interval, s t t K ts s� = [ , , ], ,1 K is the user sym-
bol vector, and v t is a complex-valued Gaussian vector
with independent real and imaginary components and
covariance matrix equal to σ v

2 R.
The cross-correlation matrix is positive definite, and

Cholesky factorization can be employed. There exists a
unique lower triangular matrix F such that R F F= � .
When we applyF F− −=� �( ) 1 to the matched filter output,
we obtain

y F yt t= −( )� 1 (57)

= +FH s vt t t (58)

= +FS h vt t t (59)

where S t t t K ts s s= diag( , , , ), , ,1 2 K is the user symbol ma-
trix. It can be verified that the covariance matrix of v t is
σ v

2 I, where I is the identity matrix. Since the noise be-
comes i.i.d. white Gaussian, y t is called the whitened
matched filter output. Component wise, it can be written
as

y F h s vk t
i

k

k i i t i t k t, , , , ,= +
=
∑

1

.
(60)

Particle Filtering Implementation

MUD When the Fading Coefficients Are Known
In this case the unknowns are the user symbols which are
uncorrelated across different time slots. In the following
presentation, we drop the time subscript t. First, note that
s k is independent of y k1 1: − . Therefore, the posterior distri-
bution of the symbols of the first k users can be factored
according to

p s y
p y s y p s y

p y yk k
k k k k k

k

( | )
( | , ) ( | )

( |: :
: : : :

0 1
0 1 1 0 1 1= − −

1 1

0 0 1 1 1

:

: : :

)
( | ) ( ) ( | ).

k

k k k k kp y s p s p s y
−

− −∝ (61)

Now if we choose an importance function of the form

π( | ) ( | , ) ( | ,: : : : : :s y p s s y p s s yk k k k k k k k1 1 1 1 1 1 1 2 1 1= − − − − ) ( | )
( | , ) ( | ): : : :

⋅⋅⋅
= − − −

p s y
p s s y s yk k k k k

1 1

1 1 1 1 1 1 1π (62)
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we can create trajectories from p s yK K( | ): :1 1 using impor-
tance sampling recursively and the standard particle filter-
ing procedure.

During the kth recursion, the trajectory s k
m

1:
( ) is

weighted with respect to p s yk
m

k( | ):
( )

:1 1 according to

w
p s y

s y

w p y s

k
m k

m
k

k
m

k

k
m

k

( ) :
( )

:

:
( )

:

( )

( | )
( | )

( |

=

∝ −

1 1

1 1

1

π

1 1 1 1

1

:
( )

:

( ) ( )

, )

.
k
m

k

k
m

k
m

y

w
− −

−= η (63)

Observe that at recursion k, the η( )
k
m s are all that we need

to have for calculating the weights wk
m( ) .

We note that drawing particles from the importance
function π( | , ) ( | , ):

( )
: :

( )
:s s y p s s yk k

m
k k k

m
k1 1 1 1 1 1− −= is easy since

s k ∈ + −{ , }1 1 . In particular, we can write

( ) ( )p s s y p y s s y

p s
k k

m
k k k k

m
k= ∝ =

×
− − −1 11 1 1 1 1 1 1| , | , ,

(
:

( )
: :

( )
:

( )
k k k

k k k
m

k

s y

p y s s p s

=

= = =
− −

−

1

1 1
1 1 1 1

1 1

| , )

| , ( )
: :

:
( )

(64)

where p y s sk k k
m( | , ):

( )
1 1− and p s k( )are the likelihood function

and the prior distribution at recursion k, respectively, and
they can be easily computed. An analogous expression
can be written for p s s yk k

m
k( | , ):

( )
:= − −1 1 1 1 . Next, observe that

ηk
m

s k k k
m

kp y s s p s
k

( )
:

( )( | , ) ( )=∑ −1 1 , and thus the incremental
weight is proportional to the sum of the importance func-
tion from (64), which is also readily obtained.

As in other applications of particle filtering,
resampling is required in the algorithm. However, the
weight must be clearly associated with all the particles in
the trajectory at all times (that is, for all users). This is un-
like in other applications where only the present particles
in the trajectories are retained and therefore after
resampling, the connection between the present weights
and previous particles is lost.

The complexity of the algorithm is O KM( ), i.e., pro-
portional to the product of the number of particles and
the number of users. If the number of particles is fixed,
the complexity is only linear with respect to the number
of users.

MUD When the Fading Coefficients Are Unknown
When considering the joint channel estimation and
MUD problem, we have to incorporate the state-space
representation of the Rayleigh fading channel in (46) and
(47) in the final state-space representation. If we assume
that the channel is static within each symbol durationT s ,
the WMF output at time t can be written as

y FS B vt t t t= +� . (65)

With f k
� representing the kth row of F, the WMF output

corresponding to the kth user can be expressed as
y vk t k t t k t, ,= +f S B� � . If we process a data block ofT sym-

bols, we can organize the WMF outputs into a sequence
of KT observations, i.e., y 1 1 1 1 1: , , ,{KT K Ty y y= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
y K T, }. We introduce now a new index i t K k= − +( )1 , and
we summarize the state-space representation by

~ , ( , )
~ ,

,

S
X
S X

A Eu

i
i

i i

i
i i

i K
=

=
+





=
+

−

−

if mod
else

if

1

1

1�
� mod

else
( , )

,
~

i K

y v
i

i k i i i

=



= +
−

1

1�

�f S B�

(66)

where X i is a K K× matrix whose only nonzero element
is ( ) ,X i kk k is= . As we will see later, such representation fa-
cilitates the application of particle filtering.

The posterior distribution can be factored based on the
state-space equations in (66),

( ) ( ) ( )
( )

p p p

p y p

i i i i i i

i i i

~ | ~|~ ~ |

|~ ,

: : : :S y S S S y

S

1 1 1 1 1 1 1∝ − − −

∫ � �( )i i i id|~ ,: :S y1 1 1 1− − �
(67)

and if we choose the importance function in the form of

( ) ( ) ( )π π π~ | ~|~ , ~ |: : : : : :S y S S y S y1 1 1 1 1 1 1 1 1i i i i i i i= − − −

we can obtain particles using the MKF algorithm. Specif-
ically, the optimal importance function is p i i

m
i(~|~ , ):

( )
:S S y1 1 1−

which can be evaluated from

( ) ( ) ( )p p p y

p

i i
m

i i i
m

i i

i

~|~ , ~|~ |~ ,:
( )

: :
( )S S y S S S1 1 1 1 1− −∝

×

∫ �

�( )|~ , .:
( )

:S y1 1 1 1i
m

i id− − �
(68)

Note that given~
:
( )S1 1i

m
− , the state-space model in (66) is lin-

ear in �i and is Gaussian, and the term p i( |�
~ , ):

( )
:S y1 1 1 1i

m
i− −

can be obtained via the prediction step of the Kalman fil-
ter. In turn, the integration in (68) can be evaluated ana-
lytically. The term p i i

m(~|~ ):
( )S S1 1− is equal to zero if its first

k−1elements on the diagonal do not match those of~Si−1 ;
otherwise, it is equal to 1/2.

The importance weight becomes
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m i
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S S

S S y
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i ip y p d
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− −×∫ � � � .
(69)

Further details of the algorithm can be found in [59].
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Simulations
For the algorithm based on WMF outputs, first we simu-
lated a synchronous CDMA system with K =15users and a
chip-rate of C =30. The spreading codes were generated
randomly and the same spreading code was used in all simu-
lated detectors. Residual resampling [37] was performed af-
ter every five users. In Figure 11 we present a performance
comparison for the equal power case with other popular
CDMA MUD detectors: the three-stage successive interfer-
ence cancellation detector with decorrelating first stage
(3-stage), the Gibbs sampler, and the decorrelating decision
feedback detector (DDF). (In our simulations we include
the Gibbs sampler because it is another Monte Carlo based
technique where estimates and detection are based on gen-

erated samples from desired a posteriori distributions.) For
the Gibbs sampler, we experimented with two detectors
whose difference was in the length of the burn-in periods
(periods until convergence). The first detector drew 100
samples of which the first 50 were discarded (Gibbs-50).
The second detector generated 150 samples, and the first
100 samples were discarded (Gibbs-100). As a reference,
the Breadth-first tree-search algorithm which is optimum
as described in [47] was simulated to provide a lower
bound. In the simulation of the particle filtering method,
we used 50 particles (PF-50) and 100 particles (PF-100).
The performance curve in Figure 11 was obtained by aver-
aging the BER of all 15users. We can see that in the equal
power case, particle filtering can provide near-optimum

performance. It seems that the performance
gain by increasing the number of particles from
50 to 100 is only marginal.

In the near-far case, the targeted user (the
first user), had an SNR of 9 dB. The signal
strength of the remaining 14 users was identi-
cal and compared with that of the targeted
user, and was varied from −10 dB to 10 dB.
The results of the experiment are shown in
Figure 12. It is clear that particle filtering per-
forms almost always better than the
three-stage detector and although it performs
worse than the Gibbs sampler with weaker in-
terferers, it is more consistent than the Gibbs
sampler. Also, it is near optimum in the range
from −4 dB to 10 dB.

Then we simulated the performance of the al-
gorithm based on WMF outputs in the case of
joint channel estimation and MUD. We simu-
lated a quasi-static Rayleigh flat fading case
where the channel was considered static within a
block of L l+ 0 symbol times. The first l0 sym-
bols were known to the receiver and they were
sent as pilot signals. The fading coefficient
within each block for each user was a complex
Gaussian random variable with unit variance
and zero mean. The fading coefficients of differ-
ent blocks were considered independent from
each other. We simulated blocks of L=10 and
l0 1= . For comparison, we also simulated the
SAGE-JDE(↑) algorithm from [28]. For every
simulated point, at least 300 bit errors were ac-
cumulated. In Figure 13, we see that the particle
filtering algorithm consistently outperformed
SAGE-JDE(↑).

Estimation and Detection of
Space-Time Codes in
Fading Channels
Space-time coding (STC), originally intro-
duced in [13] and further developed in [51],
provides a framework for exploiting spatial
and temporal diversity to increase data rate in
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� 11. Performance comparison of various detectors for C K= =30 15, , equal
powers, and known channels.

� 12. Performance comparison of various detectors for C K= =30 15, , known
channels and near-far resistance of 9 dB.
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wireless communications. Although space-time trellis
codes (STTCs) are deemed to possess the best coding ef-
ficiency among space-time codes, they are hard for detec-
tion especially when unknown time varying fading
coefficients are involved. As demonstrated in [7] and
[44], it is quite straightforward to represent binary or
M-ary convolutional (trellis) coded systems in fading
channels using state-space models, and in [57] particle fil-
tering was considered for this problem.

Suppose that a communication system employs N T
transmit and N R receive antennas and that a sequence of
user data symbols, s s t0 ,..., , where s t ∈�, is put through a
trellis space-time encoder. The new state vector of the trel-
lis space-time encoder at time t is determined according
to the state transition equation s st t tf s= −( , )1 , where s t −1
is the previous state, and s t is the new user state. Based on
the current state vector, the space-time encoder then gen-
erates a set of N T symbols, c s s s� ( ) [ ( ),..., ( )]t t N tc c

T
= 1 ,

to be transmitted by the N T antennas, where ci ()⋅ denotes
the code and modulation function of the ith antenna.
Suppose hn n tT R , is the fading coefficient from the nT th
transmit antenna to the nR th receive antenna at time t.
Let h n t n t N n tR R T R

h h, , ,[ ]� = ⋅⋅⋅1 represent the set of channel
states from all transmit antennas to the nR th receive an-
tenna. If we arrange all the channel states at time t into a
single N NT R ×1 vector h h ht t N tR

� � �= ⋅⋅⋅[ ], ,1 , all the re-
ceived signals at time t can be written in vector form as

y C s h vt t t t= +( ) (70)

where y t t N ty y
R

� = ⋅⋅⋅[ ], ,1 is the received signal vector, and
v t t N tv v

R

� = ⋅⋅⋅[ ], ,1 is the noise vector. The code and mod-
ulation matrix C s( )t is an N N NT T R× matrix of the
form

C s

c s 0 0
0 c s 0

0 0 c s

� ( )

( )
( )

( )

t

t

t

t

=



















L

L

M M M M

L

.

Note that here 0 is an N T ×1 zero vector.
This somewhat odd matrix representation is
selected to simplify the description of the joint
estimation and decoding algorithm.

The fading coefficients from the N T th to
the N R th antenna are modeled in the same
way as in (53) and (54) except that the sub-
script n nT R is added, i.e.,

� �n n t n n n n t n n n n tT R T R T R T R T R, , ,= +−A E u1 (71)

h Bn n t n n n n tT R T R T R, ,= � (72)

where A n nR T
, E n nT R

, and B n nT R
have the

same definition as before.
We can represent the whole system in a

compact state-space form as follows:

� �t t t= +−

~A Eu1 (73)

h Bt t= � (74)

where �t t n t n t n n tT R T R

� = [ , , , , , , ], , , ,ρ ρ ρ ρ11 1 1K K K i s
the extended state vector, and the matrices ~A, B, andEare
constructed accordingly from the matrices A n nR T

,E n nT R
,

and B n nT R
, n NT T=1 2, , ,K , n NR R=1 2, , ,K , respec-

tively. Note that in the algorithm described above, it is not
required that the fading coefficients or the noise vector at
the receive antennas be independent as required in most
other algorithms.

Since the space-time code is trellis coded, besides the cur-
rent and previous received signals y 0:t , future observations
also hold information about the current user state. Hence it
is appropriate to use the delayed importance function as well
as the delay weight method in evaluating the posterior dis-
tribution function. The number of delays can be chosen ac-
cording to the constraint length of the trellis code.

Simulation
We simulated an STTC system with two transmit and one
receive antenna. The ARMA model for the fading coeffi-
cient is described in [7], and it was of order ( , )3 3 . This
model corresponds to a fast fading scenario with a nor-
malized Doppler frequency (with respect to the symbol
rate 1 / T s ) f dT s

=005. .
For our simulations, we designed a special STTC

based on the Tarokh eight-state STTC [51] that can com-
bat phase ambiguity utilizing the time correlation of the
channels. The details of the design can be found in [57].
We compared the performance of the system using our
STTC with that of a system that uses Tarokh’s STTC and
pilot signals. The SNR was varied between 20 and 25 dB.
During our simulations, we found that we had to apply
resampling frequently, which is essential for good perfor-
mance of the algorithm. We used the same residual
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resampling process as described in [7] and resampling
was performed every five steps. Because the constraint
length is one in the STTC, the number of delayed weights
and delayed samples was one. For every simulated point,
at least 100 symbol errors were accumulated.

The comparison results are shown in Figure 14. There
we also represent the performance of a detector that has ex-
act information about the channel states. The simulations
show that it is viable to use particle filtering for decoding
STTC with unknown fading channels. In addition, a sig-
nificant performance improvement can be obtained by us-
ing STTCs that can combat phase ambiguity [57].

Summary of Additional Work
Besides the presented applications, there has been re-
search in applying particle filtering to other problems in
communications such as synchronization of communica-
tion systems [14], [40] and detection of signals in
BLAST systems [23]. (BLAST stands for Bell Laborato-
ries Layered Space-Time.) In this section, we briefly sum-
marize some of this work.

It is broadly recognized that many practical communi-
cation channels present a high degree of structure and
that they can be accurately characterized through a set of
reference parameters with a clear physical meaning. Since
the observed signals collected by the receiver are affected
by these parameters, they should be estimated and com-
pensated prior to data detection in order to achieve opti-
mal or close-to-optimal performance. The generalized
synchronization problem consists of the recovery of a set
of such physical parameters, namely the symbol timing,
phase offset and carrier frequency error. Up to date, many
different techniques [39], [48] have been proposed in or-
der to solve the synchronization problem, but they are
based on approximate and heuristic methods, as optimal

estimation of the parameters of interest seems
to be analytically intractable [39].

Before particle filters are applied for syn-
chronization, again, the observed signals are
expressed in a state-space form. Synchroniza-
tion, however, poses the additional difficulty
in that the parameters of interest are usually
modeled as fixed [39], while standard particle
filtering algorithms are aimed at tracking
time-varying unknowns.

To address the optimal recovery of the refer-
ence parameters and data detection, two differ-
ent approaches are considered. In the first
approach [40], the idea of rejuvenation [35] is
applied in deriving a recursive algorithm aimed
at approximating the joint smoothing proba-
bility distribution of the transmitted symbols
and their (fixed) synchronization parameters.
The other approach, [14], allows the synchro-
nization parameters to evolve in a random way
using artificial evolution mechanisms (the pa-

rameters are modeled as autoregressive stochastic pro-
cesses [24], [42]) and therefore, they can be estimated
using the traditional particle filtering approach. According
to computer simulations, the two methods appear promis-
ing for joint data detection and synchronization.

In BLAST systems, spatial diversity is exploited to im-
prove efficient transmission in broadband wireless com-
munications. It is achieved by using multiple transmitting
and receiving antennas, and it provides significant capacity
gains. An optimum solution to the detection problem in
BLAST systems is based on the maximum likelihood
(ML) principle. Its complexity, however, is exponential
with the number of transmitting antennas, and therefore
its use in practice is prohibitive. A reasonable tradeoff be-
tween complexity and performance was proposed where
the detection proceeds along the signal layers in a decreas-
ing order of their signal-to-noise ratio and where the detec-
tion in each layer is a two-step scheme of cancellation and
nulling [13]. A weakness of this approach, known also as a
V-BLAST receiver, is the propagation of error.

As an alternative, one can derive a dynamic state-space
model of the BLAST system. The states evolve in space
rather than in time, and the construction of the model is
based on QR decomposition and the output of the
feedforward filters. The proposed particle filters for the
considered state-space model do not suffer from error
propagation, and the simulations show that they greatly
outperform the V-BLAST method and have near opti-
mum performance [23].
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