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Abstract

Detection of data transmitted over a Rayleigh fading channel, where the channel is unknown, has been a problem of
interest for many researchers. In this paper, we present a new algorithm for joint detection and channel estimation for
Rayleigh fading channels. Our algorithm combines Monte Carlo sampling with classical recursive identi)cation methods.
The channel is modeled as an autoregressive process, which allows for representation of the communication system by a
dynamic state space model. A more accurate modeling of the channel, especially in fast fading along with exploitation of
time diversity in the received signal, is also considered. Simulation results illustrating the e9ectiveness of this algorithm are
presented.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Transmission of data over mobile communication
channels is severely impaired due to fading. Frequency
=at fading induces distortion in the form of random
amplitude changes in the transmitted signal. In order
to detect transmitted symbols optimally, it is necessary
to track the amplitude variations. In the absence of
a direct line-of-sight component, a Rayleigh fading
assumption is often made, i.e., the received amplitude
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is a random variable with a Rayleigh density. The
rate of variation of the received amplitude or the
fading rate is governed by the Doppler bandwidth,
which in turn is proportional to the transmission fre-
quency and the mobile speed. This variation should
be addressed during design of robust receivers. Con-
sequently, in fast fading channels, the variation of the
received amplitude over a symbol period cannot be
neglected.
In discretizing the received signal and in presence

of slow fading channels, the sampling frequency is
the Nyquist frequency of the transmitted signal. This
discrete time model cannot be used for fast fading
channels because the bandwidth of the faded signal is
higher than the bandwidth of the transmitted signal.
There, the sampling is at a rate n times that of the
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Nyquist frequency of the transmitted signal, resulting
in oversampling that can be exploited to achieve im-
proved performance. This approach has been taken in
[9,11,13], and will be used here.
Design of reliable detectors for the Rayleigh fad-

ing channel has become a subject of interest for many
researchers recently, where the common assumption
is that the second-order statistics of the channel are
known. Various approaches have been reported in
[5,9,11,12].
It has been shown in [14] that the time varying

fading coeGcients can be modeled as an autoregres-
sive (AR) process. This allows for a representation of
the communication system by a dynamic state space
(DSS) model, where the channel coeGcients and the
transmitted data are dynamic state (hidden) variables
and the received signal represents observations. This
is the approach in [13], where Kalman )ltering (KF)
is performed to estimate the channel coeGcients. A
Viterbi scheme is used for maximum likelihood sym-
bol detection along with the KF. In [6] we proposed
a joint detection and estimation scheme based on a
Monte Carlo (MC) sampling )lter called the sequen-
tial importance sampling (SIS) )lter [2,7]. In [1,10] a
similar approach was proposed, but the discrete time
model used is inadequate for fast fading channels, as
has been indicated in [5,6]. In all the detectors referred
above, the AR coeGcients of the fading process were
assumed known. Equivalently, as in all of the detec-
tors referred above, the second order statistics of the
channel are assumed known. However, with the ex-
ception of [13], none of the detectors allow for the
case when such statistics are unknown. In continua-
tion of our previous work, here we allow for uncer-
tainty in the AR coeGcients, where the uncertainty
is represented in the form of a prior density. This
implies almost no knowledge of the channel, hence
the scheme presented here is a blind detection algo-
rithm with joint channel estimation. In order to tackle
the uncertainty in the channel characteristics, we use
a novel scheme called hybrid Monte Carlo-recursive
identi)cation )lter (MCRIF). TheMC sampling meth-
ods are combined with recursive identi)cation tech-
niques to obtain a hybrid scheme. Notably, the im-
plicit assumption made in most detectors is that the
observation noise is Gaussian. The detector proposed
here allows for non-Gaussian noise, without additional
complexity.

2. System model

We consider transmission of data bk from a given
discrete complex set L={l1; : : : ; l|L|}, over a frequency
=at Rayleigh fast fading channel. The time-varying
complex coeGcient of the Rayleigh fading channel,
denoted as c(t), is a complex Gaussian random pro-
cess, whose amplitude |c(t)| is Rayleigh distributed.
Fig. 1 shows the system block diagram, where g(t)
is the pulse shaping )lter, and s(t) is the input to
the channel. The channel consists of the fading pro-
cess c(t) with an additive noise v(t). The channel
c(t) can be modeled as the output of a low-pass )lter
with cut-o9 frequency fd, which is the Doppler fre-
quency. Denote the noise-free faded (received) signal
as s̃(t)= s(t)c(t) whose Fourier transform is given by
S̃(jw) = S(jw) ∗ C(jw), where ‘∗’ denotes convolu-
tion. Then the one-sided bandwidth of s̃(t) is equal to
fd + fs, where fs = 1=2T is the one-sided bandwidth
of the pulse shaping )lter, and T is the symbol period.
At the receiver, the signal is sampled at sampling fre-
quency 1=Ts, where Ts = T=M , and M is an integer
¿ 2 and is called the oversampling factor. To prevent
inter-symbol interference (ISI) due to oversampling,
g(t) is chosen to be M time-displaced raised-cosine
pulses with centers at mT=M , m= 0; : : : ; M − 1. If dk
is an upsampled version of bk , dk = b�k=M�, where �·�
indicates the smallest integer greater than or equal to
(·). The fading process is modeled as an AR process
of order r, denoted as AR(r), i.e., ck is the output of
an all pole )lter of order r with white noise input. We
can represent the above communication system by the
following dynamic state space (DSS) model

yk = dTk ck + vk (observation equation);

ck = Ack−1 + uk (state equation);

A =




a1 a2 : : : ar−1 ar

1 0 : : : 0 0

...
...

...
...

...

0 0 : : : 1 0



; (1)

where dTk =[dkgk 0 0 : : : 0], cTk =[ck ck−1 : : : ck−r+1],
and gk is the discrete impulse response of the trans-
mitting (pulse shaping) )lter. vk is complex white
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Fig. 1. Continuous-time model of the communication system.

Gaussian noise, whose real and imaginary parts are
zero mean, independent and identically distributed
with variance �2v =2. The vector uTk = [u1k 0 : : : 0],
where u1k is a white Gaussian random variable with
variance �2u, and a1; a2; : : : ; ar are unknown. Note
that ck , dk and uk are vectors of length r and A is a
matrix of size (r + 1) × r. Here the unknown (hid-
den) variables are xTk = [cTk dk a1 : : : ar]. Given
the dynamic state space model (1), it is our interest
to detect the transmitted data and track the channel
variation, i.e., estimate xk , given the observations
y1:k = [y1 : : : yk ]. From a Bayesian perspective, all
the knowledge of xk given the observation y1:k can be
summarized by the marginalized posterior probabil-
ity p(xk |y1:k). Equivalently, we are interested in the
joint detection of transmitted data and estimation of
channel state information (CSI). Inference for symbol
detection can be based on the marginalized density
p(dk |y1:k), which can be obtained from the joint den-
sity p(xk |y1:k). Since model (1) is highly nonlinear,
recursive closed-form solutions of the posterior densi-
ties do not exist. We propose a new algorithm which
uses the well-known recursive least-squares (RLS)
algorithm and particle )lters to detect the transmitted
data.

3. Monte Carlo �ltering

In this section, we give a brief description of Monte
Carlo sampling )lters. For details, however, the reader
is directed to [2,4,7]. Consider the following DSS
model:

xk = fk(xk−1; uk) (state equation);

yk = hk(xk ; vk) (observation equation); (2)

where xk , yk , uk and vk are the hidden state, obser-
vation, state noise and observation noise respectively,
of given dimensionalities. We would like to estimate
p(x1:k |y1:k), where y1:k = (y1; y2; : : : ; yk). Often of

interest is also the expectation Ep(q(xk)|y1:k). For
a linear model with Gaussian noise, p(x1:k |y1:k) is
Gaussian and the celebrated Kalman )lter can be used
to obtain a closed-form solution. However, with non-
linearity (as in our problem) and non-Gaussianity in
the model, there generally exist no such closed-form
solutions and analytical computation is infeasi-
ble practically. Monte Carlo based )lters provide
a practical methodology for estimation in such
problems.
The basic idea is to represent the distribu-

tion as a collection of samples (particles) and
weights associated with the particles. N particles,
X1:k = {x(1)

1:k ; : : : ; x
(N )
1:k }, from the so-called impor-

tance sampling distribution �(x1:k |y1:k) are gener-
ated. Subsequently, the particles are weighted as

w(n)
k = p(x(n)

1:k |y1:k )
�(x(n)

1:k |y1:k )
. A Monte Carlo estimate of Ep(q(xk))

can be written as

Êp(q(xk)) =
N∑
n=1

w(n)
k q(x(n)

k ): (3)

To minimize the variance of Êp(q(xk)), the dispersion
of the weights wk should be minimized, which im-
plies that �(x1:k |y1:k) must be “similar” to p(x1:k |y1:k)
[3]. The support of �(x1:k |y1:k) must include that of
p(x1:k |y1:k), and �(x1:k |y1:k) should be easy for sam-
pling. Due to the Markovian nature of the state equa-
tion, we can obtain a sequential procedure called SIS,
which sequentially yields the weights of the samples
that approximatep(x1:k |y1:k). More details on the pro-
cedure can be found in [2] or [7]. At each time instant,
samples x(n)

k are obtained from the importance sam-
pling distribution �(xk |x1:k−1; y1:k), and the weight
update is done by

w(n)
k =

p(yk |x(n)
1:k ; y1:k−1)p(x

(n)
k |x(n)

1:k−1; y1:k−1)

�(x(n)
k |x(n)

1:k−1; y1:k−1)
: (4)

In SIS, degeneration of particles occurs with k. Ef-
fectively, the weights of only a few particles remain
signi)cant. This results in a poor approximation of
the expectation in (3). A procedure called resampling
can be used to reduce this degeneration. The basic
idea is to duplicate the particles which have signi)cant
weights, in proportion to the weights of the particles.
For details, see [2,7].
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4. Hybrid Monte Carlo-recursive identi�cation
�ltering (hybrid MC-RIF) algorithms

In [6], we considered the problem of detection over
a Rayleigh fast fading channel where the coeGcients
of the AR process are assumed known. The SIS algo-
rithm was applied for channel tracking and data detec-
tion. Possible channel fading coeGcients are sampled
from the so-called importance sampling (IS) density
and the particles are then weighted according to the
updated posterior distribution. However, when the AR
coeGcients are assumed unknown, the problem be-
comes one of blind detection. It is possible to treat the
unknown AR parameters similar to the fading coeG-
cients and sample them from an importance sampling
distribution. This leads to an increase in the dimen-
sionality of the hidden variables. Due to the nonlinear-
ity of the problem and the increase in the dimension-
ality, the Monte Carlo variation increases and a large
number of particles are required to obtain satisfactory
estimates in Eq. (3).
In order to overcome this diGculty, we propose a

hybrid MC-RIF algorithm. We combine the SIS and
recursive identi)cation [8] )lters to reduce the Monte
Carlo variation of the SIS )lter and obtain an e9ective
methodology which is applicable in various scenarios.
The basic idea is to treat the sets of unknown variables
di9erently. Speci)cally, in the blind detection prob-
lem, the unknown channel coeGcients and transmitted
data are treated with an SIS strategy, while the AR pa-
rameters are estimated using a recursive least-squares
method. The channel fading coeGcients ck are sam-
pled recursively from an importance sampling distri-
bution. The obtained coeGcient trajectories are used
to estimate the AR parameters aT ≡ (a1; : : : ; ar) recur-
sively using a recursive least squares (RLS) algorithm.
The estimated trajectories of ck are noisy estimates of
the AR process, which are then used to estimate a.
Since the trajectories are weighted, each of the RLS
estimates are also weighted to obtain the )nal infer-
ence. In essence, the distribution of the AR parameters
is represented as a mixture model of weighted Gaus-
sian distributions. The mean and variance of each of
the individual Gaussian is estimated by the RLS algo-
rithm and the weights of the mixture model are simply
the weights of the trajectories obtained in the SIS up-
date procedure. Thus, the SIS methodology is used in
a novel manner to update a given mixture distribution.

4.1. Choice of importance sampling density

Let bk=(b1; : : : ; bk), and assume that the data trans-
mitted from the source are independent, i.e., P(bk =
li|bk−1)=P(bk = li)=qi. In order to simplify the im-
plementation of the SIS )lter, we make an assumption
that the dk are independent with k. The time diversity
in dk , which results due to the upsampling of bk will
be exploited as shown in the next section. The impor-
tance sampling density is chosen as

�(�k |�1:k−1; y1:k−1)

=p(ck |c1:k−1; y1:k−1)p(dk)

=p(dk)
∫
p(ck |ck−1; a)p(a|c1:k−1)da: (5)

The second term in the above equation can be written
as

p(a|c1:k−1) =
k−2∏
j=2

p(cj|cj−1; a)p(a): (6)

If the prior p(a) is chosen as a Gaussian, then
p(a|c1:k−1) is a Gaussian, whose mean and vari-
ance denoted as �k−1 and %k−1, respectively, can
be updated using the RLS algorithm. From (5) and
(6), it can be shown that p(ck |c1:k−1; y1:k−1) is a
Gaussian with mean �k−1ck−1 and covariance matrix
ck−1 %k−1 cTk−1 + %u, where %u = E(uuT). Thus, the
resulting integration in (5) yields a Gaussian which
is easy for sampling. E9ectively, the importance
function is chosen by integrating out a, which is a
procedure known as Rao-Blackwellization [2,7]. With
the above importance sampling density, the weight
update is given by

w(n)
k = w(n)

k−1p(yk |c(n)k ; d(n)k ): (7)

Note that p(yk |c(n)k ; d(n)k ) is the density of the chan-
nel noise, which need not be only Gaussian, but it
should be a density which can be evaluated. Hence,
the detection algorithm can accommodate the case of
non-Gaussian noise too.

4.1.1. Hybrid <lter
The hybrid MC-RLS )lter used for blind detection

is given below, where the unknown variables are xk ≡
(�k ; ak) and �Tk ≡ [cTk dTk ]. The particles of xk are
obtained in two steps. An MC )lter is run for �k , while



J.H. Kotecha, P.M. Djuri3c / Signal Processing 84 (2004) 825–832 829

the RLS is used to update the estimate of a. First, the
SIS procedure is used to sample �k and subsequently,
based on the sampled values �(n)k , the updating of a
for each trajectory is carried out using the RLS algo-
rithm. The Hybrid MC-RLS algorithm can be written
as follows:

(1) At time k=0, we start withN samples from the IS
density �(�0) and denote them �(n)0 ; n=1; : : : ; N ,
with weights

w(n)
0 = p(�(n)0 )=�(�(n)0 ):

Initialize, �(i)0 and %(n)
0 for n= 1; : : : ; N .

(2) At times k=1; : : : ; K , let$k={�(n)k ; n=1; : : : ; N}
be particles of �k with weights Wk = {w̃(n)

k ; n=
1; : : : ; N}, and Ak = {�(n)k ; n = 1; : : : ; N}
and Pk = {%(n)

k ; n = 1; : : : ; N} be the corre-
sponding mean vectors and covariance ma-
trices. At time k − 1, denote the particle set
&k−1 = {$k−1; Wk−1;Ak−1;Pk−1}. We obtain
&k from steps 3, 4, 5 and 6.

(3) For n = 1; : : : ; N , sample �(n)k ∼ �(�k |�(n)1:k−1;
y1:k−1).

(4) For n= 1; : : : ; N , update the weights using

w(n)
k = w̃(n)

k−1p(yk |c(n)k ; d(n)k ): (8)

(5) Normalize according to

w̃(n)
k = w(n)

k

/
N∑
j=1

w( j)
k :

(6) For n= 1; : : : ; N , calculate Ak and Pk using the
RLS algorithm. The observations used in the
RLS update are yk and $k .

(7) Resample periodically to prevent sample degen-
eration.

Thus, we see that the SIS )lter is applied as usual
for �k , using estimates of a obtained by the RLS
algorithm.

5. Detection and channel estimation

The symbol dk represents an upsampled version
of the transmitted data bk . Therefore, all dk obtained
from oversampling, for the same symbol period T are
identical. This time diversity is now exploited in the

decision process. The posterior probability of dk can
be written as

P(dk = li|y1:k) = E(I(dk = li)|y1:k)

≈
N∑
n=1

w(n)
k I(d(n)k = li)

/
N∑
n=1

w(n)
k i = 1; : : : ; |L| ;

(9)

where I(dk = li) = 1 if dk = li and 0 otherwise. Then
for i = 1; : : : ; |L|,

P(bk = li|y1:k) = 1
M

M−1∑
m=0

P(dMk−m = li|y1:k) (10)

and choose bk = li so that

b̂k =max
li∈L

P(bk = li|y1:k): (11)

Inference about the channel fading coeGcients and
parameters can be obtained in a similar manner. The
channel and parameter estimates at time k are given
by

ĉk =
N∑
n=1

w(n)
k c(n)k

/
N∑
n=1

w(n)
k ;

âk =
N∑
n=1

w(n)
k �

(n)
k

/
N∑
n=1

w(n)
k ; (12)

respectively, where �(n)k is obtained by the RLS
algorithm.
The resulting algorithm is computationally very in-

tensive but highly parallelizable, giving an advantage
for hardware implementation using VLSI technology.
Direct comparison of the computational load of the al-
gorithm with other methods when they are run on se-
quential machines does not make much sense because
in real applications the proposed algorithm should be
implemented on a specially designed hardware. The
algorithm has four important computations: (1) gener-
ation of new particles, (2) updating of the weights, (3)
computation of the mean vectors and covariance ma-
trices of the AR parameters, and (4) resampling. For
all the particles, the computations can be implemented
in parallel, which implies that in terms of speed, the
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Fig. 2. Solid line: BER of proposed detector (with N = 1000 particles) for BPSK signaling and =at fading of fdT = 0:001. Dashed line:
BER of clairvoyant detector.

algorithm is equivalent to other methods, such as the
one in [14].

6. Simulation results

Many computer simulations were generated and
here we show the results for fading rates fdT = 0:01
and fdT = 0:001 as examples. The method was im-
plemented on a system where the modulation scheme
used was di9erentially encoded BPSK. The sampling
period was Ts = T=2 or M = 2. The transmitted data,
bk ∈{−1; 1} were equally likely. The channel was
modeled as an AR(3) process driven by complex
white Gaussian noise, with AR coeGcients given by
atrue ≡ (2:9145;−2:8344; 0:9197) for fdT = 0:01 and
atrue ≡ (2:9916;−2:9833; 0:9917) for fdT = 0:001.
The number of trajectories used was N = 1000. In
the simulations, we assumed c0 as known and the
prior for a as Gaussian with mean atrue and covari-
ance 3I3, where I3 is a 3 × 3 identity matrix. Figs. 2
and 3 show the bit error rate (BER) as a function

of the signal-to-noise ratio (SNR) (in dB) for
fdT = 0:001 and fdT = 0:01, respectively. The SNR
is calculated as 10 logE(|ck |2)=�2v . The performance
of the SIS detector, with unknown channel coef-
)cients and unknown AR parameters is compared
with the clairvoyant matched )lter (which knows the
channel coeGcients). The performance of the clair-
voyant matched )lter represents a lower bound and is
a benchmark for ideal conditions. In general, it was
observed that the performance increases relatively as
the fading rate increases, since at lower fading rates
the channel stays in deep fades for longer durations
of time causing the low SNR conditions to adversely
a9ect the performance of the receiver. As shown in
Fig. 2, at SNR of 5 dB the algorithm was unable to
track the channel and diverged. However, as the SNR
increased, the tracking performance improved.

7. Conclusion

A novel method was proposed for channel estima-
tion and detection of data transmitted over a Rayleigh
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Fig. 3. Solid line: BER of proposed detector (with N = 1000 particles) for BPSK signaling and =at fading of fdT = 0:01. Dashed line:
BER of clairvoyant detector.

fading channel. The presented methodology can be
extended to many other channels with di9erent char-
acteristics. A simple extension of the above algorithm
can be made for Rician fading channels. Another sig-
ni)cant extension is that of tracking of channels with
time varying characteristics. A change in the charac-
teristics, implies a change in the AR coeGcients of the
channel model. Then the same algorithm is applica-
ble, without any signi)cant change. Additionally, for
channels with non-Gaussian additive noise, the same
algorithm can be used as long as the noise probability
density can be evaluated.
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