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Abstract

In this paper we address the problem of equalization of time-varying frequency-selective channels.
We formulate the problem by modeling the frequency-selective channel by an FIR filtetiméth
varying tap weights whose variation is characterized by AR process. Our approach to the problem
is based on Bayesian estimation using sequential Monte Carlo filtering commonly referred to as par-
ticle filtering. This estimation method represents the target posterior distribution by a set of random
discrete samples and their associated weights. In this paper, we also extend the technigue of equal-
ization using particle filtering for cases where we have multiple samples per symbol and demonstrate
that significant performance improvement can be achieved by processing multiple samples. The pro-
posed algorithm is recursive and blind for it requires no training symbols for channel estimation.
However, it assumes knowledge of the variance of the additive noise and the coefficients of the AR
process used to model the variation of the fading channel tap weights. The proposed scheme is highly
parallelizable and hence is suitable for VLSI (very large scale integration) implementation.
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1. Introduction

Wide band mobile communication channels generally consided as time-varying
frequency-selective channeBata transmitted over these channels undergo time and fre-
guency spread causing serious impairments to the received signal. While time dispersion
produces intersymbol interference (I1SI) between the symbols, large frequency spread re-
sults in fast channel variation. Detection of data in such environment requires adaptive
receivers with fast convergence. The design of this type of receivers is a challenging task
and as a result, a considerable reseaftdrt has been directed towards it.

Most of the structures proposed in the liten® for detection of data transmitted over
frequency-selective channels employ adaptive maximum likelihood sequence detectors
(MLSD) [1,2] based on the Viterbi algorithm (VA) [3]. In conventional MLSD, since the
VA has an inherent decision delay, the metrics of the branches of its trellis have to be eval-
uated on delayed estimates of the channedipaters which are later updated according to
the detected data. Such methods are not, howswitable for fast fading channels because
the detection of the data is based on outdated estimates of the channel impulse response.
A more appropriate method for fast fading channels is a per-survival-processing MLSD
(PSP-MLSD) [4,5], which avoids using delayed estimates of the channel for data detec-
tion by allowing each surviving branch of the trellis to update its own channel impulse
response based on its hypothesized symbols. In this method, the channel estimates of the
states of the trellis are updated using the least mean square (LMS) [6] method, the recursive
least square (RLS) [7,8] method, or Kalman fit¢9,10]. Alternative receivers for data de-
tection in fading channels are the maximumasteriori (MAP) receivers [11,12]. These
methods use a single Kalman filter and the a pastieprobabilities (APPs) of the state of
the ISI to estimate the channel. For fast fading channels, following a similar approach, a
blind MAP equalizer with a bank of Kalman filters is proposed in [13].

Our approach to the problem is based on a Bayesian formulation in which we use a
simulation-based recursive algorithm from the family of sequential Monte Carlo (SMC)
methods also referred to as particle filtering. Sequential Monte Carlo filtering has been
successfully applied in the past to flat faglichannels [14—-17]. In [18] and [19], the equal-
ization problem has been tackled using a similar approach but addressed the problem for
time-invariant channels and orthogonal frequedizision multiplexing (OFDM) systems,
respectively. Moreover, SMC methods are also applied to problems of data detection in
other communications systems such as Byoous and asynchronous code division mul-
tiple access (CDMA) systems [17,20,21].

We model the frequency-selective channel using a finite impulse response (FIR) filter
with time-varying tap weights, which are considered as randomly varying complex values
whose magnitude is Rayleigh distributed. This type of variation of the tap weights can be
characterized by an autoregressive (AR)qass driven by a complex zero mean Gaussian
noise. Such modeling of the channel allows to formulate the problem as a dynamic state
space (DSS) system. The channel impulse response and the transmitted data are the un-
known (hidden) states of the DSS and the received signal is the observation of the system.
With this formulation, particle filtering can be applied to jointly estimate the channel and
the transmitted data. The underlying idea oftjaée filtering consists of representing a
probability distribution by a collection of properly weighted samples drawn from a pro-
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posal density. In our problem, we use particle filtering to represent approximately the joint
posterior distribution of the channel vector and the transmitted data given all the avail-
able observations. MAP or minimum mean square error (MMSE) are used then to obtain
estimates of the channel and the transmitted symbols.

Our algorithm is sequential and blind as it requires no training symbols. However, we
assume the knowledge of the coefficients of the AR process used to model the time varia-
tion of the tap weights of the channel FIR filter and the variances of the complex additive
noises. As described in [8], the assumption of knowing the AR coefficients, however, is
not a serious limitation since they depend only on the fading rate (Doppler frequency shift
and symbol rate) and the estimation of the A&efficients can be easily incorporated in
the receiver. For details on how to computestheoefficients, refer to [22,23] or [8] where
a computer program is provided.

The main contributions of the paper aree ttlevelopment of algorithms for detection
of signals for time-varying frequency-selective fading channels and the extension of these
methods for processing multiple samples panbgl for data detection using particle fil-
tering. Parts of this work has been presented in [24].

The remaining of the paper is organized as follows. Section 2 describes the signal model.
The state space formulation of the problem is presented in Section 3. A brief overview
of particle filtering is provided in Section 4. The proposed algorithms are developed in
Section 5. Simulations and results are presented in Section 6 and finally, conclusions are
provided in Section 7.

2. System model

Figure 1 shows a block diagram of a baseband communication system. The input data
sequence, consisting of a complex data symhglsthat take values from a symbol set
B = {b1,b2,...,bp}, is applied to a pulse shaping filte(r). The output of the filter,
s(t), is given by

M
s(t)=)_ bug(t —mT), (1)

m=1

whereT is the symbol period and/ is the total number of symbols. This signeds), is
transmitted over a frequency-selective Raghefading channel whose impulse response is
denoted by (¢, ) representing the response of the channel at tifioe an impulse input
applied atr — t. Frequency-selective Rayleigh fading channels disperse the transmitted
signal both in time and frequency. The charaistérs of such channels are usually modeled

u(t)

Pul T=kTs Digital | 5
{bi} | shapiSITg s®) Chan?el A r(t) ILPF /7<« Y | Signal ﬂ,
filter ot e Processor

F:{U)

Fig. 1. System model.
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Fig. 2. An FIR represent®n of the channel model.

by an FIR filter with time-varying tap weights as shown in Fig. 2. Mathematically, we can
express the impulse response of the channel as

d
c(t, 1) =Y _a)s(x —IT), )

=0

where ¢;(t) are complex-valued tap weights whose magnitudes are randomly varying
Rayleigh processes,+ 1 = [t;/T] + 1 is the length of the FIR filter and); is the maxi-
mum delay spread of the channel.

The received signak,(?), is written as

r(®) =s(t) xc(t,t) +ut), )

wherex represents the convolution operation and the additive tginis a zero mean
complex Gaussian noise wiflower spectrum density &f;. We can also write (1) as

M
r(t) =Y buh(t,t —mT) +u(t) =z(t) + u (1), 4)

m=1

whereh(t,t —mT) =c(t,t) * g(t —mT).

The transmitted signak,(r), can be, generally, assumed to be bandlimited. Similarly,
the signal component of the received signdt,), can be considered bandlimited having
the same bandwidth agr) except for the slight expansion caused by the Doppler spread.
We select the ideal low-pass filter (ILPF) to have equal bandwidti{rasvhich is B Hz.

The output of the ILPFy(¢), can be written as

y(t) =z(t) +n(r), (5)

wheren(t) is a low-pass filtered additive Gaussian noise with a power spectrum density
No = 2BNj. The output of the low-pass filter is sampled at a rate/df; = 2B which is
conveniently chosen to be an integer multiple of the symbol fate,a T, whereq is a
positive integer. Depending on the length of the delay spread of the channel, the period of
the data symbols, and the length of the truncated impulse response of the pulse shaping
filter, the received sample at tinkds correlated with only a few past samplesLIfienotes
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Fig. 3. Generation of the tap weights of a Ragh fading channel and the received signal.

the number of past symbols correlated with kitle sample, then the sampled signal, is
given by

L

k= Z brija1—ihi,i + n, (6)
i=0

whereny is a complex uncorrelated zero mean Gaussian sequence with vamiéﬁee
2BN; and the operator-] represents the smallest integer greater than or equal to
Fading channels are usually considered as wide stationary unscattering processes [25]
and their theoretical power spectrum of gt@mplex envelope of a received signal over a
Rayleigh fading channel is given by [26]
2

S(f)=:m’ lfl < fa, -

0, otherwise

wherecs? is the root mean square (rms) value of the signal envelop¢ aisthe maximum
Doppler shift corresponding to the speed of the receiver. The valyg @& calculated
asv/A, wherev is the speed of the vehicle (receiver) ani the wavelength of the carrier
frequency.

The simplest method to simulate a frequency-selective fading channel is to amplitude
modulate the transmitted signal by low-padefed complex Gaussian noise process as
shown in Fig. 3. The response of the low-pass fading filter characterizes the fading process
of the channel. The spectral density of the giated received signal is determined by the
transfer function of the fading filter. To dadit a received signal with spectral density as
in (7), the fading filter has to be designed so that its transfer function is proportional to the
square root of (/). Following [8], we approximate the fading filter as an infinite impulse
response (lIR) filter whose coefficients are a function of ghend the symbol period'.

Such approximation allows to model the time-variation of the tap weights of the channel
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filter by an AR process driven by a zero mean complex Gaussian noise. In our formulation,
we model the time variation of the channel by a second order AR process,

hii = yihi—1.i + Vohi—2.i + Vii, (8)

whereh ; represents the coefficient of thih tap of the filter at time instaktandvy ; is a
zero mean Gaussian noise. As désed earlier, the coefficients, y» and the variance of
the noise depend only ofy and the symbol period; [8], and, thus their estimation can
be incorporated as part of the receiver.

3. The state-space model

The signal model described in the previous section can be formulated by a DSS model.
In this section, we restrict our discussion to a single sample per symbol case for which the
model is

X = AXg_1 + Dy,
yi = b Xi + ny, 9

wherex; and y, denote the channel state vector and the received signal atktimee
spectively. It is to be noted that the measurement equation of (9) is identical to (6) with
br = (b, bi—1, ..., bk—1,0,0,...,0)T. The channel state vector, has a dimension of

2(L + 1) x 1 and is defined as

x{ = (h{hy ). (10)

wherehy is an(L + 1) x 1 vector given by, = (hx.0, hx.1, ... b)) T
Both matricesA andD have the size of @ +1) x 2(L +1) and 2L + 1) x (L + 1),
respectively, and are defined by

_ |l el (el
A_[I O} and D_<O>,

wherel andO are identity and zero matrices with sizgs+ 1) x (L + 1). Note thatvy is
an(L + 1) x 1 zero mean white Gaussian noise vector whose covariance matrix is equal
to |. The coefficient in the matrixD represents a fractional power of the received signal
for each lag, which in this case is assed to be identical for all the lags.

Our objective is to jointly estimate the state of the champeind the transmitted sym-
bolsby given the received signai.

4. A brief overview of sequential Monte Carlo filtering

Our approach to the solution of the problem is based on a recursive algorithm known
as sequential Monte Carlo (SMC) or patrticle filtering. Consider the following general DSS
model:
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Xk = f(Xk—1, Ug),
Vi = &(Xk, vi), (11)

where f(-) andg(-) are the state and observation functions, respectixglis a hidden

state vector at time, y, denotes the observed value of the modglandv, represent the

state and observed noises, respetyivl he objective is to estimata.; sequentially based

on the observatioy.;. Note that the notatioyy ., represents the set of vectdys, .. ., Y}

From Bayesian perspective, all the information about the stateis contained in the

posterior density (X1« | Y1:4). Thus, our interest is to evaluate the posterior density and its

corresponding expectations with respect to the posteior | y1.) such ast, (h(X1k) |

Y1), Whereh(x1) is arbitrary function. If the state and observation functiofis) and

g(+), of the DSS model are linear and the state and observation noises are Gaussian, then

the posterior distribution can be exactly determined using the Kalman filter. If the system

is, however, nonlinear and/or non-Gaussian, analytical evaluation is, in most cases, not

possible. In such cases we resort to simulation-based methods such as particle filtering.
The basic concept of Monte Carlo filtering is to approximately represent the posterior

density with properly weighted samples (particles) drawn from a proposal distribution,

7 (X1:k | Y1:£), @lso called importance function. M trajectories ) = {x(ll,z .. x(ll\,]()} are

drawn from this proposal distribution, the posterior density can be approxmated as

N
P(Xuk | Y1) & Z D8 (xex —x1), (12)
i=1

whered(-) is the Dirac delta function anaf;,((i), are weights obtained from

(@)
. o .
W = p( (115 |yl.k), (13)
7 (Xq | Y1)

where the we|ght$u(’)
then be estimated by

are normalized tab” such thaf) " ; w\” = 1. Expectations can

Ep(h(X1x) | Y1:x) Zh (D). (14)

It has been shown that the estimate in (14) is unbiased and, according to the strong law of
large numbers, as the number of particles approaches infinity it converges almost surely
towards the true expectatioB(h(x1.)) [27]. Sequential importance sampling (SIS) is a
popular recursive Monte Carlo filtering algorithm which allows a sequential approximation
of the posterior densities by propagatingtjdes and updating their corresponding weights

as new data become available. Suppose attinve represent the densin(xlk | Y1) by

N trajectories of partlcle$x(’)} ', and their assomated we|gh{tw(’) 1- When a new
observatioryy 1 arrives, a new set of partlclexk L, are generated and the weights are
updated ﬁ),(c’)l, SO0 that{x1 T wk+1} ', represents the density(X1x+1 | Y1x+1). The
procedure has the following three steps:

(1) Generating particles fro ’il ~ 7 (X+1 | X(lli Yik+1) fori=21,2,..., N.
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(2) Updating the weights far=1,2,..., N as

oo PO X P X
Wkt1 X Wi RG] '
7T(Xk+1 | X100 Y1:k4+1)

(3) Normalizing the weights

' w®
) k+1 )
k+1 Z}V:l w]((jﬁl
OnceN particles are collected, estimates of unknowns can readily be obtained.

For efficient estimation of the state vector or its function, the choice of the pro-
posal distributions (Xg41 | xg’;}(,ylﬂl) is critical. The proposal distribution (X1 |
Xg_i:;(,y]_:k_l,_l) = p(Xg+1 | Xgi;{,yl:k_i_l) is optimal in the sense that it minimizes the rela-
tive variation of the weights resulting in mimum variance of the estimates. Although this
proposal density is the best choice, in most cases drawing samples from it is difficult. In
practice, the most important factor dictating the choice of the proposal distribution depends
on the ease of drawing samples. Several forms of proposal distributions have been used in
the literature.

In the SIS algorithm, as the particles propagate in time, the variance of the weights can
only increase [28,29]. In practice, after a short time run, only a few of the particles have a
significant weight while most of the other particles have weights which are approximately
equal to zero. Unless such degeneracy iseskld, a lot of computational power is wasted
in updating the trajectories of those particles which have insignificant contribution to the
final estimate. One method of dealing with the problem of degeneracy is to apply a pro-
cedure called resampling. Resampling simply eliminates samples with small weights and
replicates the ones with larger weights. Several resampling schemes have been proposed
in the literature [28,30,31]. Resampling is applied periodically or at systematically deter-
mined instants. Liu and Chen [30] introduced a measure knoveffecsive sample size,
which is computed as

1
Neff= ————— (15)

Y ()2

and proposed to apply a resampling procedure whenever the effective sample size drops
below a certain predefined threshold value.

For our problem, we are interested in determining the joint posterior distribution,
p(b1x, X1:1 | y1:1), which we use to estimate the transmitted symbols and the channel vec-
tor. We apply the SIS algorithm recursively and approximate the joint posterior distribution
by appropriately weighted particle{:{b(li}{, xf}c), zI;,Ei) N .. Inthe following section, we de-
velop a patrticle filtering algorithm for this purpose.
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5. Algorithmsfor data detection and channel estimation over frequency-selective
fading channels

Our objective is to sequentially determine the vectoysand x; given the observa-
tions y1.x. To do so, we employ the strategy of Rao—Blackwellization [20,28,32] or, as
described in [33], mixture Kalman filtering (MKF). Note that if we are able to determine
the transmitted symbol vectbw.,, which has a discrete support set, then it is possible to
obtain optimal estimates of the channel veckay;, using the Kalman filter. Hence, for the
problem of joint estimation of the channel and detection of transmitted symbols, we can
apply particle filtering to approximate the posterior distribution of the transmitted symbols,
and employ a bank of Kalman filters to determine the distribution of the channel vector.
We start by expressing the joint posteriotaf, andxi.; by

POk, X1k | Y1) = pXak | D1k, Y1) POk | Y1:K)- (16)
The first factor on the right hand side (r.h.s.) of the above expression can be computed
by Kalman filters, while the second factor can be determined using a particle filter. This
results in an approximation of the joint posterior distribution by a mixture of Gaussians.
Once the joint posterior distribution is obtained, the MAP or the MMSE estimator can be
applied to compute the estimates of the transmitted symbols and the channel.

In the sequel, we derive algorithms that approximate the posterior distribution of the
transmitted symbols using particle filtering two different proposal densities—prior and
optimal proposal densities. At the end of threxon, we extend the same algorithms for
multiple samples per symbol.

5.1. Prior proposal density

Consider the posterior distributiop(b(l’;i | y1.6). This posterior distribution can be
rewritten as
(@) (ONEAG) (@)
. POk | yLk—1, bl:k)p(bk | bl:k—l’ .Yl:kfl)p(blzk_l | y1k—1)
Pk | y1k-1)
o p(b” 158 ) p (i | yrk—1, 55) p(BS, 1 | y1s—1), (17)
where the first factor on the r.h.s. of (17) is the prior distribution of the transmitted sym-
bol b. If no coding is applied, the prior probability éf is simply p(by). We consider the
proposal distribution

7 (b | b5y, yix) = p(be | b _y) = p(Bo). (18)
Since the support set of the transmitted symbols is discrete, we can easily draw samples
from this distribution. The associated weight of the particles can then be updated by the

second factor on the r.h.s. of (LH(yk | y1:k—1, bi’;i), which is readily obtained by using
(17) and (13) as follows:

P(b(li;i | y1:x)

® p(bY) | y1x)
[ — .
b 168y p®Y, 1 | yi-1)

=w” p(ve [ y1a—1, b3)), (19)

w,Ei) =w
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where the density (yx | y1:4-1, b(l’;,){) is the predictive density of the observed sigpallt
can be shown that this density is a complex Gaussian distribution given by

. P o
p(k | yik-1, b)) = Ne (v y,ﬁ",){_l, ak,(y')), (20)

where yxx—1 and crkz_y are the predictive mean and variance of the observed signal,
respectively, which can be computed according to

-  _OT, @
Yelk—1= by Myik—1
2(i) _ (DT @) @) 2
Oy =bp Tpp_iby +oy (21)

whereu,(fl}(_l and E,((j}(_l are the predictive mean and covariance of the channel vector,
x,(f), respectively. The mean and covariancetwf thannel vector are tracked by the time

and measurement updates of the bank of Kalman filters as follows:

e Time update:
(i) (1)
M1 = Aly_q
> =A%) AT +D'D.
e Measurement update:
@@ _ . @) (i) () 2t = ()
w =+ b oey (0 = Vo)

(i) 2071 ()T ()
bk o bk >

@) _ v (@)
L, =X -X k,y kjk—1-

klk—1 klk—1
5.2. Optimal proposal density
Unlike the prior distribution, the optimal proposal distribution uses all information avail-

able at timek in order to propose a new sample [20,24]. Consider the optimal proposal

distribution p(by | bi’}(fl, y1:k). We obtain samplela,((i) from B = {b1, by, ..., bz} with

probabilitieSp,Ef)j where

piy=p(b =b; 1bf)_1.y1x) (whereb; € B)
o p(yk | by’ =bj, bi':i,l, yiu-1)p(by’ =b; | b(ll}(,l, Y1ik—1)
o p(ve 15 =bj, bY)_y, yix-1). (22)
In the last step, we assumed that the symbols are random and the occurrefite-af;
is independent of the previous samples. Further, we can show that the last density of (22)
can be written as
pD —p. pD _ pD —p. pi d
Py 1b” =bj by g yrk—1) = | p(vk. Xk | b =bj, biy_q1, yik—1) dXi
=/P()’k [ X b,(f) =bj,bf3(_1, Y1k—1)

x p(xi |6 =bj, b} 1 yia—1)dxi.  (23)



322 T. Ghirmai et al. / Digital Sgnal Processing 14 (2004) 312-331

The second factor in the last integration of (23) is the predictive density of the channel
vector and, as explained, in the previous section, it can be tracked using Kalman filters.
Therefore, the expression for the proposal density can be rewritten as

.
ol o [ N 0k oIV o ik Bk
T T
=~/\/C(yk7 b(l) M’](:&( 1:0n +b(l) Zl((l\gc lb](<l)j) (24)

whereu,((j}( , and ):,({"}{ , are the predictive mean and covariancegfrespectively, and

by, = (b =b;.b1.....5,.0.....0)T. The corresponding weights can be evaluated
as

wd — (,) P(b(f:,){ [ y1:1)
Wy = kO
(b(l) LI yik-n) pP 161 v

(,) P(b(f;){ 1 | y1:4)

(blk 1 | Y1:k—1)

e w;(;)lp(Yk | b(ll:;){_l, Y1k—1)

& w1(<)1 p(vel blk 1 bl(cl) =bj, yl:kfl)p(bl(cl) =bj| b:(l_l:ifl)
bjeB
(l)T @) (l)T (i) @)
o<wk 1 ZN s B i 10 9 o7 + b} 7 Zie—1biy)- (25)
bjeB

From the weight update equations obtained for both proposal distributions, we can see
that a bank of Kalman filters, equal to the numbers of particles, are required to compute
the predictive mean and covariance of the channel vector. Since the prior proposal distrib-
ution does not depend on the parameters of the channel vector, the symbol imputation of
an algorithm based on such distribution carpleeformed at the outset. For the algorithm
based on the optimal proposal distributionwewer, since the prolbdity of the symbols,

,ok , is a function of the predictive mean anovariance of the channel vectors, we need

to update these channel parameters for eadsipte symbol in the alphabet set before a
symbol sample is drawn. The predictive mean and covariance of the channel vector are
obtained by computing the time update equations of the Kalman filter. Therefore, the al-
gorithm which is based on the optimal proposal distribution is slightly more complex than
the algorithm based on the prior distribution. However, it should be noted that, for achiev-
ing the same performance, the algorithm with optimal proposal distribution should, at least
in theory, require less number of particleg)(than the one implemented using the prior
proposal distribution. This is because the propdgsttibution generates particles using all

the information available at that time. After a symbol sample is drawn, the weights can be
updated using (19) or (25). Then, the parameters of the Kalman filters are updated using
the measurement equations.

As described earlier, after short run of the used algorithm, only a few particles will
have significant weight. Estimation based ontsparticles renders the method ineffective
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as the particles with insignificant weights have almost no contribution. To reduce such
impoverishment of particles, we apply resampling whenever the effective sample size falls
below a certain threshold value. Aftéf particles and their corresponding weights and
channel values{,(b,((’), [,L]((l)), zZ),((’)}lN:l, are generated and computed, then MAP or MMSE
estimator are applied to determine the estimates of the transmitted symbol and channel
vector. It is to be noted tha{m,({’)}{": , are the channel estimates of each trajectory. The

channel vector can be estimated using MMSE as

N
2= (26)
i=1
and similarly, the MAP estimate of the transmitted symbol is obtained by
N . .
bix=arg max Za(b(l’:l —by)o L. (27)
buebIL, | iz1

The complete algorithms using the prior and optimal proposal distributions are summarized
in Tables 1 and 2, respectively.

5.3. Multiple samples per symbol case

Processing multiple samples per symbol provides an implicit time diversity [34]. It is
found that, in fast fading channels, improvement in bit error rate (BER) of a receiver and
substantial lowering of error floor can be obtained if more than one sample per symbol
is processed [35]. Obviously, if more samples per symbol are available, the channel can
be tracked better and the knowledge that some samples belong to same symbols can be
exploited.

In this section we extend the algorithms developed in the previous section to the multi-
ple samples per symbol case. We develop algorithms for both prior and optimal proposal
densities just like for the one-sample case. It is noted that at a given ikstaherek is
an integer multiple ofx (the oversampling factor), all the received samplgs,+1.«x are
a function of the symbolsy ox/«—1., WhereL + 1 is the length of the ISI. Therefore, we
can write the posterior density as

a—1
P(b1rkja | y1k) X p(brjo | DLk ja—1) l_[ Pk—j | brkjas Y1k—1—))
j=0
X p(b1:kja—1| Y1k—a)- (28)

If we draw samples from the first factor on the r.h.s. of (28) (which is a prior distribution

of by/q), it can be shown, similarly to the one-sample per symbol case, that the weights
of the particles can be updated using the second factor on the r.h.s. of (28). This second
factor in (28) is a product of the predictive values of the received samples which can be
obtained using a Kalman filter. Therefoig, the algorithm for each proposed symbol,

a Kalman filter is runx times and the corresponding channel vectors are updated. Note
that the weight equation can be sequentially updated as a new sample arrives even though
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Table 1
Particle filtering algorithm for equaéation using the prior proposal density

Initialize ):(0’) =, [Lg) =0, andwé’) 1/Nfori=1toN
Fork =1 to M (total number of symbols)
Fori =1to N (total number of particles)
e Generate samples from(b,) ~ U (|B])
e Time-update the channel vector

(i) (t)
Rip—1 = Ay Z
@ (l) T T
Ti-1=AZ A +D'D

e Evaluate the predictive mean and variance of the observed signal
S(@) 1= b<i>T (@)

Yklk— Pk—1
2(!) (l)T )] (i) 2
oy b ):klk 1b + 0,

e Update the welghts

2
wi” = N g1 cs.)

. Measurement -update the channel vector
@ _ (@) i) L0 207t (@)
B =1+ Zgoabe oy (yk—yklk 1)
(@) (@) (@) () 2071 ()T 5 (i)
2 = ke1 — Zap—1Pe %%y BrT Tk
o Normalize the weights

N
i=1

end
e Evaluate the effective sample size
1
Neff ZN 1( - (l)

o If (Netf < 0.5N)
Apply resampling
e Compute the MMSE estimate of the channel and MAP estimate of the symbols

N . .
o _ Z"l(cl) 11),?)
i=1

b1 = argm Z(S by — b(’) (’)
1:k

end

the estimates and resampling operations aréopmed after all the samples of the same
symbols are received. We can rewrite the weight equation as follows:

a—1
(l) & w;ﬁ’)a l_[ p(yi—j | b(ll}(/a, Vik—1—j)
j=0
(@) 0! 2(3i)
= wily [TNOr=: 56 premiy—1 i) (29)
j=0

Wherey((’) D)1 andcrk , are the predictive mean and predictive variance;of;.
Similar equatlons can be developed for the optimal proposal density by rewriting the pos-
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Table 2
Particle filtering algorithm for equaation using the optimal proposal density

Initialize ):(0’) =1, ;Lg) =0, andwé’) =1/Nfori=1toN
Fork =1 to M (total number of symbols)
Fori =1to N (total number of particles)
e Time-update of the channel vector

@ _A,®
Hijk—1 = A g
21 =A% AT +D'D

Forj=1to|B]|
o Evaluate the predictive mean and variance of the observed

signalyy for each symbol
-(i) _p@OT @)
Yiklk—1),j = bk.j Pik—1
2(0)  _ (DT 5@ (@) 2
(k.y).j = Puj Zie-1Pkj +on
e Compute the proposal density for each possible symbol
(@ ) 2(3i)
Prej Nk Tk, %y, )
end
e Draw a symbol fromi5 using
(O (@)
P(b, _bj)'cx,ok_j
e Update the weights
@& _ (@) h@® @) 2 DT 5 0) (@)
Wy =Wr_1 Z Ne(vk: bk,j'"“k|k—l’on +bk,j ):k\k—lbk,j)
b_/EB
e Measurement-update the channel vector using the drawn symbol
@ _ @) (@) () 2671 =(@0)
m =gyt Eeab oy Ok = B
(i) _ 5 () () ) 20071 ()T 5 (i)
D2 R A Ek\k—lbk %%,y by k-1
o Normalize the weights

N
=) _ (D) (@)
Wi =Wy /(Zwk )
i=1
end

e Evaluate the effective sample size
1
Neff =
I a)2
o If (Neff < 0.5N)
Apply resampling
e Compute the MMSE estimate of the channel and MAP estimate of the symbols

N
=yl of
i=1

N
bix =argmax » (b1 — b(l’:}()zb,((’)
bux | i1

end

terior density as

P(brija | Y1) & p(brja | bLkja—1, Y1) P(D1k /a1 | Y1k—ar)
a—1
X l_[ POk—j | bLkja—1, Ylk—1—))- (30)
j=0
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Note that we can draw samples from the first factor on the r.h.s. of (30), which is the optimal
proposal density oby . Then, the third factor is used in the weight update equation, i.e.,
a—1 )
wy” acw, [T p(ve—s 162 jqm1: y1t-1-7)
j=0

(@) (i)
= Wi al_[Z P(Vk—j I byjq = b1, b lk/a 1 V1k—1—j)
Jj= Ob]EB

@) 2(:)
= Wy~ al_[ ZN Yi—j> y((k DItk=j=1),1° O k— ml) (31)
] 0b1€8

The symbol imputation is deferred until all tkamples of a symbol are received. This helps

in exploiting the prior information, that multiple samples come from the same symbols.
However, updating the channel vector of a given trajectory, requires the prior knowledge
of the proposed symbol. We circumvent this problem by updating the channel vector for
all possible symbols in the symbol alphabet. Once a symbol proposal is made, the cor-
responding channel vector is selected and carried through. Following similar steps of the
single sample per symbol case, we can rewrite the optimal proposal density as

(1) (i)
Prjag = P(bk/a =b1 | by 15 3’1:k)
a—1

o [ T P(yi—j 1 brjor = b1 b5 sy 1. Y1t j-1)
j=0

“H/N Vi— vak/aTsz s 2)

0 0
X Ne (K j3 By jy-10 Z ey ki —1) DXk
_ OT () 2 ()T () 0
HN k=5 O = jy = jy—1 O+ Okjaa Z ey ey -1Pkje) - (32)

whereb; € B andb,((’)aTl = (b(’) = by, bja—1, -+ bkja—1,0, ...,0). As described in the
one-sample case, the algorlthms for the multlple samples per symbol case also require
resampling to reduce the impoverishment of particles of significant weights. Once the par-
ticles are obtained, MAP and MMSE estimators may be applied to find estimates of the
transmitted symbols and channel vectors.

6. Simulationsand results

Computer simulation experiments have been conducted to determine the performance
of the developed algorithms. Experiments for a two-ray and a three-ray multi-path channels
have been carried out although, the preseatgdrithm works for more general multipath
channels. The channels were modeled for a fading rafg Bt 0.022, which corresponds
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Fig. 4. Simulation result—BER vs. SNR (dB) for the two-ray channel.

to a carrier frequency of, = 2 GHz, a vehicle speed af= 75 milegh and data rate of
10,000 symbolgs. Second order AR processes, with coefficients= 1.9602 andy, =
—0.9701, were chosen to model the time variation of the tap weights of the FIR channels.
All the tap weights of the channels had equal power.

A differential BPSK encoding, wher8 = {+1, —1} was used in order to avoid phase
ambiguity that arises in blind equalization problems. The developed algorithms can also
be used without modification for this encadibecause the probability mass function of
the identically and independently distributed (i.i.d.) binary symbols remains unaltered after
encoding.

The algorithms were run for 100 particles for a signal-to-noise ratio (SNR) range of
5-40 dB. A resampling method known as systematic resampling [28] was used and was
applied whenever the effective sample size droped below half of the total number of parti-
cles. Finally, the symbol estimate was performed using the MAP estimator.

Figures 4 and 5 show the performance of the developed algorithms depicting the BER
achieved for different SNRs. The resultsthrese two figures refer to the case of single
sample per symbol. Figure 4 shows the performance achieved for the two-ray channel and
Fig. 5 depicts that of the three-ray channel. Two of the curves represent the performance
achieved using the developed algorithms for both the prior and optimal proposal distribu-
tions. As can be seen the achieved performance using the optimal proposal distribution is
slightly better than the one obtained using the prior proposal distribution. It was observed
that, especially for the algorithms based on the optimal proposal density, the increase in
number of particles did not result in significant improvement of performance.

For comparison purposes, for both channels, we have simulated a PSP—MLSD receiver
based on the LMS algorithm for channel tracking. The step size of the LMS algorithm is
set to be ®5. The PSP-MLSD algorithm was simulated by organizing the symbols into
frames of length of 300 symbols and five training symbols were used for the first frame. It
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Fig. 5. Simulation result—BER v&NR (dB) for the three-ray channel.

is observed that our algorithms achieve better performance than the PSP—-MLSD receiver,
in particular at high SNRs. The PSP—LM$altithm exhibits an error floor at about 25 dB.

MLSD receivers with known and with genie-aided channels were also simulated. These
methods provide lower bounds for the proposed schemes. For the genie-aided simulation
an LMS algorithm was used for channel tracking. It has been observed that the PSP-LMS
genie-aided algorithm also exhibits error floor at about SNES dB.

Figures 6 and 7 depict the performance achieved for the multiple samples per symbol
case for the two channels described above. An oversampling factor obxtwa?, was
utilized. As seen in the figures, we have also simulated the per-branch-processing-LMS
(PBP—-LMS) [8] algorithm and the MLSD with known channel for comparison purposes.
From the figures, we can see that the proposed SIS algorithms outperform the PBP—LMS
method, in particular at high SNRs for both channels. As expected, it is also observed
that, at high SNRs, a significant gain inrfil@mance is achieved when two samples per
symbol are processed in comparison with processing a single sample per symbol. This is
because at high SNR the performance is limited by channel fading and multiple samples per
symbol processing can track the channel better. However, it should be noted that processing
multiple samples per symbol requires more computational power.

7. Conclusions

In this paper we proposed blind equalization methods for frequency-selective fading
channels. The methods estimate the channdldetect the transmitted symbols jointly.
We have modeled the frequency-selective channel using a multi-tap FIR filter whose tap
weights vary as AR processes.
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Fig. 6. ABER vs. SNR (dB) (two sample pgrrebol processing) for the two-ray channel.
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Fig. 7. ABER vs. SNR (dB) (two sample per shoi processing) for the three-ray channel.

The developed algorithms are based on SMC filtering. We have used the strategy of
Rao—Blackwellization where particle filtering is used to determine the posterior distribu-
tion of the transmitted symbols while a bank of Kalman filters is employed for estimating
the posterior density of the channel vector. Computer simulations show that the proposed
algorithms outperform the PSP—MLSD receivers based on LMS channel tracking.
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The algorithms are also extended to the case of multiple samples per symbol. Multiple
samples per symbol provide implicit diversity which results in performance improvement.
The computer simulations demonstrate that at medium and high SNR values a significant
gain can be achieved compared to the single sample per symbol case.

Sequential Monte Carlo methods are inherently computationally intensive and the same
is true about our algorithms. However, these algorithms are highly parallelizable and suit-
able for VLSI implementation.
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