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Abstract

In this paper we address the problem of equalization of time-varying frequency-selective ch
We formulate the problem by modeling the frequency-selective channel by an FIR filter withtime-
varying tap weights whose variation is characterized by anAR process. Our approach to the proble
is based on Bayesian estimation using sequential Monte Carlo filtering commonly referred to
ticle filtering. This estimation method represents the target posterior distribution by a set of ra
discrete samples and their associated weights. In this paper, we also extend the technique
ization using particle filtering for cases where we have multiple samples per symbol and demo
that significant performance improvement can be achieved by processing multiple samples. T
posed algorithm is recursive and blind for it requires no training symbols for channel estim
However, it assumes knowledge of the variance of the additive noise and the coefficients of
process used to model the variation of the fading channel tap weights. The proposed scheme
parallelizable and hence is suitable for VLSI (very large scale integration) implementation.
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1. Introduction

Wide band mobile communication channels are generally considered as time-varying
frequency-selective channels. Data transmitted over these channels undergo time and
quency spread causing serious impairments to the received signal. While time disp
produces intersymbol interference (ISI) between the symbols, large frequency spre
sults in fast channel variation. Detection of data in such environment requires ad
receivers with fast convergence. The design of this type of receivers is a challengin
and as a result, a considerable researcheffort has been directed towards it.

Most of the structures proposed in the literature for detection of data transmitted ov
frequency-selective channels employ adaptive maximum likelihood sequence de
(MLSD) [1,2] based on the Viterbi algorithm (VA) [3]. In conventional MLSD, since
VA has an inherent decision delay, the metrics of the branches of its trellis have to b
uated on delayed estimates of the channel parameters which are later updated according
the detected data. Such methods are not, however, suitable for fast fading channels becau
the detection of the data is based on outdated estimates of the channel impulse re
A more appropriate method for fast fading channels is a per-survival-processing M
(PSP-MLSD) [4,5], which avoids using delayed estimates of the channel for data
tion by allowing each surviving branch of the trellis to update its own channel imp
response based on its hypothesized symbols. In this method, the channel estimate
states of the trellis are updated using the least mean square (LMS) [6] method, the re
least square (RLS) [7,8] method, or Kalman filters [9,10]. Alternative receivers for data d
tection in fading channels are the maximum aposteriori (MAP) receivers [11,12]. Thes
methods use a single Kalman filter and the a posteriori probabilities (APPs) of the state o
the ISI to estimate the channel. For fast fading channels, following a similar appro
blind MAP equalizer with a bank of Kalman filters is proposed in [13].

Our approach to the problem is based on a Bayesian formulation in which we
simulation-based recursive algorithm from the family of sequential Monte Carlo (S
methods also referred to as particle filtering. Sequential Monte Carlo filtering has
successfully applied in the past to flat fading channels [14–17]. In [18] and [19], the equ
ization problem has been tackled using a similar approach but addressed the prob
time-invariant channels and orthogonal frequency division multiplexing (OFDM) systems
respectively. Moreover, SMC methods are also applied to problems of data detec
other communications systems such as synchronous and asynchronous code division m
tiple access (CDMA) systems [17,20,21].

We model the frequency-selective channel using a finite impulse response (FIR
with time-varying tap weights, which are considered as randomly varying complex v
whose magnitude is Rayleigh distributed. This type of variation of the tap weights c
characterized by an autoregressive (AR) process driven by a complex zero mean Gaus
noise. Such modeling of the channel allows to formulate the problem as a dynami
space (DSS) system. The channel impulse response and the transmitted data are
known (hidden) states of the DSS and the received signal is the observation of the s
With this formulation, particle filtering can be applied to jointly estimate the channe
the transmitted data. The underlying idea of particle filtering consists of representing
probability distribution by a collection of properly weighted samples drawn from a
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posal density. In our problem, we use particle filtering to represent approximately the
posterior distribution of the channel vector and the transmitted data given all the
able observations. MAP or minimum mean square error (MMSE) are used then to
estimates of the channel and the transmitted symbols.

Our algorithm is sequential and blind as it requires no training symbols. Howeve
assume the knowledge of the coefficients of the AR process used to model the time
tion of the tap weights of the channel FIR filter and the variances of the complex ad
noises. As described in [8], the assumption of knowing the AR coefficients, howev
not a serious limitation since they depend only on the fading rate (Doppler frequenc
and symbol rate) and the estimation of the ARcoefficients can be easily incorporated
the receiver. For details on how to compute these coefficients, refer to [22,23] or [8] whe
a computer program is provided.

The main contributions of the paper are: the development of algorithms for detectio
of signals for time-varying frequency-selective fading channels and the extension o
methods for processing multiple samples per symbol for data detection using particle fi
tering. Parts of this work has been presented in [24].

The remaining of the paper is organized as follows. Section 2 describes the signal
The state space formulation of the problem is presented in Section 3. A brief ove
of particle filtering is provided in Section 4. The proposed algorithms are develop
Section 5. Simulations and results are presented in Section 6 and finally, conclusio
provided in Section 7.

2. System model

Figure 1 shows a block diagram of a baseband communication system. The inp
sequence, consisting of a complex data symbols,bi , that take values from a symbol s
B = {b1, b2, . . . , b|B|}, is applied to a pulse shaping filter,g(t). The output of the filter
s(t), is given by

s(t) =
M∑

m=1

bmg(t − mT ), (1)

whereT is the symbol period andM is the total number of symbols. This signal,s(t), is
transmitted over a frequency-selective Rayleigh fading channel whose impulse respons
denoted byc(t, τ ) representing the response of the channel at timet for an impulse input
applied att − τ . Frequency-selective Rayleigh fading channels disperse the transm
signal both in time and frequency. The characteristics of such channels are usually mode

Fig. 1. System model.
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Fig. 2. An FIR representation of the channel model.

by an FIR filter with time-varying tap weights as shown in Fig. 2. Mathematically, we
express the impulse response of the channel as

c(t, τ ) =
d∑

l=0

cl(t)δ(τ − lTs), (2)

where cl(t) are complex-valued tap weights whose magnitudes are randomly va
Rayleigh processes,d + 1 = �τd/Ts� + 1 is the length of the FIR filter andτd is the maxi-
mum delay spread of the channel.

The received signal,r(t), is written as

r(t) = s(t) ∗ c(t, τ ) + u(t), (3)

where∗ represents the convolution operation and the additive termu(t) is a zero mean
complex Gaussian noise withpower spectrum density ofN ′

0. We can also writer(t) as

r(t) =
M∑

m=1

bmh(t, t − mT ) + u(t) = z(t) + u(t), (4)

whereh(t, t − mT ) = c(t, τ ) ∗ g(t − mT ).
The transmitted signal,s(t), can be, generally, assumed to be bandlimited. Simila

the signal component of the received signal,z(t), can be considered bandlimited havi
the same bandwidth ass(t) except for the slight expansion caused by the Doppler spr
We select the ideal low-pass filter (ILPF) to have equal bandwidth asz(t) which isB Hz.
The output of the ILPF,y(t), can be written as

y(t) = z(t) + n(t), (5)

wheren(t) is a low-pass filtered additive Gaussian noise with a power spectrum de
N0 = 2BN ′

0. The output of the low-pass filter is sampled at a rate of 1/Ts = 2B which is
conveniently chosen to be an integer multiple of the symbol rate,T = αTs , whereα is a
positive integer. Depending on the length of the delay spread of the channel, the pe
the data symbols, and the length of the truncated impulse response of the pulse s
filter, the received sample at timek is correlated with only a few past samples. IfL denotes
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Fig. 3. Generation of the tap weights of a Rayleigh fading channel and the received signal.

the number of past symbols correlated with thekth sample, then the sampled signal,yk , is
given by

yk =
L∑

i=0

b�k/α�−ihk,i + nk, (6)

wherenk is a complex uncorrelated zero mean Gaussian sequence with varianceσ 2
n =

2BN ′
0 and the operator�·� represents the smallest integer greater than or equal to(·).

Fading channels are usually considered as wide stationary unscattering proces
and their theoretical power spectrum of thecomplex envelope of a received signal ove
Rayleigh fading channel is given by [26]

S(f ) =
{

σ2

2πfd

√
1−(f/fd)2

, |f | < fd,

0, otherwise,
(7)

whereσ 2 is the root mean square (rms) value of the signal envelope andfd is the maximum
Doppler shift corresponding to the speed of the receiver. The value offd is calculated
asv/λ, wherev is the speed of the vehicle (receiver) andλ is the wavelength of the carrie
frequency.

The simplest method to simulate a frequency-selective fading channel is to amp
modulate the transmitted signal by low-pass filtered complex Gaussian noise process
shown in Fig. 3. The response of the low-pass fading filter characterizes the fading p
of the channel. The spectral density of the simulated received signal is determined by t
transfer function of the fading filter. To obtain a received signal with spectral density
in (7), the fading filter has to be designed so that its transfer function is proportional
square root ofS(f ). Following [8], we approximate the fading filter as an infinite impu
response (IIR) filter whose coefficients are a function of thefd and the symbol periodT .
Such approximation allows to model the time-variation of the tap weights of the ch
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filter by an AR process driven by a zero mean complex Gaussian noise. In our formu
we model the time variation of the channel by a second order AR process,

hk,i = γ1hk−1,i + γ2hk−2,i + νk,i, (8)

wherehk,i represents the coefficient of theith tap of the filter at time instantk andνk,i is a
zero mean Gaussian noise. As described earlier, the coefficientsγ1, γ2 and the variance o
the noise depend only onfd and the symbol period,T [8], and, thus their estimation ca
be incorporated as part of the receiver.

3. The state-space model

The signal model described in the previous section can be formulated by a DSS
In this section, we restrict our discussion to a single sample per symbol case for wh
model is

xk = Axk−1 + Dνk,

yk = b�
k xk + nk, (9)

wherexk and yk denote the channel state vector and the received signal at timek, re-
spectively. It is to be noted that the measurement equation of (9) is identical to (6
bk = (bk, bk−1, . . . , bk−L,0,0, . . . ,0)�. The channel state vector,xk has a dimension o
2(L + 1) × 1 and is defined as

x�
k = (

h�
k h�

k−1

)
, (10)

wherehk is an(L + 1) × 1 vector given byhk = (hk,0, hk,1, . . . , hk,L)�.
Both matricesA andD have the size of 2(L + 1) × 2(L + 1) and 2(L + 1) × (L + 1),

respectively, and are defined by

A =
[

γ1I γ2I
I 0

]
and D =

(
εI
0

)
,

whereI and0 are identity and zero matrices with sizes(L + 1) × (L + 1). Note thatνk is
an (L + 1) × 1 zero mean white Gaussian noise vector whose covariance matrix is
to I. The coefficientε in the matrixD represents a fractional power of the received sig
for each lag, which in this case is assumed to be identical for all the lags.

Our objective is to jointly estimate the state of the channelxk and the transmitted sym
bolsbk given the received signalyk .

4. A brief overview of sequential Monte Carlo filtering

Our approach to the solution of the problem is based on a recursive algorithm k
as sequential Monte Carlo (SMC) or particle filtering. Consider the following general
model:
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xk = f (xk−1,uk),

yk = g(xk,νk), (11)

wheref (·) andg(·) are the state and observation functions, respectively,xk is a hidden
state vector at timek, yk denotes the observed value of the model,uk andνk represent the
state and observed noises, respectively. The objective is to estimatex1:k sequentially base
on the observationy1:k. Note that the notationy1:k represents the set of vectors{y1, . . . ,yk}.
From Bayesian perspective, all the information about the statex1:k is contained in the
posterior densityp(x1:k | y1:k). Thus, our interest is to evaluate the posterior density an
corresponding expectations with respect to the posteriorp(x1:k | y1:k) such asEp(h(x1:k) |
y1:k), whereh(x1:k) is arbitrary function. If the state and observation functions,f (·) and
g(·), of the DSS model are linear and the state and observation noises are Gaussia
the posterior distribution can be exactly determined using the Kalman filter. If the sy
is, however, nonlinear and/or non-Gaussian, analytical evaluation is, in most cas
possible. In such cases we resort to simulation-based methods such as particle filte

The basic concept of Monte Carlo filtering is to approximately represent the pos
density with properly weighted samples (particles) drawn from a proposal distribu
π(x1:k | y1:k), also called importance function. IfN trajectories,Xk = {x(1)

1:k, . . . ,x(N)
1:k }, are

drawn from this proposal distribution, the posterior density can be approximated as

p(x1:k | y1:k) ≈
N∑

i=1

w̃
(i)
k δ

(
x1:k − x(i)

1:k
)
, (12)

whereδ(·) is the Dirac delta function and,̃w(i)
k , are weights obtained from

w
(i)
k = p(x(i)

1:k | y1:k)
π(x(i)

1:k | y1:k)
, (13)

where the weightsw(i)
k are normalized tõw(i)

k such that
∑N

i=1 w̃
(i)
k = 1. Expectations ca

then be estimated by

Ep

(
h(x1:k) | y1:k

) ≈
N∑

i=1

h
(
x(i)

1:k
)
w̃

(i)
k . (14)

It has been shown that the estimate in (14) is unbiased and, according to the strong
large numbers, as the number of particles approaches infinity it converges almost
towards the true expectation,E(h(x1:k)) [27]. Sequential importance sampling (SIS) is
popular recursive Monte Carlo filtering algorithm which allows a sequential approxim
of the posterior densities by propagating particles and updating their corresponding weig
as new data become available. Suppose at timek we represent the densityp(x1:k | y1:k) by
N trajectories of particles{x(i)

1:k}Ni=1 and their associated weights{w̃(i)
k }Ni=1. When a new

observationyk+1 arrives, a new set of particles,x(i)
k+1, are generated and the weights

updated,w̃(i)
k+1, so that{x(i)

1:k+1, w̃k+1}Ni=1 represents the densityp(x1:k+1 | y1:k+1). The
procedure has the following three steps:

(1) Generating particles fromx(i) ∼ π(xk+1 | x(i)
,y1:k+1) for i = 1,2, . . . ,N .
k+1 1:k
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(2) Updating the weights fori = 1,2, . . . ,N as

w
(i)
k+1 ∝ w

(i)
k

p(yk | x(i)
k )p(x(i)

k+1 | x(i)
k )

π(x(i)
k+1 | x(i)

1:k,y1:k+1)
.

(3) Normalizing the weights

w̃
(i)
k+1 = w

(i)
k+1∑N

j=1 w
(j)

k+1

.

OnceN particles are collected, estimates of unknowns can readily be obtained.
For efficient estimation of the state vector or its function, the choice of the

posal distributionπ(xk+1 | x(i)
1:k,y1:k+1) is critical. The proposal distributionπ(xk+1 |

x(i)
1:k,y1:k+1) = p(xk+1 | x(i)

1:k,y1:k+1) is optimal in the sense that it minimizes the re
tive variation of the weights resulting in minimum variance of the estimates. Although th
proposal density is the best choice, in most cases drawing samples from it is diffic
practice, the most important factor dictating the choice of the proposal distribution de
on the ease of drawing samples. Several forms of proposal distributions have been
the literature.

In the SIS algorithm, as the particles propagate in time, the variance of the weigh
only increase [28,29]. In practice, after a short time run, only a few of the particles h
significant weight while most of the other particles have weights which are approxim
equal to zero. Unless such degeneracy is addressed, a lot of computational power is was
in updating the trajectories of those particles which have insignificant contribution t
final estimate. One method of dealing with the problem of degeneracy is to apply
cedure called resampling. Resampling simply eliminates samples with small weigh
replicates the ones with larger weights. Several resampling schemes have been p
in the literature [28,30,31]. Resampling is applied periodically or at systematically d
mined instants. Liu and Chen [30] introduced a measure known aseffective sample size,
which is computed as

Neff = 1∑N
i=1(w̃

(i)
k )2

(15)

and proposed to apply a resampling procedure whenever the effective sample siz
below a certain predefined threshold value.

For our problem, we are interested in determining the joint posterior distribu
p(b1:k,x1:k | y1:k), which we use to estimate the transmitted symbols and the channe
tor. We apply the SIS algorithm recursively and approximate the joint posterior distrib
by appropriately weighted particles,{(b(i)

1:k,x(i)
1:k), w̃

(i)
k }Ni=1. In the following section, we de

velop a particle filtering algorithm for this purpose.



320 T. Ghirmai et al. / Digital Signal Processing 14 (2004) 312–331

-
r, as
ine

e to
e
e can
bols,
ector.

puted
. This
ians.
n be

f the
d

for

e

sym-

amples
by the
g

5. Algorithms for data detection and channel estimation over frequency-selective
fading channels

Our objective is to sequentially determine the vectorsbk and xk given the observa
tions y1:k. To do so, we employ the strategy of Rao–Blackwellization [20,28,32] o
described in [33], mixture Kalman filtering (MKF). Note that if we are able to determ
the transmitted symbol vectorb1:k , which has a discrete support set, then it is possibl
obtain optimal estimates of the channel vector,x1:k, using the Kalman filter. Hence, for th
problem of joint estimation of the channel and detection of transmitted symbols, w
apply particle filtering to approximate the posterior distribution of the transmitted sym
and employ a bank of Kalman filters to determine the distribution of the channel v
We start by expressing the joint posterior ofb1:k andx1:k by

p(b1:k,x1:k | y1:k) = p(x1:k | b1:k, y1:k)p(b1:k | y1:k). (16)

The first factor on the right hand side (r.h.s.) of the above expression can be com
by Kalman filters, while the second factor can be determined using a particle filter
results in an approximation of the joint posterior distribution by a mixture of Gauss
Once the joint posterior distribution is obtained, the MAP or the MMSE estimator ca
applied to compute the estimates of the transmitted symbols and the channel.

In the sequel, we derive algorithms that approximate the posterior distribution o
transmitted symbols using particle filtering for two different proposal densities—prior an
optimal proposal densities. At the end of the section, we extend the same algorithms
multiple samples per symbol.

5.1. Prior proposal density

Consider the posterior distributionp(b
(i)
1:k | y1:k). This posterior distribution can b

rewritten as

p
(
b

(i)
1:k | y1:k

) = p(yk | y1:k−1, b
(i)
1:k)p(b

(i)
k | b

(i)
1:k−1, y1:k−1)p(b

(i)
1:k−1 | y1:k−1)

p(yk | y1:k−1)

∝ p
(
b

(i)
k | b(i)

k−1

)
p
(
yk | y1:k−1, b

(i)
1:k

)
p
(
b

(i)
1:k−1 | y1:k−1

)
, (17)

where the first factor on the r.h.s. of (17) is the prior distribution of the transmitted
bol bk. If no coding is applied, the prior probability ofbk is simplyp(bk). We consider the
proposal distribution

π
(
bk | b(i)

1:k−1, y1:k
) = p

(
bk | b(i)

1:k−1

) = p(bk). (18)

Since the support set of the transmitted symbols is discrete, we can easily draw s
from this distribution. The associated weight of the particles can then be updated
second factor on the r.h.s. of (17),p(yk | y1:k−1, b

(i)
1:k), which is readily obtained by usin

(17) and (13) as follows:

w
(i)
k = w

(i)
k−1

p(b
(i)
1:k | y1:k)

π(b
(i)
k | b(i)

1:k−1, y1:k)p(b
(i)
1:k−1 | y1:k−1)

= w
(i)

p
(
yk | y1:k−1, b

(i) )
, (19)
k−1 1:k
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where the densityp(yk | y1:k−1, b
(i)
1:k) is the predictive density of the observed signalyk. It

can be shown that this density is a complex Gaussian distribution given by

p
(
yk | y1:k−1, b

(i)
1:k

) =Nc

(
yk; ȳ

(i)
k|k−1, σ

2(i)
k,y

)
, (20)

where ȳk|k−1 andσ 2
k,y are the predictive mean and variance of the observed signayk,

respectively, which can be computed according to

ȳ
(i)
k|k−1 = b(i)�

k µ
(i)
k|k−1,

σ
2(i)
k,y = b(i)�

k �
(i)
k|k−1b(i)

k + σ 2
n , (21)

whereµ
(i)
k|k−1 and�

(i)
k|k−1 are the predictive mean and covariance of the channel ve

x(i)
k , respectively. The mean and covariance of the channel vector are tracked by the tim

and measurement updates of the bank of Kalman filters as follows:

• Time update:

µ
(i)
k|k−1 = Aµ

(i)
k−1,

�
(i)
k|k−1 = A�

(i)
k−1A� + D�D.

• Measurement update:

µ
(i)
k = µ

(i)
k|k−1 + �

(i)
k|k−1b(i)

k σ
2(i)−1

k,y

(
yk − ȳ

(i)
k|k−1

)
,

�
(i)
k = �

(i)
k|k−1 − �

(i)
k|k−1b(i)

k σ
2(i)−1

k,y b(i)�
k �

(i)
k|k−1.

5.2. Optimal proposal density

Unlike the prior distribution, the optimal proposal distribution uses all information a
able at timek in order to propose a new sample [20,24]. Consider the optimal pro
distributionp(bk | b

(i)
1:k−1, y1:k). We obtain samplesb(i)

k from B = {b1, b2, . . . , b|B|} with

probabilitiesρ(i)
k,j where

ρ
(i)
k,j = p

(
b

(i)
k = bj | b(i)

1:k−1, y1:k
)

(wherebj ∈ B)

∝ p
(
yk | b(i)

k = bj , b
(i)
1:k−1, y1:k−1

)
p
(
b

(i)
k = bj | b(i)

1:k−1, y1:k−1
)

∝ p
(
yk | b(i)

k = bj , b
(i)
1:k−1, y1:k−1

)
. (22)

In the last step, we assumed that the symbols are random and the occurrence ofb
(i)
k = bj

is independent of the previous samples. Further, we can show that the last density
can be written as

p
(
yk | b(i)

k = bj , b
(i)
1:k−1, y1:k−1

) =
∫

p
(
yk,xk | b(i)

k = bj , b
(i)
1:k−1, y1:k−1

)
dxk

=
∫

p
(
yk | xk, b

(i)
k = bj , b

(i)
1:k−1, y1:k−1

)
× p

(
xk | b(i) = bj , b

(i)
, y1:k−1

)
dxk. (23)
k 1:k−1
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The second factor in the last integration of (23) is the predictive density of the ch
vector and, as explained, in the previous section, it can be tracked using Kalman
Therefore, the expression for the proposal density can be rewritten as

ρ
(i)
k,j ∝

∫
Nc

(
yk; b(i)�

k,j xk, σ
2
n

)
Nc

(
xk;µ

(i)
k|k−1,�

(i)
k|k−1

)
dxk

=Nc

(
yk; b(i)�

k,j µ
(i)
k|k−1, σ

2
n + b(i)�

k,j �
(i)
k|k−1b(i)

k,j

)
, (24)

whereµ
(i)
k|k−1 and�

(i)
k|k−1 are the predictive mean and covariance ofxk, respectively, and

b(i)
k,j = (b

(i)
k = bj , b

(i)
k−1, . . . , b

(i)
k−L,0, . . . ,0)�. The corresponding weights can be evalua

as

w
(i)
k = w

(i)
k−1

p(b
(i)
1:k | y1:k)

p(b
(i)
1:k−1 | y1:k−1) p(b

(i)
k | b(i)

1:k−1, y1:k)

= w
(i)
k−1

p(b
(i)
1:k−1 | y1:k)

p(b
(i)
1:k−1 | y1:k−1)

∝ w
(i)
k−1p

(
yk | b(i)

1:k−1, y1:k−1
)

∝ w
(i)
k−1

∑
bj∈B

p
(
yk | b(i)

1:k−1, b
(i)
k = bj , y1:k−1

)
p
(
b

(i)
k = bj | b(i)

1:k−1

)

∝ w
(i)
k−1

∑
bj∈B

Nc

(
yk; b(i)�

k,j µ
(i)
k|k−1, σ

2
n + b(i)�

k,j �
(i)
k|k−1b(i)

k,j

)
. (25)

From the weight update equations obtained for both proposal distributions, we c
that a bank of Kalman filters, equal to the numbers of particles, are required to co
the predictive mean and covariance of the channel vector. Since the prior proposal
ution does not depend on the parameters of the channel vector, the symbol imputa
an algorithm based on such distribution can beperformed at the outset. For the algorith
based on the optimal proposal distribution, however, since the probability of the symbols,
ρ

(i)
k,j , is a function of the predictive mean and covariance of the channel vectors, we ne

to update these channel parameters for each possible symbol in the alphabet set befor
symbol sample is drawn. The predictive mean and covariance of the channel vec
obtained by computing the time update equations of the Kalman filter. Therefore, t
gorithm which is based on the optimal proposal distribution is slightly more complex
the algorithm based on the prior distribution. However, it should be noted that, for ac
ing the same performance, the algorithm with optimal proposal distribution should, a
in theory, require less number of particles (N ) than the one implemented using the pr
proposal distribution. This is because the proposaldistribution generates particles using
the information available at that time. After a symbol sample is drawn, the weights c
updated using (19) or (25). Then, the parameters of the Kalman filters are updated
the measurement equations.

As described earlier, after short run of the used algorithm, only a few particles
have significant weight. Estimation based on such particles renders the method ineffect
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as the particles with insignificant weights have almost no contribution. To reduce
impoverishment of particles, we apply resampling whenever the effective sample siz
below a certain threshold value. AfterN particles and their corresponding weights a
channel values,{(b(i)

k ,µ
(i)
k ), w̃

(i)
k }Ni=1, are generated and computed, then MAP or MM

estimator are applied to determine the estimates of the transmitted symbol and c
vector. It is to be noted that{µ(i)

k }Ni=1 are the channel estimates of each trajectory.
channel vector can be estimated using MMSE as

x̂k =
N∑

i=1

µ
(i)
k w̃

(i)
k (26)

and similarly, the MAP estimate of the transmitted symbol is obtained by

b̂1:k = arg max
b1:k∈{b(i)

1:k}Ni=1

{
N∑

i=1

δ
(
b(i)

1:k − b1:k
)
w̃

(i)
k

}
. (27)

The complete algorithms using the prior and optimal proposal distributions are summ
in Tables 1 and 2, respectively.

5.3. Multiple samples per symbol case

Processing multiple samples per symbol provides an implicit time diversity [34].
found that, in fast fading channels, improvement in bit error rate (BER) of a receive
substantial lowering of error floor can be obtained if more than one sample per s
is processed [35]. Obviously, if more samples per symbol are available, the chann
be tracked better and the knowledge that some samples belong to same symbols
exploited.

In this section we extend the algorithms developed in the previous section to the
ple samples per symbol case. We develop algorithms for both prior and optimal pro
densities just like for the one-sample case. It is noted that at a given instantk, wherek is
an integer multiple ofα (the oversampling factor), all the received samplesyk−α+1:k are
a function of the symbolsbk/α:k/α−L, whereL + 1 is the length of the ISI. Therefore, w
can write the posterior density as

p(b1:k/α | y1:k) ∝ p(bk/α | b1:k/α−1)

α−1∏
j=0

p(yk−j | b1:k/α, y1:k−1−j )

× p(b1:k/α−1 | y1:k−α). (28)

If we draw samples from the first factor on the r.h.s. of (28) (which is a prior distribu
of bk/α), it can be shown, similarly to the one-sample per symbol case, that the w
of the particles can be updated using the second factor on the r.h.s. of (28). This
factor in (28) is a product of the predictive values of the received samples which c
obtained using a Kalman filter. Therefore,in the algorithm for each proposed symb
a Kalman filter is runα times and the corresponding channel vectors are updated.
that the weight equation can be sequentially updated as a new sample arrives even
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Table 1
Particle filtering algorithm for equalization using the prior proposal density

Initialize �
(i)
0 = I, µ

(i)
0 = 0, andw

(i)
0 = 1/N for i = 1 to N

For k = 1 to M (total number of symbols)
For i = 1 toN (total number of particles)

• Generate samples fromp(bk) ∼ U(|B|)
• Time-update the channel vector

µ
(i)
k|k−1 = Aµ

(i)
k−1

�
(i)
k|k−1 = A�

(i)
k−1A� + D�D

• Evaluate the predictive mean and variance of the observed signalyk

ȳ
(i)
k|k−1 = b(i)�

k
µ

(i)
k|k−1

σ
2(i)
k,y

= b(i)�
k

�
(i)
k|k−1b(i)

k
+ σ2

n

• Update the weights

w
(i)
k

= w
(i)
k−1N

(
yk; ȳ(i)

k|k−1, σ
2(i)
k,y

)
• Measurement-update the channel vector

µ
(i)
k = µ

(i)
k|k−1 + �

(i)
k|k−1b(i)

k σ
2(i)−1

k,y

(
yk − ȳ

(i)
k|k−1

)
�

(i)
k

= �
(i)
k|k−1 − �

(i)
k|k−1b(i)

k
σ

2(i)−1

k,y
b(i)�
k

�
(i)
k|k−1

• Normalize the weights

w̃
(i)
k

= w
(i)
k

/(
N∑

i=1

w
(i)
k

)

end
• Evaluate the effective sample size

Neff = 1∑N
i=1(w̃

(i)
k )2

• If (Neff � 0.5N)

Apply resampling
• Compute the MMSE estimate of the channel and MAP estimate of the symbols

x̂k =
N∑

i=1

µ
(i)
k

w̃
(i)
k

b̂1:k = arg max
b1:k

{
N∑

i=1

δ
(
b1:k − b(i)

1:k
)
w̃

(i)
k

}

end

the estimates and resampling operations are performed after all the samples of the sa
symbols are received. We can rewrite the weight equation as follows:

w
(i)
k ∝ w

(i)
k−α

α−1∏
j=0

p
(
yk−j | b(i)

1:k/α, y1:k−1−j

)

= w
(i)
k−α

α−1∏
j=0

Nc

(
yk−j ; ȳ

(i)
(k−j)|(k−j)−1, σ

2(i)
k−j,y

)
, (29)

whereȳ
(i)
(k−j)|(k−j)−1 andσ

2(i)
k−j,y are the predictive mean and predictive variance ofyk−j .

Similar equations can be developed for the optimal proposal density by rewriting th
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Table 2
Particle filtering algorithm for equalization using the optimal proposal density

Initialize �
(i)
0 = I, µ

(i)
0 = 0, andw

(i)
0 = 1/N for i = 1 toN

For k = 1 toM (total number of symbols)
For i = 1 to N (total number of particles)

• Time-update of the channel vector

µ
(i)
k|k−1 = Aµ

(i)
k−1

�
(i)
k|k−1 = A�

(i)
k−1A� + D�D

For j = 1 to |B|
• Evaluate the predictive mean and variance of the observed

signalyk for each symbol

ȳ
(i)
(k|k−1),j

= b(i)�
k,j

µ
(i)
k|k−1

σ
2(i)
(k,y),j

= b(i)�
k,j

�
(i)
k|k−1b(i)

k,j
+ σ2

n

• Compute the proposal density for each possible symbol

ρ
(i)
k,j

∝ Nc
(
yk; ȳ(i)

(k|k−1),j
, σ

2(i)
(k,y),j

)
end
• Draw a symbol fromB using

P
(
b
(i)
k

= bj

) ∝ ρ
(i)
k,j

• Update the weights

w
(i)
k

= w
(i)
k−1

∑
bj ∈B

Nc
(
yk;b(i)

k,j
µ

(i)
k|k−1, σ2

n + b(i)�
k,j

�
(i)
k|k−1b(i)

k,j

)
• Measurement-update the channel vector using the drawn symbol

µ
(i)
k = µ

(i)
k|k−1 + �

(i)
k|k−1b(i)

k σ
2(i)−1

k,y

(
yk − ȳ

(i)
k|k−1

)
�

(i)
k

= �
(i)
k|k−1 − �

(i)
k|k−1b(i)

k
σ

2(i)−1

k,y
b(i)�
k

�
(i)
k|k−1

• Normalize the weights

w̃
(i)
k

= w
(i)
k

/(
N∑

i=1

w
(i)
k

)

end
• Evaluate the effective sample size

Neff = 1∑N
i=1(w̃

(i)
k )2

• If (Neff � 0.5N)

Apply resampling
• Compute the MMSE estimate of the channel and MAP estimate of the symbols

x̂k =
N∑

i=1

µ
(i)
k

w̃
(i)
k

b̂1:k = arg max
b1:k

{
N∑

i=1

δ
(
b1:k − b(i)

1:k
)
w̃

(i)
k

}

end

terior density as

p(b1:k/α | y1:k) ∝ p(bk/α | b1:k/α−1, y1:k)p(b1:k/α−1 | y1:k−α)

×
α−1∏

p(yk−j | b1:k/α−1, y1:k−1−j ). (30)

j=0
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Note that we can draw samples from the first factor on the r.h.s. of (30), which is the op
proposal density ofbk/α. Then, the third factor is used in the weight update equation,

w
(i)
k ∝ w

(i)
k−α

α−1∏
j=0

p
(
yk−j | b(i)

1:k/α−1, y1:k−1−j

)

= w
(i)
k−α

α−1∏
j=0

∑
bl∈B

p
(
yk−j | b(i)

k/α = bl, b
(i)
1:k/α−1, y1:k−1−j

)

= w
(i)
k−α

α−1∏
j=0

∑
bl∈B

N
(
yk−j ; ȳ

(i)
((k−j)|(k−j)−1),l, σ

2(i)
(k−j,y),l

)
. (31)

The symbol imputation is deferred until all thesamples of a symbol are received. This he
in exploiting the prior information, that multiple samples come from the same sym
However, updating the channel vector of a given trajectory, requires the prior know
of the proposed symbol. We circumvent this problem by updating the channel vec
all possible symbols in the symbol alphabet. Once a symbol proposal is made, th
responding channel vector is selected and carried through. Following similar steps
single sample per symbol case, we can rewrite the optimal proposal density as

ρ
(i)
k/α,l = p

(
bk/α = bl | b(i)

1:k/α−1, y1:k
)

∝
α−1∏
j=0

p
(
yk−j | bk/α = bl, b

(i)
1:k/α−1, y1:k−j−1

)

∝
α−1∏
j=0

∫
Nc

(
yk−j ; b(i)�

k/α,lxk−j , σ
2
n

)
×Nc

(
xk−j ;µ

(i)
(k−j)|(k−j)−1,�

(i)
(k−j)|(k−j)−1

)
dxk−j

=
α−1∏
j=0

Nc

(
yk−j ; b(i)�

k/α,lµ
(i)
(k−j)|(k−j)−1, σ

2
n + b(i)�

k/α,l�
(i)
(k−j)|(k−j)−1b(i)

k/α,l

)
, (32)

wherebl ∈ B andb(i)�
k/α,l = (b

(i)
k/α = bl, bk/α−1, . . . , bk/α−L,0, . . . ,0). As described in the

one-sample case, the algorithms for the multiple samples per symbol case also
resampling to reduce the impoverishment of particles of significant weights. Once th
ticles are obtained, MAP and MMSE estimators may be applied to find estimates
transmitted symbols and channel vectors.

6. Simulations and results

Computer simulation experiments have been conducted to determine the perfor
of the developed algorithms. Experiments for a two-ray and a three-ray multi-path ch
have been carried out although, the presentedalgorithm works for more general multipa
channels. The channels were modeled for a fading rate offdT = 0.022, which correspond
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Fig. 4. Simulation result—BER vs. SNR (dB) for the two-ray channel.

to a carrier frequency offc = 2 GHz, a vehicle speed ofv = 75 miles/h and data rate o
10,000 symbols/s. Second order AR processes, with coefficientsγ1 = 1.9602 andγ2 =
−0.9701, were chosen to model the time variation of the tap weights of the FIR cha
All the tap weights of the channels had equal power.

A differential BPSK encoding, whereB = {+1,−1} was used in order to avoid pha
ambiguity that arises in blind equalization problems. The developed algorithms ca
be used without modification for this encoding because the probability mass function
the identically and independently distributed (i.i.d.) binary symbols remains unaltered
encoding.

The algorithms were run for 100 particles for a signal-to-noise ratio (SNR) ran
5–40 dB. A resampling method known as systematic resampling [28] was used an
applied whenever the effective sample size droped below half of the total number of
cles. Finally, the symbol estimate was performed using the MAP estimator.

Figures 4 and 5 show the performance of the developed algorithms depicting the
achieved for different SNRs. The results inthese two figures refer to the case of sin
sample per symbol. Figure 4 shows the performance achieved for the two-ray chan
Fig. 5 depicts that of the three-ray channel. Two of the curves represent the perfor
achieved using the developed algorithms for both the prior and optimal proposal dis
tions. As can be seen the achieved performance using the optimal proposal distribu
slightly better than the one obtained using the prior proposal distribution. It was obs
that, especially for the algorithms based on the optimal proposal density, the incre
number of particles did not result in significant improvement of performance.

For comparison purposes, for both channels, we have simulated a PSP–MLSD r
based on the LMS algorithm for channel tracking. The step size of the LMS algorit
set to be 0.25. The PSP–MLSD algorithm was simulated by organizing the symbols
frames of length of 300 symbols and five training symbols were used for the first fra
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Fig. 5. Simulation result—BER vs.SNR (dB) for the three-ray channel.

is observed that our algorithms achieve better performance than the PSP–MLSD re
in particular at high SNRs. The PSP–LMS algorithm exhibits an error floor at about 25 d

MLSD receivers with known and with genie-aided channels were also simulated.
methods provide lower bounds for the proposed schemes. For the genie-aided sim
an LMS algorithm was used for channel tracking. It has been observed that the PSP
genie-aided algorithm also exhibits error floor at about SNR= 25 dB.

Figures 6 and 7 depict the performance achieved for the multiple samples per s
case for the two channels described above. An oversampling factor of two,α = 2, was
utilized. As seen in the figures, we have also simulated the per-branch-processin
(PBP–LMS) [8] algorithm and the MLSD with known channel for comparison purpo
From the figures, we can see that the proposed SIS algorithms outperform the PBP
method, in particular at high SNRs for both channels. As expected, it is also obs
that, at high SNRs, a significant gain in performance is achieved when two samples
symbol are processed in comparison with processing a single sample per symbol.
because at high SNR the performance is limited by channel fading and multiple samp
symbol processing can track the channel better. However, it should be noted that pro
multiple samples per symbol requires more computational power.

7. Conclusions

In this paper we proposed blind equalization methods for frequency-selective f
channels. The methods estimate the channel and detect the transmitted symbols joint
We have modeled the frequency-selective channel using a multi-tap FIR filter who
weights vary as AR processes.
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Fig. 7. A BER vs. SNR (dB) (two sample per symbol processing) for the three-ray channel.

The developed algorithms are based on SMC filtering. We have used the strat
Rao–Blackwellization where particle filtering is used to determine the posterior dis
tion of the transmitted symbols while a bank of Kalman filters is employed for estim
the posterior density of the channel vector. Computer simulations show that the pro
algorithms outperform the PSP–MLSD receivers based on LMS channel tracking.
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The algorithms are also extended to the case of multiple samples per symbol. M
samples per symbol provide implicit diversity which results in performance improvem
The computer simulations demonstrate that at medium and high SNR values a sign
gain can be achieved compared to the single sample per symbol case.

Sequential Monte Carlo methods are inherently computationally intensive and the
is true about our algorithms. However, these algorithms are highly parallelizable an
able for VLSI implementation.
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