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Blind Equalization of Frequency-Selective Channels
by Sequential Importance Sampling
Joaquín Míguez, Member, IEEE, and Petar M. Djurić, Senior Member, IEEE

Abstract—This paper introduces a novel blind equalization algo-
rithm for frequency-selective channels based on a Bayesian formu-
lation of the problem and the sequential importance sampling (SIS)
technique. SIS methods rely on building a Monte Carlo (MC) rep-
resentation of the probability distribution of interest that consists
of a set of samples (usually called particles) and associated weights
computed recursively in time. We elaborate on this principle to
derive blind sequential algorithms that perform maximum a pos-
teriori (MAP) symbol detection without explicit estimation of the
channel parameters. In particular, we start with a basic algorithm
that only requires the a priori knowledge of the model order of the
channel, but we subsequently relax this assumption and investi-
gate novel procedures to handle model order uncertainty as well.
The bit error rate (BER) performance of the proposed Bayesian
equalizers is evaluated and compared with that of other equalizers
through computer simulations.

Index Terms—Bayesian estimation, blind equalization, Monte
Carlo methods, SIS algorithm.

I. INTRODUCTION

FUTURE wideband wireless communication systems
greatly depend on the development of sophisticated

coding and signal processing techniques that provide high
spectral efficiencies and allow a close approach to the theoret-
ical capacity limits. One fundamental problem in this context
is the detection of a symbol sequence transmitted through a
frequency-selective channel. When the channel parameters
are known and the transmitted symbols are independent and
identically ditributed (i.i.d.) uniform random variables, optimal
detection, which is based on the maximum likelihood (ML)
principle, can be efficiently implemented by means of the
Viterbi algorithm [1]. A straightforward way to acquire channel
state information is to transmit training sequences that are
known a priori by the transmitter and the receiver, but this
approach results in an efficiency loss. Hence, a major stream
of research has focused on blind methods, where symbols
are detected without knowledge of the channel coefficients
and without using any training data. This includes both linear
equalizers aimed at symbol detection without explicit channel
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estimation (see [2], [3], and references therein), and joint
channel estimation and symbol detection techniques using the
expectation–maximization (EM) algorithm [4], the per survivor
processing (PSP) method [5], [6], or similar procedures based
on the Viterbi algorithm [7].

The last few years have witnessed a strong interest in the
application of simulation-based methods to solve (hard) signal
processing problems, due to the availability of powerful com-
puting facilities. Thus, several Monte Carlo (MC) algorithms,
formerly disregarded as being practically infeasible, have re-
cently re-emerged and become popular signal processing tools.
The common feature of these techniques is that they aim at
building estimates from discrete random measures that approxi-
mate a desired probability distribution. Within the field of com-
munications, both Markov chain Monte Carlo (MCMC) [8] and
sequential importance sampling (SIS) techniques [9] have been
applied to solve the channel equalization problem.

The most popular MCMC technique is the Gibbs sampler [8],
which has been applied both in single-user and multiuser sce-
narios (see [10] and references therein). One important limi-
tation of this approach is that the resulting receivers must op-
erate in batch mode, i.e., they require the whole burst of ob-
servations containing information about the transmitted data to
be available at the beginning of the processing. Moreover, it
has been reported [11] that digital detectors based on the Gibbs
sampler suffer from slow convergence for medium and high
signal-to-noise ratios (SNRs).

The latter drawbacks are overcome by the SIS methodology.
The MC estimate of the desired probability distribution built
by SIS consists of particles and associated weights, both of
them computed recursively as new observations are received.
Under certain mild conditions and large number of particles,
this MC representation allows for tight approximations of sev-
eral types of estimators [12]. Specifically, SIS-based detectors
attain a lower BER than receivers designed using the Gibbs
sampler for the medium-and-high SNR region [11], are better
suited for online processing than MCMC techniques, and nat-
urally lend themselves to implementations with massively par-
allel hardware.

Propelled by the above mentioned advantages, a number
of equalization methods based on SIS have been proposed in
the literature, starting with the blind deconvolution technique
of [13]. A suitable combination of the SIS algorithm and the
well-known Kalman filter [14], termed the mixture Kalman
filter (MKF), has been succesfully applied to the problem of
equalizing frequency nonselective fading channels [15], [16].
Blind equalization of frequency-selective channels using SIS
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techniques has also been studied for orthogonal frequency
division multiplexing (OFDM) systems [17].

In this paper, we directly address the blind equalization of a
frequency-selective channel in a single carrier communication
system. Within this framework, ISI is the main source of dis-
tortion to be mitigated. We elaborate on a Bayesian formulation
of the problem and the SIS methodology in order to derive a
blind scheme for maximum a posteriori (MAP) data detection
that operates recursively in time and can attain nearly optimal
performance in terms of BER. A key feature of the approach,
shared with MKF techniques [15], [16] and the receivers in [13]
and [17], is that symbol estimation is tackled without an ex-
plicit channel estimation stage. As a novelty with respect to the
detectors in [13] and [15]–[17], where the number of channel
coefficients is assumed known, we also study the realistic case
where the model order of the channel is unknown and must
be either estimated, together with the transmitted symbols, or
marginalized. The problem of unknown channel order has re-
ceived very little attention so far in the context of MC methods
for communications, and it was very recently addressed for the
first time [18]. For clarity of presentation, the derivation of the
proposed equalizers is carried out within a simple framework (a
single-input single-output system and binary data), but there are
no theoretical obstacles preventing its extension to more com-
plex scenarios.

The remainder of this paper is organized as follows. Section II
describes the signal model for the equalization problem. The
Bayesian formulation underlying the proposed blind equalizers
is developed in Section III. In Section IV, the SIS algorithm is
introduced and applied to the problem of equalizing an unknown
channel with a known number of coefficients. Extensions of the
latter method, which include the case of an unknown channel
order and the technique of delayed sampling as a means of im-
proving performance, are introduced and discussed in Section V.
Illustrative computer simulations are presented in Section VI,
and some concluding remarks are made in Section VII.

II. SIGNAL MODEL

Consider a digital communication system where BPSK
symbols are transmitted in frames
of length through a frequency-selective multipath fading
channel. When the coherence time of the fading process is long
enough compared with the frame size, it is commonly assumed
that the channel impulse response (CIR) is constant for the
duration of the frame. In such cases, and assuming a receiver
front-end consisting of a matched filter followed by a symbol
rate sampler, the discrete-time sequence of observations can be
written as [1]

(1)

where is an additive white Gaussian noise
(AWGN) process with zero mean and variance , whereas

, is the discrete-time equivalent CIR. In the practical
case that the transmitted pulse waveforms are causal signals

with limited duration, the discrete-time equivalent CIR be-
comes a causal finite-length sequence that can be conveniently
represented by the vector

(2)

where is the channel order (it physically represents the
number of resolvable propagation paths), and the superindex
denotes transposition.

Assuming the transmitted bits are i.i.d. uniform random vari-
ables , (1) and (2) allow for the modeling of the
communication process over a frequency-selective channel by
means of a dynamic system in state-space form:

state equation (3)

observation equation (4)

where the vector
is the system state at time is the state-tran-
sition matrix such that

, and the vector
is the state perturbation. Notice that the channel order deter-
mines the dimension of the state vector and, therefore, the span
of the ISI.

Our aim is to find a sequential algorithm to compute the
joint MAP estimate of the symbols transmitted in a single
frame , when the channel vector is
unknown. The notation is frequently used in the remainder
of the paper to represent the set .

III. RECURSIVE COMPUTATION OF THE

POSTERIOR PROBABILITY

According to model (3) and (4), optimal blind equalization
is achieved by MAP detection of the information bit sequence

, given the observations . Let represent
the probability mass function (pmf) of the data sequence con-
ditional on the corresponding series of observations. The MAP
estimate of the transmitted symbols is

(5)

which can be solved in a “brute force” approach by computing
the posterior probability of each one of the possible bit
sequences and then selecting the one with the largest probability
mass.

Due to computational complexity, this approach is out of
question, and it is desirable to solve problem (5) sequentially
and recursively, i.e., to obtain from when
is observed. To achieve this goal, we consider the following
decomposition of the posterior pmf:

(6)

which has been obtained by applying Bayes theorem and the
fact that is a uni-
form pmf. Equation (6) provides the basis for sequential com-
putation of , where it is assumed that the likelihood
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function can be computed up to a proportion-
ality constant. This is easily seen as we iterate (6) to obtain

where we have implicitly assumed that are a priori known.
Notice that are neither information bits nor pilot symbols.
If the data frame starts with , we can usually assume the ab-
sence of signal . Otherwise, if the data frame is di-
vided into several blocks for processing, can be assigned
the values of previously detected bits.

The derivation of a closed-form expression for the likelihood
is addressed in Appendix A. In particular, it is

shown that if the channel order is known and the CIR vector
has a prior Gaussian distribution

where and are the a priori channel mean and covari-
ance matrix, respectively, then the posterior channel pdf given
a sequence of observations and transmitted symbols is
also Gaussian, i.e.,

and the distribution parameters can be updated recursively ac-
cording to

Using the above relationships, the likelihood in (6) can be ex-
plicitly written as

(7)

Equations (6) and (7) are the basis for the recursive equaliza-
tion algorithms proposed in this paper.

IV. BLIND EQUALIZATION USING THE SIS ALGORITHM

A. SIS Algorithm with Known Channel Order

The standard statement of the SIS algorithm (see [9, Sec. 2])
is concerned with dynamic systems in state-space form where
all fixed parameters are known and only the state sequence has to
be estimated. This is not the case of the model (3) and (4), where
the CIR vector is unknown (except for its order ); therefore,
we present a slightly different derivation of the method here. We
begin with an importance sampling (IS) scheme [19]. If we draw

particles from a trial pmf and weight them according to the
true posterior probability of the symbols, we can write

where is the trial or importance pmf with the same
support as but from which it is easier to sample,
and is a set of normalized importance weights. These
particles are said to be properly weighted, meaning that

where denotes statistical expectation with respect to the
pmf in the subscript, and is an arbitrary integrable function
of the state sequence.

The IS method can be modified so that one can build the state
trajectories and the importance weights sequentially as
new observations arrive. Consider the following factorization of
the importance pmf:

(8)

Working with (6) and (8) and the IS principle, the importance
weights can be evaluated recursively in time, leading to the SIS
algorithm

(9)

normalized weights

(10)

for . The set of particles and normalized weights
at time is a discrete random measure referred
to as a particle smoother or MC smoother [9] that yields an MC
estimate of the posterior pmf

(11)

where if , and otherwise. At time , the
particle smoother can be used to extract desired estimates using
the posterior distribution. In this paper, we are interested in the
MAP estimate of the data. Both joint sequence estimation at the
end of the frame

(12)

and marginal data detection at time

(13)
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TABLE I
SIR AND D-SIR ALGORITHMS FOR BLIND MAP EQUALIZATION

can be easily performed using the particle smoother.

B. Resampling

It can be shown [9], [20] that the variance of the importance
weights , when considered as random variables, can
only increase over time. As a consequence, the resulting MC
estimates deteriorate and become useless. One approach to al-
leviate the increase in the variance of weights is to include a
resampling step in the SIS algorithm [9], [12]. We introduce a
resampling step in the algorithm each time the effective sample
size of the particle smoother,1which is estimated as [9]

goes below a threshold . The resulting technique is termed
the sequential importance sampling with resampling (SIR) al-
gorithm. The SIR algorithm for blind MAP equalization is de-
scribed in Table I.

C. Importance PMFs

The choice of importance function is up to the designer
and it is usually made based on computational complexity and
performance considerations. A simple choice is the prior impor-
tance function, but it is known that it is inefficient. Instead, we
resort to the optimal importance function, which employs all the

1The effective sample size indicates the number of i.i.d. particles drawn from
the true posterior pmf that would be necessary to obtain MC estimates with the
same quality as those given by the weighted particles.

information available up to time in order to propose new sam-
ples, i.e.,

Using the same methodology as in Appendix A, the likelihood
in the above equation can be reduced to

where and

. To be specific, we draw the new sample using the
trial pmf

(14)
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Correspondingly, the weight update equation becomes

Note that the weight does not depend on the new sample that is
added to the trajectory; therefore, its computation can be carried
out in parallel with the sampling step.

V. EXTENSIONS

Statistical results regarding the convergence of the SIS al-
gorithm [12] guarantee that the proposed blind MAP equal-
izer yields asymptotically optimal performance (as ).
However, there are practical situations where attaining close-to-
optimal performance may require an extremely high number
of particles. Environments with a very attenuated line of sight
(LOS) between transmitter and receiver are typical examples.
The reason is that the contribution of symbol to the likeli-
hood depends mainly on the value of (the
LOS channel component); as a consequence, both good and bad
particles have similarly small likelihoods, and it is hard for the
SIR algorithm to discriminate them. One promising strategy to
circumvent this limitation is the use of the delayed sampling
technique [15], [16], which will be investigated in Section V-A.

Another important practical issue is the a priori knowledge
of the channel order assumed so far. Normally, the maximum
value of is available to the receiver designer because it can be
obtained from field measurements or statistical channel models
that describe the environment where the transmission system
is expected to operate. However, the actual channel order for
a given data frame is unknown, and both overestimating and,
especially, underestimating the value of lead to noticeable
performance losses. Solutions to this problem are explored in
Section V-B.

A. Delayed Sampling

The basic idea of delayed sampling is to incorporate future
observations when sampling the particles. Specifically, if we
consider a fixed lag , the sampling of is delayed until
are available (hence the name of the technique), and the weights
are also computed according to the whole set of observations.

The delayed SIS (D-SIS) algorithm with a fixed lag can be
briefly outlined as

where, compared with the standard SIS procedure of (9) and
(10), particles are drawn from a delayed importance pmf that

incorporates observations up to time , whereas impor-
tance weights are computed accordingly, using the likelihood

. The latter function can be written as

where the proportionality comes from the assumption that the
transmitted symbols are i.i.d. uniform random variables. Using
the same methodology as in Appendix A, it is straightforward
to obtain the closed-form expression

(15)

where is the observation
vector, the symbol matrix is built as

with , the remaining
column vectors are obtained by shifting

and the matrix is a covariance matrix that can be com-
puted recursively as

Similarly to the standard SIS algorithm, the optimal delayed
importance pmf is proportional to the likelihood; hence, it can
be written as

(16)

and easily computed by substituting (15) into (16). Using this
choice of trial pmf, the weight update equation of the D-SIS
algorithm reduces to

The delayed sequential importance sampling with resampling
(D-SIR) algorithm for blind MAP equalization is similar to the
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TABLE II
I-SIR ALGORITHM FOR BLIND MAP EQUALIZATION

basic SIR technique, as indicated in Table I. Its superior per-
formance is achieved at the expense of increased computational
complexity, which grows exponentially with the sampling delay

.

B. Unknown Channel Order

1) Marginalization: Common statistical channel models
available to transmission system designers (e.g., power-delay
profiles [21], [22]) can provide probabilistic information re-
garding the maximum CIR duration that can be expected with
a non-negligible probability or the mean value and the power
(second-order moment) of the channel coefficients. With this
information at hand, it is not difficult to specify a prior pmf for
the channel order of the form

(17)

where is the maximum CIR duration that is likely to be
observed under normal transmission conditions. Starting from
this simple a priori statistical description, the uncertainty in
the knowledge of the channel order can be analytically handled
within the Bayesian framework. Specifically, the parameter
can be marginalized, and the posterior pmf of the data up to time

be recursively decomposed as

(18)

The a posteriori pmf of the channel order, which appears on the
right-hand side of (18), also admits a recursive decomposition
in terms of the likelihood

(19)

that enables its sequential update. Equations (18) and (19) are
the basis for the integrated-order sequential importance sam-
pling with resampling (I-SIR) algorithm for blind MAP equal-
ization, which is summarized in Table II.

The optimal choice of the importance pmf is proportional to
the expected value of the likelihood with respect to the posterior
distribution of the channel order, i.e., as in (20), shown at the
bottom of the page, and as a consequence, the weight update
equation in Table II reduces to

The efficiency of the I-SIR algorithm can be further improved
by applying the technique of delayed sampling, as described in
Section V-A. The complexity of the resulting algorithm may
turn out prohibitive, however, since drawing and weighting a
single particle would require operations, where is
the smoothing lag.

2) Adaptive Estimation: An alternative to marginalization is
to estimate the CIR duration jointly with the transmitted sym-
bols. The straightforward approach is to include in the system

(20)
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TABLE III
A-SIR ALGORITHM FOR BLIND MAP EQUALIZATION

state by adding the constant relationship to model
(3) and (4) and then estimate a sequence (together
with the data) using the standard SIR method. Unfortunately,
including a random fixed parameter as part of the system state
in this way generally prevents the convergence of standard se-
quential MC algorithms [12], primarily due to impoverishment
of the particle population.

Therefore, we consider a slightly different approach here. In
particular, while using the standard recursion

as a basic relationship, we also allow for particles with
to give birth to new trajectories with different channel

orders, namely, and , as long as .
The general proposed procedure can be outlined as follows.

• Initialization: Let
• For

— For each existing particle, , draw up to
three new samples

and

(Notice that if or only two
offsprings are possible.)

— Compute the importance weights for all (up to )
resulting trajectories.

— Resample in order to keep only particles.
• Detect the data and estimate the channel order.

The principal advantage of this approach with respect to the
standard SIR method with a fixed random parameter is that we

allow for dynamic rejuvenation of the particle population of the
CIR length .

A more detailed description of the resulting adaptive-order
sequential importance sampling with resampling (A-SIR) algo-
rithm is given in Table III. The main difficulty in the imple-
mentation of the method is the need to specify new Gaussian
channel prior pdfs for a transition from channel order to
order and for the transition from to , given
the time posterior for order . Apparently, the compu-
tation of the true Gaussian densities
and is analytically feasible, but it re-
quires the processing of the whole trajectory and the whole set
of observations; therefore, it is not practical. Instead, we suggest
building a new channel mean by eliminating the first element in
vector if the transition is from order to order

while padding with an extra zero element at the begin-
ning of the vector if the transition is from to . Corre-
spondingly, the new covariance matrix is built by suppressing
the first row and column in matrix , when moving from
to , and padding with the first row and column of
the identity matrix when the transition is
from to .

VI. COMPUTER SIMULATIONS

A. Simulation Setup

In order to assess the performance of the proposed MAP
equalizers, we have carried out several computer simula-
tion experiments using the discrete-time model (3) and (4)
with a frame size and a null signal between
frames . All numerical results are pre-
sented in terms of the average bit error rate (BER) obtained
for a collection of 170 random channel realizations drawn
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from the Gaussian distribution , where is the
zero-mean vector, and is an diagonal

covariance matrix with nonzero entries conforming to the
ratios , and

, where is the variance of the th
channel coefficient and . For each channel realiza-
tion, the BER is numerically estimated for several values of the
SNR, which is defined as

SNR

We have considered seven types of equalizers in the experi-
ments:

1) The maximum likelihood equalizer (MLE) implemented
via the Viterbi algorithm with known CIR [1]: This is the
optimal detector that yields a lower bound for the BER of
the proposed schemes.

2) A blind equalizer based on the PSP method: This is a gen-
eralization of the Viterbi algorithm, where survivor
paths are preserved in each state of the trellis. For each
path, an estimate of the CIR is computed using the recur-
sive least squares (RLS) algorithm [6].

3) The SIR blind equalizer [unknown CIR, known channel
order, MAP sequence detection according to (12)] de-
scribed in Table I: The optimal importance pmf of (14)
and resampling steps are taken whenever .

4) The D-SIR blind equalizer [unknown CIR, known channel
order, MAP sequence detection according to (12)] also
outlined in Table I: Here, we have the optimal importance
pmf of (16) and threshold for resampling .

5) The I-SIR blind equalizer [unknown CIR, unknown
channel order, MAP sequence detection according to
(12)] summarized in Table II: Here, we have the optimal
importance pmf of (20), a uniform channel-order prior
pmf in the set , and resampling threshold

.
6) The A-SIR blind MAP equalizer [unknown CIR, unknown

channel order, MAP sequence detection according to
(12)] shown in Table III: The channel order is contained
in the set , and the optimal importance
pmf (14) is applied according to the specific CIR duration
of each particle.

7) The blind MAP sequence detector (unknown CIR, known
channel order): This is based on the Gibbs sampler pro-
posed in [23].

All SIR-based algorithms are initialized with a priori channel
statistics and , where is the identity matrix
of adequate dimensions.

B. Numerical Results

We start with a simple scenario consisting of short channels
with known order . Fig. 1 shows the BER attained by the
MLE, SIR, D-SIR, and Gibbs-sampler equalizers in the SNR
region between 0 and 12 dB. The SIR and D-SIR algorithms
are evaluated with and particles. The BER
of the Gibbs receiver is only shown for the case of
particles and a burn-in period of 100 iterations [23]. The lag in
the D-SIR algorithm is . Both the SIR and D-SIR equal-

Fig. 1. BER versus SNR averaged over 170 random channel realizations of
order m = 2. There is a burn-in period of 100 initial iterations for the Gibbs
sampler.

izers attain a low BER, which is close to the bound given by the
MLE equalizer with known CIR. As expected, the higher com-
plexity of the D-SIR technique leads to a better performance
with respect to the basic SIR algorithm. It is also observed that
by increasing the number of particles from 100 to 300, the per-
formance of the SIR and D-SIR detectors comes significantly
closer to the MLE (less than 1 dB for the D-SIR equalizer at
BER ). Finally, it is interesting to note how the Gibbs
equalizer suffers from a BER floor effect that can be clearly seen
for SNR dB (as previously reported in [11]) and, thus, pro-
vides a much poorer performance than the SIR-based receivers.

We have also explored the effect of channel order misadjust-
ment on the SIR equalizer. In particular, we have considered a
collection of randomly selected channels with length
and applied the SIR equalization algorithm under the assump-
tions , and . Results are plotted in Fig. 2.
We clearly see how underestimating the channel order [curve
labeled SIR (estimated )] leads to a large performance
degradation, whereas the BER curves obtained under the as-
sumptions (the true channel order) and (overesti-
mated channel order) are very similar, with a small improvement
in the case of perfect order estimation. In the figure, we can also
see the BER curves obtained for the MLE with perfect channel
knowledge (labeled MLE ) and the MLE working with
a truncated channel of only coefficients. The perfor-
mance degradation in the latter case is particularly severe. Sim-
ilar results are obtained for the Gibbs-sampler equalizer, as de-
picted in Fig. 3, with the added handicap of the error-floor effect
already illustrated in Fig. 1.
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Fig. 2. BER versus SNR averaged over 170 random channel realizations of
orderm = 3. The SIR algorithm is run with different CIR duration assumptions
(m = 2; 3; 4) and N = 300 particles.

Finally, we have conducted a simulation experiment to study
the performance of the I-SIR and A-SIR techniques, which are
specifically designed to cope with channel order uncertainty. We
randomly generated a collection of 170 channels drawn from
the Gaussian prior specified at the beginning of Section VI-A.
For each sample channel, the order was chosen randomly
according to the uniform prior (17) with a maximum value

. In this scenario, we have compared the MLE with
perfect CIR knowledge, the PSP equalizer with sur-
vivors per state (which yields roughly the same computational
complexity as the SIR-like algorithms with particles)
and overestimated CIR duration (i.e., assuming
for all channels), the SIR equalizer with overestimated channel,
the I-SIR receiver, which marginalizes using the prior (17),
and the A-SIR algorithm, which estimates jointly with the
data. The obtained results are shown in Fig. 4. The I-SIR
algorithm performs very close to the optimal MLE, with a loss
of only 1 dB for BER and practically the same curve
slope. The PSP method also yields very good results in the low
and medium SNR region but presents a noticeable performance
degradation (increase of the BER curve slope) in the higher
SNRs. The performance advantage of the I-SIR approach with
respect to the plain SIR equalizer with overestimated channel
order is apparent. The A-SIR method exhibits the worst BER
out of the three sequential MC approaches. Although it attains
practically the same performance as the SIR equalizer in the
low SNR region, its BER degrades clearly for medium to high
SNR values. Nevertheless, it has a sound behavior, with a

Fig. 3. BER versus SNR averaged over 170 random channel realizations of
order m = 3. The Gibbs-sampler algorithm is run with different CIR duration
assumptions (m = 2; 3; 4), 100 burn-in iterations, and N = 300 effective
particles.

constant decreasing slope and no error floor observed for the
considered range of SNR values.

VII. CONCLUSION

We have introduced a novel blind equalization method for fre-
quency-selective channels based on a Bayesian formulation of
the problem and the SIS methodology. An algorithm that se-
quentially builds an MC representation of the symbol posterior
pmf given the available observations has been derived. One of
the main features of the proposed blind equalizer is that an ex-
plicit estimation of the CIR is not carried out. Instead, the a
posteriori channel distribution is recursively computed for each
data trajectory in the smoother. This approach requires that the
channel order be a priori known, which may not be realistic in
many practical scenarios. To avoid this limitation, we have also
proposed extensions of the basic equalizer that explicitly deal
with channel order uncertainty. Computer simulation results are
presented that confirm the validity of the proposed techniques.

APPENDIX

DERIVATION OF THE LIKELIHOOD FUNCTION

The likelihood in (6) can be written in terms of as

(21)
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Fig. 4. BER versus SNR averaged over 170 random channel realizations of
random order. For each sample channel, m is randomly drawn from the set
f1; 2; 3; 4g according to a uniform pmf. The number of particles in the MC
algorithms is N = 300. The adaptive PSP holds N = 19 survivor paths per
trellis state and assumes a length m = 4 CIR.

where is a Gaussian density. The
posterior pdf of the channel at time is also proportional to the
integrand in (21)

(22)

This property entails , and by
iterating (22), we obtain

where all conditional densities are Gaussian. If we addition-
ally assume that the channel vector is a priori distributed ac-
cording to a Gaussian model , where
and are the prior mean and covariance of , respectively,
then is proportional to a product of Gaussian den-
sities and, as a consequence, it is Gaussian itself.

Let and denote the posterior mean and covariance of
given and . It is possible to recursively compute

and from and . With that aim, we first expand the
right-hand side of (22) to obtain

(23)

where denotes the determinant of a matrix. It is not difficult
to show that (23) can be rewritten as

(24)

where

(25)

(26)

Substituting (24) into (22), we readily obtain that

and therefore, (25) and (26) allow for the update of the posterior
channel pdf from to when
and become available. We remark that is the minimum
mean square error (MMSE) estimate of the CIR given the ob-
servations and the data up to time .

Finally, we solve the integral in (21). Specifically, substituting
(24) into (21), and taking into account that

we arrive at the analytical expression

(27)
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[11] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Míguez, “Particle filtering ,” IEEE Signal Processing
Mag., vol. 20, pp. 19–38, Sept. 2003.

[12] D. Crisan and A. Doucet, “A survey of convergence results on particle
filtering,” IEEE Trans. Signal Processing, vol. 50, pp. 736–746, Mar.
2002.

[13] J. S. Liu and R. Chen, “Blind deconvolution via sequential imputations,”
J. Amer. Stat. Assoc., vol. 90, no. 430, pp. 567–576, June 1995.

[14] S. Haykin, Adaptive Filter Theory, Third ed. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[15] R. Chen, X. Wang, and J. S. Liu, “Adaptive joint detection and decoding
in flat-fading channels via mixture Kalman filtering,” IEEE Trans. In-
form. Theory, vol. 46, pp. 2079–2094, Sept. 2000.
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