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Abstract

This paper is aimed at the derivation of adaptive signal processing algorithms that jointly perform the tasks of blind

data detection and generalized synchronization in a digital receiver. Optimal recovery of the synchronization

parameters (timing, phase and frequency offsets) is analytically intractable and, as a consequence, most existing

synchronization methods are either heuristic or based on approximate maximum likelihood (ML) arguments. We herein

introduce an alternative approach derived within a Bayesian estimation framework and implemented via the sequential

Monte Carlo (SMC) methodology. The algorithm is derived by considering an extended dynamic system where the

reference parameters and the transmitted symbols are system-state random processes. The proposed model is well suited

to represent frequency-flat fast-fading wireless channels. We also suggest two possible configurations for the receiver

architecture that, combined with the proposed SMC technique, guarantee the achievement of asymptotically minimal

symbol error rate (SER). The performance of the proposed technique is studied both analytically, by deriving the

posterior Cramér–Rao bound (PCRB) for timing estimation, and through computer simulations that illustrate the

accuracy of synchronization and the overall performance of the resulting blind receiver in terms of its SER.
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1. Introduction

Narrow band mobile communication links are
generally modeled as frequency-flat Rayleigh
fading channels. Recently, a lot of research work
has been focused on the detection of signals over
such channels [5,15,22]. However, most of these
d.
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Nomenclature

sm mth transmitted symbol
S symbol alphabet
M frame length
ok discrete-time frequency offset process
a roll-off factor
T s sampling period
yk discrete-time received signal
vk discrete-time noise signal
hk discrete-time complex amplitude of the

received signal
tk symbol delay at time k

L inter-symbol interference (ISI) span
a coefficient of the autoregressive process

for the symbol timing

b1;b2 coefficients of the autoregressive pro-
cess for the complex amplitude

g coefficient of the autoregressive process
for the frequency offset

N total number of particles
s0:k; t0:k;o0:kð Þ

ðnÞ nth particle at time k

w
ðnÞ
k weight associated to the nth particle at

time k

pð�Þ probability density function
pð�Þ importance (or proposal) probability

density function
D smoothing lag
hk ¼ ½hk; hk�1�

> channel vector
lk channel mean at time k

Rk channel covariance at time k
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contributions assume a perfect knowledge of the
so-called synchronization parameters. It is broadly
recognized that many practical communication
channels present a high degree of structure and
they can be accurately characterized through a set
of reference parameters with a clear physical
meaning. Since the observed signals collected by
the receiver are affected by these parameters, they
should be estimated, and compensated for, prior
to data detection in order to achieve optimal or
close-to-optimal performance. The generalized
synchronization problem consists of the recovery
of a set of such physical parameters as the symbol
timing, phase offset and carrier frequency error.
Unfortunately, optimal estimators of the para-
meters of interest cannot be derived in closed form
and practical methods found in the literature
[14,19] are either heuristic or based on approx-
imate maximum likelihood (ML) arguments.
Sequential Monte Carlo (SMC) techniques

[8,10] (also referred to as particle filtering methods)
are powerful tools for Bayesian estimation that
employ discrete measures with random support for
representing posterior probability distributions of
unknowns of interest. Recently, particle filtering
has been successfully applied in digital commu-
nication problems, including applications such as
channel estimation, equalization or space–time
decoding (see [7] for a recent review of the subject).
The SMC approach is also potentially useful for
joint symbol detection and synchronization be-
cause it provides a way to numerically compute
optimal Bayesian estimators when exact solutions
cannot be derived analytically.
In order to apply common SMC algorithms,

e.g., sequential importance sampling (SIS) [10], the
only (and mild) requirement is that the observed
signals can be written as a dynamic system in state-
space form, which is usually simple to achieve with
most communication signals. Existing SMC-based
schemes which involve timing recovery and phase
offset correction can be found in [2,3,12,16–18]. In
[2,3] a pilot-data aided particle filtering algorithm
is used for the estimation of the delay and the
channel complex amplitude (which includes the
phase offset) in a system with direct sequence
spread spectrum (DSSS) modulation. A similar
problem is addressed in [12], where the code-delay
and the complex channel is estimated using a
suboptimal (but complexity-restrained) combina-
tion of SMC methods and extended Kalman
filtering, together with linear data detection. The
problem of joint timing recovery, phase correction
and data detection in DSSS modulated systems is
addressed in [16–18] using particle filtering tools.
In particular, a SMC algorithm based on determi-
nistic sampling is presented and numerically
evaluated in [18].
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In this paper, we consider the problem of joint
detection and non-data-aided generalized synchro-
nization in general linearly modulated transmis-
sion systems using particle filtering. Specifically,
we propose a new method for jointly and
adaptively estimating the physical channel para-
meters (symbol timing, phase offset, channel
amplitude and frequency error) and the trans-
mitted data sequence, without the aid of any pilot
symbols or training sequences. The SMC algo-
rithm at the core of the new receiver is derived by
considering an extended dynamic system where the
symbol delay and the frequency error are modeled
as first-order autoregressive (AR) stochastic pro-
cesses [11] and the fading process of the complex
channel (amplitude and phase) is modeled as a
second-order AR process driven by complex white
Gaussian noise [15]. The transmitted symbols are
assumed independent and identically distributed
(i.i.d.) random variables with a discrete uniform
distribution. Within this framework we suggest
two possible configurations to build an adequate
receiver architecture that allows for complete
removal of inter-symbol interference (ISI) and
attains close-to-optimal symbol error rate (SER):
	
 An open-loop structure consisting of two
branches, where the first one processes the
received signal in order to compute frequency
error, delay and complex channel estimates
which are used in the second branch to sample
the received signal with corrected timing epochs
and adequately rotate the resulting observation
to compensate the phase and frequency offsets.
	
 A closed-loop scheme that exploits the sequential
structure of the proposed SMC algorithm to
adaptively adjust the receiver timing, phase
offset and frequency error estimates.

In both cases, symbol estimates can be obtained
either directly from the particle filter or from the
receiver matched filter after convergence of the
synchronization parameter estimates.
The proposed receiver performance is assessed

both analytically, by deriving the posterior Cra-
mér–Rao bound (PCRB) for timing estimation,
and through computer simulations. The latter
allow to illustrate both the comparison of the
delay estimates with the PCRB and the overall
performance of the receiver in terms of its SER.
The remaining of the paper is organized as

follows. Section 2 describes the signal model. The
proposed SMC algorithm and the suggested
receiver architectures are introduced in Sections 3
and 4, respectively. In Section 5, we proceed with
an analytical study of the PCRB for timing
estimation. Computer simulation results are pre-
sented in Section 6 and, finally, brief concluding
remarks are made in Section 7.
2. Signal model

2.1. Received signal

Let us consider a digital communication system
where symbols from a discrete alphabet, sm 2 S;
are transmitted in frames of length M. The
baseband-equivalent received signal has the form

~yðtÞ ¼ hðtÞejoðtÞt
XM�1

m¼0

sm ~gðt � mT þ tðtÞÞ þ ~vðtÞ (1)

where hðtÞ is the complex multiplicative noise
introduced by the frequency-flat Rayleigh fading
channel, oðtÞ is the carrier frequency error, sm is
the mth transmitted symbol, ~gðtÞ is a squared-root
raised-cosine pulse waveform, T is the symbol
period, 0ptðtÞoT is the time-varying relative
delay between the received signal and the local
clock reference, and ~vðtÞ is additive white Gaussian
noise (AWGN) with power spectral density N0=2:
The receiver front-end consists of a matched filter
that produces the signal

yðtÞ ¼ hðtÞejoðtÞt
XM�1

m¼0

smgðt � mT þ tðtÞÞ þ vðtÞ (2)

where

gðtÞ ¼ ~gðtÞ � ~g�ð�tÞ ¼
sinðpt=TÞ

pt=T

cosðpat=TÞ

1� 4a2t2=T2
(3)

is a raised cosine waveform with roll-off factor
0oap1 and

vðtÞ ¼

Z 1

�1

~vðuÞ ~g�ðu � tÞdu
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is a Gaussian noise process with autocorrelation
function RvðtÞ ¼ ðN0=2Þ gðtÞ:
Sampling the matched filter output with rate

1=T s results in the discrete-time signal

yk ¼ hke
jokkTs

XM�1

m¼0

smgðkT s � mT þ tkÞ þ vk

where yk ¼ yðkT sÞ; hk ¼ hðkT sÞ; tk ¼ tðkT sÞ; ok ¼

oðkT sÞ; vk ¼ vðkT sÞ; k ¼ 0; 1; 2; . . . is a discrete-
time index and T s is the sampling period.
Assuming that the raised cosine waveform, gðtÞ;

has finite duration (which is always the case in
practice) and symbol rate sampling, i.e., T s ¼ T ;
the previous expression can be rewritten as

yk ¼ hke
jokkT

XL

n¼1�L

skþngð�nT þ tkÞ þ vk (4)

where the fixed parameter L indicates the ISI span
resulting from the limited time duration of gðtÞ:
Note that, sampling at the symbol rate, the noise
term vk ¼ vðkTÞ remains white with variance s2v ¼

N0=2: Using vector notation, we arrive at the
convenient representation

yk ¼ hke
jokkTgðtkÞ

>sk þ vk (5)

by defining the 2L � 1 channel vector

gðtkÞ ¼ ½gððL � 1ÞT þ tkÞ; gððL � 2ÞT þ tkÞ;

. . . ; gð�LT þ tkÞ�
> ð6Þ

the symbol vector sk ¼ ½sk�Lþ1; sk�Lþ2; . . . ; skþL�
>

and using superindex > to denote transposition.
The general objective is to jointly and adaptively

estimate the transmitted symbols, sk; the signal
timing, tk; the frequency error, ok; and the
complex fading coefficients, hk (which include
both amplitude attenuation and phase offset),
using the set of received signals, yk; with k ¼

0; . . . ;M � 1:
2.2. State-space representation

The application of SMC techniques requires
that the signals of interest be modeled as a
dynamic system in state-space form. Following
[11], we model the symbol timing as a first-order
AR process,

tk ¼ atk�1 þ uk (7)

where the perturbation variable, uk; is assumed to
be a zero-mean Gaussian with variance s2u:
Similarly, the variation of the frequency error is
also modeled to follow a first-order AR process,

ok ¼ gok�1 þ f k (8)

where f k is a zero-mean white Gaussian process
with variance s2f : The dynamics of the fading
coefficient, hk; are adequately approximated using
a second order AR model driven by complex white
Gaussian noise, [15],

hk ¼ b1hk�1 þ b2hk�2 þ ek (9)

where the values of the coefficients of the
autoregressive process, b1 and b2; and the variance
of the zero-mean complex white Gaussian noise
ek � Nð0; s2eÞ are functions of the fading rate of
the channel.
Taking into account the structure of sk; and

combining (5), (7)–(9), we obtain the following
dynamic state-space representation of the commu-
nication system:

tk ¼ atk�1 þ uk

ok ¼ gok�1 þ f k

hk ¼ Ahk�1 þ cek

sk ¼ Ssk�1 þ dk

9>>>=
>>>;

state equation (10)

yk ¼ ejkTokc>hks
>
k gðtkÞ þ vkg observation equation

(11)

where

A ¼
b1 b2
1 0

� �

hk ¼ ½hk; hk�1�
>; c ¼ ½1; 0�>;

S ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

0 0 0 � � � 0

2
6666664

3
7777775

is an 2L � 2L shifting matrix, sk ¼

½sk�Lþ1; . . . ; skþL�
> is an 2L � 1 vector, and dk ¼

½0; . . . ; 0; skþL�
> is a 2L � 1 perturbation vector
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that contains the new symbol, skþL: Note that the
system state at time k is given by ðsk; hk; tk;okÞ;
while the model parameters, a; s2u; g; s

2
f ; b1; b2; s

2
e ;

s2v and L, are assumed fixed and known.

2.3. Validity of the model

The choice of AR process for the modeling of
the synchronization and channel parameters of
interest is due both to mathematical tractability
and the flexibility of this class of random process
to faithfully approximate the statistical character-
istics of more complicated models.
Indeed, the use of AR processes to represent the

complex fading of typical wireless channels has
been proposed and adequately justified in several
papers (see [15,13] for a recent discussion). It is
usually accepted that a second-order AR process is
sufficient to sensibly approximate the dynamics of
most statistical wireless-channel models [13],
which are normally specified in terms of their
second-order statistics. The AR parameters (bi; s

2
e)

are easily chosen to match the autocorrelation
function of the desired channel model using the
Yule–Walker equations.
AR modeling of the symbol delay was suggested

in [11], and we follow the same approach here both
for tk and the frequency error ok: Unfortunately,
the statistical representation of the fluctuations in
these magnitudes due to highly dynamic environ-
ments (such as those encountered by communica-
tion terminals in high speed vehicles) is not as well
studied as that of fading. We note, however, that
the same approach of choosing the AR model
order and parameters to match the statistics of any
other model available (including ad hoc models
obtained from specific field measurements) is
straightforward. It is likely that, in a practical
situation, an AR process with order higher than 1
is needed, but this can be handled easily in the
same way as it is done with the fading coefficients
in this paper.
Finally, the variance of the AWGN in the

observation equation (4) can be either a priori set,
given the signal-to-noise ratio (SNR) region where
the transmission system is expected to operate, or,
alternatively, it can be estimated prior to synchro-
nization and detection.
3. A sequential Monte Carlo method for joint

synchronization and data detection

In this section, we propose an efficient particle
filtering algorithm for joint reference parameters
estimation and data detection. We focus on the
joint estimation of the symbols, s0:M�1 ¼

fs0; . . . ; sM�1g; the delays, t0:M�1 ¼ ft0; . . . ; tM�1g;
and the frequency error, o0:M�1 ¼ fo0; . . . ;oM�1g;
from the available observations, y0:M�1 ¼

fy0; . . . ; yM�1g: The complex fading process
h0:M�1 ¼ fh0; . . . ; hM�1g is handled as a nuisance

process which is analytically integrated out.
Nevertheless, estimates of hk can be easily com-
puted when necessary, as will be shown in
Section 4.
3.1. Particle filtering

We are interested in the sequential estimation of
the transmitted data, symbol timing and frequency
error. From a Bayesian perspective, all necessary
information is contained in the joint posterior
probability distribution function (pdf),
pðs0:k; t0:k;o0:k j y0:kÞ: Unfortunately, the latter
distribution is analytically intractable and prevents
the derivation of closed-form Bayesian estimators.
An emerging, powerful signal processing tool
suitable to deal with such a problem is particle

filtering. Particle filters consist of discrete measures
with random support that approximate desired
posterior pdfs and can be sequentially updated.
Specifically, we denote the discrete measure at time
k by

Xk ¼ fðs0:k; t0:k;o0:kÞ
ðnÞ;wðnÞ

k gN
n¼1 (12)

where s
ðnÞ
0:k; t

ðnÞ
0:k; and oðnÞ

0:k are sample trajectories of
the data, the delay and the frequency error
processes, respectively, and they are usually
referred to as particles, while w

ðnÞ
k are weights that

approximate the posterior probability of the nth
particle, ðs0:k; t0:k;o0:kÞ

ðnÞ: Note that, in trivial
applications where sampling directly from the
desired distribution is feasible, the weights are all
equal, w

ðnÞ
k ¼ 1=N 8n:
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Using (12), it can be shown [6] that the posterior
pdf approximated as

p̂ðs0:k; t0:k;o0:kjy0:kÞ ¼
XN

n¼1

w
ðnÞ
k dððs0:k; t0:k;o0:kÞ

� ðs0:k; t0:k;o0:kÞ
ðnÞ
Þ ð13Þ

where dð�Þ is Dirac’s delta function, converges in
mean squared error to pðs0:k; t0:k;o0:kjy0:kÞ as N !

1:
Bayesian estimators of the data, the delay, the

frequency error, or all of them jointly, are
straightforward to derive using the approximated
posterior pdf. For instance, if we work with the
minimum mean square error (MMSE) estimator of
the delay, we have

t̂mmse0:k ¼
XN

n¼1

w
ðnÞ
k tðnÞ0:k: (14)

Similarly, the MMSE estimator of the frequency
offset is,

ômmse
0:k ¼

XN

n¼1

w
ðnÞ
k oðnÞ

0:k (15)

and the maximum a posteriori (MAP) estimate of
the data sequence is1

ŝ
map
0:k ¼ arg max

s0:k

XN

n¼1

w
ðnÞ
k dððs0:k; t0:k;o0:kÞ

(

� ðs0:k; t0:k;o0:kÞ
ðnÞ
Þ

)
: ð16Þ

3.2. Sequential importance sampling

A major advantage of the particle filtering
approach is the possibility to build the discrete
measure Xk sequentially, i.e., to compute Xk

recursively from Xk�1 once the kth observation,
yk; becomes available. Algorithms for the recursive
computation of discrete measures are usually
1Note that estimating s0:k is equivalent to estimating s0:kþL;
since sk ¼ ½sk�Lþ1; . . . ; skþL�

> and, for ko0; we can assume

sko0 ¼ b where b is a known signal level.
termed SMC methods [9]. One of the most popular
SMC techniques is the so-called SIS algorithm
[10].
According to the IS principle [9], an empirical

approximation of a desired pdf, pðxÞ; can be
obtained by drawing particles from an importance

function or proposal pdf, pðxÞ; which
	
 is strictly positive, pðxÞ40;

	
 has the same domain as pðxÞ; and

	
 is easy to sample from.
The resulting particles, xðnÞ � pðxÞ; are assigned
(unnormalized) weights of the form

~wðnÞ ¼
pðxðnÞÞ

pðxðnÞÞ
(17)

which are said to be proper, meaning that

EpðxÞ½x ~w� ¼ EpðxÞ x
pðxÞ

pðxÞ

� �
¼ EpðxÞ½x� (18)

where EpðxÞ½�� denotes expected value with respect
to the pdf in the subscript. In the synchronization
application presented in this paper, the desired
distribution is pðs0:k; t0:k;o0:kjy0:kÞ; hence an im-
portance function of the form pðs0:k; t0:k;o0:kjy0:kÞ

is needed.
The sequential application of the IS principle is

possible by resorting to the recursive decomposi-
tion of the posterior distribution

pðs0:k; t0:k;o0:kjy0:kÞ / pðykjs0:k; t0:k;o0:k; y0:k�1Þ

�pðs0:k; t0:k;o0:kjy0:k�1Þ

/ pðykjs0:k; t0:k;o0:k; y0:k�1Þ

�pðtkjtk�1Þpðokjok�1Þ

� pðs0:k�1; t0:k�1;

�o0:k�1jy0:k�1Þ ð19Þ

which is easily derived using Bayes theorem and
the a priori uniform probability distribution of the
transmitted symbols. Assuming a proposal pdf
that admits a factorization of the form

pðs0:k; t0:k;o0:kjy0:kÞ

¼ pðsk; tk;okjs0:k�1; t0:k�1;o0:k�1; y0:kÞ

� pðs0:k�1; t0:k�1;o0:k�1jy0:k�1Þ ð20Þ

Eq. (19) can be used to recursively compute
the discrete measure at time k, Xk; from Xk�1
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and the new observation, yk; by taking the
following steps:
(1)
 Importance sampling:

ðsk; tkÞ
ðnÞ

� pðsk; tk;okjs
ðnÞ
0:k�1; t

ðnÞ
0:k�1;o

ðnÞ
0:k�1; y0:kÞ

¼ pkðskþL; tk;okÞ: ð21Þ
(2)
 Weight update:

~wðnÞ
k ¼ w

ðnÞ
k�1

pðykjs
ðnÞ
0:k; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:k�1Þpðt

ðnÞ
k jtðnÞk�1Þpðo

ðnÞ
k joðnÞ

k�1Þ

pkðs
ðnÞ
kþL; t

ðnÞ
k ;oðnÞ

k Þ
:

ð22Þ
(3)
 Weight normalization:

w
ðnÞ
k ¼

~wðnÞ
kPN

i¼1 ~wðiÞ
k

: (23)
3.3. Computation

The proposed SIS algorithm requires the nu-
merical evaluation of the likelihood function in the
weight update equation. Let Nðx; l;RÞ denote the
multivariate Gaussian distribution with mean l

and covariance R: It is straightforward to show
that

pðykjs0:k; t0:k;o0:k; y0:k�1Þ

¼

Z
hk

pðykjsk; tk;ok; hkÞ

� pðhkjs0:k�1; t0:k�1;o0:k�1; y0:k�1Þdhk ð24Þ

where

pðykjsk;ok; tk; hkÞ ¼ Nðyk; hkejkTokg>ðtkÞsk;s2vÞ

(25)

and

pðhkjs0:k�1; t0:k�1;o0:k�1; y0:k�1Þ

¼ Nðhk; lkjk�1;Rkjk�1Þ ð26Þ

are complex Gaussian pdf’s. Notice that the
predictive channel mean,

lkjk�1 ¼ Epðhk js0:k�1;t0:k�1;o0:k�1;y0:k�1Þ½hk� (27)
and the predictive covariance matrix,

Rkjk�1 ¼ Epðhk js0:k�1;t0:k�1;o0:k�1;y0:k�1Þ

�½ðhk � lkjk�1Þðhk � lkjk�1Þ
H
� ð28Þ

can be analytically computed using a Kalman
filter. Therefore, the integral in (24) can be solved
to yield

pðykjs0:k; t0:k;o0:k; y0:k�1Þ ¼ Nðyk; yk; s
2
yk
Þ (29)

where

yk ¼ ejkTokgðtkÞ
>skc

>lkjk�1 (30)

and

s2yk
¼ s2v þ ðejkTokg>ðtkÞskc

>ÞRkjk�1

�ðejkTokg>ðtkÞskc
>Þ

H : ð31Þ

As for the importance function, at time k we
choose

pk ðsk; tk;okÞ

¼ pðskþLjs
ðnÞ
0:k�1; tk;ok; t

ðnÞ
0:k�1;o

ðnÞ
0:k�1; y0:kÞ

� pðtkjt
ðnÞ
k�1Þpðokjo

ðnÞ
k�1Þ ð32Þ

which can be sampled in three steps. First, we
obtain a new delay particle,

tðnÞk � NðatðnÞk�1;s
2
uÞ: (33)

Then, a sample of the frequency error,

oðnÞ
k ¼ NðgoðnÞ

k�1;s
2
f Þ: (34)

Finally, a sample of the transmitted symbol is
drawn from the first density in the right-hand side
of (32). This is feasible because we can rewrite
pðskjs

ðnÞ
0:k�1; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:kÞ as

pðskþL ¼ Sjs
ðnÞ
0:k�1; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:kÞ

/ pðykjskþL ¼ S; sðnÞ0:k�1; t
ðnÞ
0:k;o

ðnÞ
0:k; y0:k�1Þ

ð35Þ

where S 2 S is a symbol in the modulation
alphabet, S: Notice that the likelihood in the
right-hand side of (35) can be evaluated using (29).
The resulting importance weights for the new
particles are given by

w
ðnÞ
k / w

ðnÞ
k�1

X
Sj2A

Nðyk; y
ðnÞ
k ;s2yk

ðnÞ
Þ (36)
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where

y
ðnÞ
k ¼ ejkTokg>ðtðnÞk Þs

ðnÞ
k;jc

>l
ðnÞ
kjk�1 ð37Þ

s2;ðnÞyk
¼ s2v þ ðejkTokg>ðtðnÞk Þs

ðnÞ
k;jc

>ÞRðnÞ
kjk�1

�ðejkTokg>ðtðnÞk Þs
ðnÞ
k;jc

>Þ
H

ð38Þ

s
ðnÞ
k;j ¼ ½s

ðnÞ
k�Lþ1; . . . ; s

ðnÞ
kþL�1; skþL ¼ Sj�

>; and l
ðnÞ
kjk�1

and RðnÞ
kjk�1 are the predictive channel mean and

covariance matrix, respectively, obtained by Kal-
man filtering from the observations and the nth
state trajectory, ðs0:k�1; t0:k�1;o0:k�1Þ

ðnÞ:
It is important to remark that the implementa-

tion of the proposed SIS algorithm requires a bank
of Kalman filters (one for each particle) in order to
compute the fading process statistics that are
needed for the importance pdf and the weight
update equation. The combination of the SIS
algorithm and Kalman filtering is often termed
mixture kalman filter (MKF), and it has both been
applied to communications problems [5] and
described as a general procedure to handle so-
called conditionally-linear Gaussian systems
[4,10].

3.4. Smoothing

An important characteristic of the digital
transmission system represented by (11) is that,
for tk40; each transmitted symbol contributes to
2L successive observations, where L is the ISI span
parameter. Specifically, the symbol sk; is a
component of each data vector in the sequence

sk�L:kþL�1 ¼ fsk�L; sk�Lþ1; . . . ; skþL�1g (39)

and, therefore, it is statistically dependent on the
corresponding observations,

yk�L:kþL�1 ¼ fyk�L; yk�Lþ1; . . . ; ykþL�1g: (40)

As a consequence, the reliable detection of the
symbol sequence up to time k, s0:k; requires the
adequate processing of (at least) the observations
y0:kþL�1:
In order to account for the effect of ISI, it is

convenient to estimate the transmitted data from
the posterior distribution pðs0:k�D; t0:k;o0:kjy0:kÞ;
where DpL þ 1 is a fixed smoothing lag (see, e.g.,
[7]). The SIS algorithm can still be used to
recursively compute the particle filter for the
smooth distribution,

Dk ¼ ðs0:k�D; t0:k;o0:kÞ
ðnÞ;wðnÞ

k

n oN

n¼1
: (41)

In particular, the importance sampling and weight
update Eqs. (21) and (22), respectively, are
substituted by

ðsk�D; tk;okÞ
ðnÞ

� pðsk�D; tk;okjs
ðnÞ
0:k�D�1; t

ðnÞ
0:k�1;o

ðnÞ
0:k�1; y0:kÞ ð42Þ

and

~wðnÞ
k

¼ w
ðnÞ
k�1

pðtðnÞk jtðnÞk�1Þpðo
ðnÞ
k joðnÞ

k�1ÞL
ðnÞ
k ðDÞ

pðsðnÞk�D; t
ðnÞ
k ;oðnÞ

k js
ðnÞ
0:k�D�1; t

ðnÞ
0:k�1;o

ðnÞ
0:k�1; y0:kÞ

ð43Þ

where L
ðnÞ
k ðDÞ is the smooth likelihood

L
ðnÞ
k ðDÞ

¼
X
SD

pðyk�D:kjs
ðnÞ
0:k�D; sk�DþLþ1:kþL;

tðnÞ0:k;o
ðnÞ
0:k; y0:k�D�1Þ:

The summation
P

SD ð�Þ in the above equation is
carried out over all possible combinations of the
sequence sk�DþLþ1:kþL 2 SD: Given the nth parti-
cle, s

ðnÞ
k�D; each symbol combination yields one

sequence of subsequent data vectors, sk�Dþ1:k:
A convenient form of the proposal distribution

in (42) is

pðsk�D; tk;okjs
ðnÞ
0:k�D�1; t

ðnÞ
0:k�1;o

ðnÞ
0:k�1; y0:kÞ

¼ pðtkjt
ðnÞ
k�1Þpðokjo

ðnÞ
k�1Þpðsk�Djs

ðnÞ
0:k�D�1;

tðnÞ0:k;o
ðnÞ
0:k; y0:kÞ ð44Þ

which allows to sample particles in three steps.
First, the delay is drawn as

tðnÞk � NðatðnÞk�1;s
2
uÞ: (45)

Then, a sample of the frequency offset is drawn
from

oðnÞ
k � NðgoðnÞ

k�1;s
2
f Þ: (46)

Finally, the vector s
ðnÞ
k�D is sampled from

pðsk�Djs
ðnÞ
0:k�D�1; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:kÞ: Recalling that

the symbols are modeled as i.i.d. uniform
random variables, the latter distribution can be
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decomposed as

pðsk�Djs
ðnÞ
0:k�D�1; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:kÞ

/
X
SD

pðyk�D:kjsk�D; s
ðnÞ
0:k�D�1; sk�DþLþ1:kþL;

tðnÞ0:k;o
ðnÞ
0:k; y0:k�D�1Þ: ð47Þ

Notice that in order to build s
ðnÞ
k�D given s

ðnÞ
k�D�1

only one symbol, sk�DþL; needs to be sampled.
Thus, we draw

s
ðnÞ
k�DþL � rðnÞðsk�DþLÞ (48)

and let

s
ðnÞ
k�D ¼ Ss

ðnÞ
k�D�1 þ ½0; . . . ; 0; sðnÞk�DþL�

>: (49)

The probability mass function (pmf) rðnÞðsk�DþLÞ is
defined according to (47), i.e.,

rðnÞðsk�DþLÞ

¼

P
SD pðyk�D:kjs

ðnÞ
0:k�D�1; sk�DþL; sk�DþLþ1:kþL; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:k�D�1ÞP

SDþ1pðyk�D:kjs
ðnÞ
0:k�D�1; sk�DþL:kþL; t

ðnÞ
0:k;o

ðnÞ
0:k; y0:k�D�1Þ

;

ð50Þ

where the summation
P

SDþ1 ð�Þ is over all
possible combinations of the sequence
sk�DþL:kþL 2 SDþ1 and the likelihoods can be
computed as

pðyk�D:kjs0:k; t0:k;o
ðnÞ
0:k; y0:k�D�1Þ

/
YD
j¼0

Nðyk�j; yk�j ;s
2
yk�j

Þ: ð51Þ

The latter equation means that, at time k, a
Kalman smoother has to be run for each particle
and for each possible combination of symbols
sk�DþL:kþL:
The particle filter Dk can be used to sequentially

estimate the synchronization parameters and
received data, namely

t̂mmsek ¼
XN

n¼1

tðnÞk w
ðnÞ
k (52)

ômmse
k ¼

XN

n¼1

oðnÞ
k w

ðnÞ
k (53)
are MMSE estimates of the timing and frequency
error, respectively, and

ŝ
map
k�D ¼ arg max

sk�D2S

XN

n¼1

w
ðnÞ
k dðnÞðsðnÞk�D � sk�DÞ

( )

(54)

is the marginal MAP estimate of sk�D given y0:k:

3.5. Resampling

A major problem in the practical implementa-
tion of the SIS algorithm described so far is that
the discrete measure, Dk; degenerates quickly, i.e.,
after a few time steps, most of the importance
weights have negligible values (w

ðnÞ
k ’ 0) and

only a few particles with significant weights
remain useful. The common solution to this
problem is to resample the particles [10].
Resampling is an algorithmic step that stochasti-
cally eliminates particles with small weights,
while those with larger weights are replicated.
In its simplest form, resampling takes Dk as an
input and produces a new discrete measure
~Dk ¼ fð~s0:k�D; ~t0:k; ~o0:kÞ

ðnÞ; 1
N
gN

n¼1;where ð~sðnÞ0:k�D; ~t
ðnÞ
0:k;

~oðnÞ
0:kÞ ¼ ðs

ðiÞ
0:k�D; t

ðiÞ
0:k;o

ðiÞ
0:kÞ with probability w

ðiÞ
k :
4. Receiver architecture

Although the transmitted data with their timing
can be estimated together using the SIS algorithm
described above, it is important to notice that the
proposed method does not remove the ISI. In
other words, although the relative symbol delays,
tk; are estimated, the sampling instants, t ¼ kT ;
are not corrected to attain a better timing and
avoid ISI. As a consequence, the SER that can be
attained by detecting according to (54) is lower
bounded by the SER of the maximum likelihood
sequence detector (MLSD) with perfect knowledge
of the sequence of channel vectors ejkTok hkgðtkÞ: In
general, and assuming the autocorrelation func-
tion of the continuous-time synchronization pro-
cesses, (tðtÞ; oðtÞ and hðtÞ) is wider than the symbol
period, a lower SER is achieved with a matched-
filter receiver sampled at t ¼ kT � t̂k (where t̂kis a
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delay estimate) because ISI-free observations can
be obtained.
The SER of the matched detector can be

attained with the proposed SMC algorithm if an
adequate receiver architecture is used. In this
section, we present two possible configurations
that use the SMC approach for recovering the
timing and removing ISI before detection.

4.1. Open-loop receiver

In the first place, we consider the double branch
structure depicted in Fig. 1. In the upper branch,
the SMC block performs the proposed SIS
algorithm, which is used to compute Monte Carlo
MMSE estimates of the timing according to (53).
The received signal is held in the lower branch,
until the delay estimate is computed, and then
sampled at t ¼ kT � t̂mmsek to obtain the observa-
tion

ŷk ¼ yðkT � t̂mmsek Þ

¼ ejðkT�t̂mmse
k

Þok hks
>
k gðtk � t̂mmsek Þ þ vk ð55Þ

where sk ¼ ½sk�Lþ1; . . . ; skþL�
>; if tk � t̂mmsek 40;

and sk ¼ ½sk�L; . . . ; skþL�1�
>; if tk � t̂mmsek o0:

Note that, with the corrected epoch, ok ¼ oðkT �

t̂mmsek Þ; tk ¼ tðkT � t̂mmsek Þ and hk ¼ hðkT � t̂mmsek Þ

Ideally, when t̂mmsek ’ tk; the ISI is removed and

ŷk ’ ejðkT�t̂mmse
k

Þok hksk þ vk; (56)

hence minimal SER is achieved by and adequate
de-rotation of ŷk; multiplying by
e�jððkT�t̂mmse

k
Þômmse

k ĥ
n

k; followed by a simple thresh-
old detector. The aforementioned channel estimate
is computed as

ĥk ¼
XN

n¼1

c>l
ðnÞ
k w

ðnÞ
kþD (57)
y
k

y
k

τ k

k

hk
*

τ

y(t)
t=kT

SMC

t=kT-
hold

Fig. 1. Open loop
where

l
ðnÞ
k ¼ E

pðhk js
ðnÞ

0:k
;tðnÞ
0:k

;oðnÞ

0:k
;y0:kÞ

½hk� (58)

is the posterior channel estimate associated to the
nth particle and calculated by Kalman filtering.
Note, however, that this estimate cannot be
obtained until the symbols up to time k, fs

ðnÞ
0:kg

N
n¼1;

are available in the particle filter, which occurs at
time k þ D due to the smoothing. Hence there is
need to hold ŷk until it can be conveniently
de-rotated for accurate detection, as depicted in
Fig. 1.
The recursive steps of the proposed SMC

algorithm with the open-loop architecture are
summarized in Table 1.

4.2. Closed-loop receiver

The main drawback of the previous configura-
tion is the fact that the received signal is sampled
twice per symbol period. To avoid this drawback,
the closed-loop receiver architecture shown in
Fig. 2 can be used.
The SMC block represents the SIS algorithm

with resampling described in Section 3, which
yields asymptotically optimal MMSE estimates of
the relative symbol delay, t̂mmsek : This estimate is
fed back and used to adjust the epoch of the next
observation. Therefore, instead of sampling the
received signal uniformly, to obtain yk ¼ yðkT Þ;
the sampling time is adaptively selected according
to the most recent estimate of the relative symbol
delay, to yield yk ¼ yðkT � ~tkÞ; where ~tk ¼ at̂mmsek�1

is the MMSE prediction of tk:
The observations collected in this way have the

form

yk ¼ ejðkT�~tkÞok hks
>
k gðtk � ~tkÞ þ vk (59)
x s

-D

k-DD periods
hold

architecture.
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k

z-1

τ k

hold
D periods

y(t)
y

k

t=kT

τ k

ks

prediction

x

h*
k

SMC

τ

Fig. 2. Closed loop architecture.

Table 1

SIS with resampling for the open-loop architecture.

Initialization

l0 ¼ 0

R0 ¼ I

For k ¼ 0 to M (total no. of symbols)

For n ¼ 1 to N (total no. of particles)

For each sk�DþLþ1:kþL 2 SD

Kalman prediction: flk�jjk�j�1;Rk�jjk�j�1g
D�1
j¼0

Draw tðnÞk � NðatðnÞk�1; s
2
uÞ

Draw oðnÞ
k � NðgoðnÞ

k�1; s
2
f Þ

Draw s
ðnÞ
k�DþL � rðnÞðsk�DþLÞ according to Eq. (50)

Build s
ðnÞ
k�D

Update weights ~wðnÞ
k according to Eq. (43)

Normalize weights w
ðnÞ
k ¼ ð

PN
i¼1 ~wðiÞ

k Þ
�1 ~wðnÞ

k

Kalman update:

l
ðnÞ
k�D ¼ E

pðhk�D js
ðnÞ
0:k�D

;tðnÞ
0:k�D

;oðnÞ
0:k�D

;y0:k�DÞ
½hk�D�;

RðnÞ
k�D ¼ E

pðhk�D js
ðnÞ
0:k�D

;tðnÞ
0:k�D

;oðnÞ
0:k�D

;y0:k�DÞ
½ðhk�D � lk�DÞðhk�D � lk�DÞ

H
�;

Resample if N̂eff ¼
1

SN
n¼1

ðw
ðnÞ

k
Þ2
oN=2

Estimate delay: t̂k ¼
PN

n¼1 t
ðnÞ
k w

ðnÞ
k

Estimate frequency offset:ôk ¼
PN

n¼1 o
ðnÞ
k w

ðnÞ
k

Sample: ŷk ¼ yðt ¼ kT � t̂kÞ

Channel estimate: ĥk�D ¼
PN

n¼1 c
>l

ðnÞ
k�Dw

ðnÞ
k

Detect symbol, ŝk�D ¼ arg mins2S j ŷk�De
�jððk�DÞT�t̂k�DÞôk�D ĥ

n

k�D � s j
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where hk ¼ hðkT � ~tkÞ; ok ¼ oðkT � ~tkÞ and the
symbol vector is sk ¼ ½sk�Lþ1; . . . ; skþL�

>; if tk �

~tk40; and sk ¼ ½sk�L; . . . ; skþL�1�
> otherwise. No-

tice that, if ~tk ’ tk; the resulting observation, yk;
is free of ISI and the corresponding symbol can
be optimally detected multiplying yk by
e�jðkT�~tkÞô

mmse
k ĥ

n

k and using a simple threshold
detector that makes a decision based on the
minimal Euclidean distance between yk and
the elements in S: As in the open-loop structure,
the final detection step has to be delayed until ĥk is
available at time k þ D:
The recursive steps of the proposed algorithm

are summarized in Table 2.
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Table 2

SIS with resampling for the closed-loop architecture.

Initialization

~t0 ¼ 0

l0 ¼ 0

R0 ¼ I

For k ¼ 0 to M (total number of symbols)

Sample yk ¼ yðt ¼ kT � ~tkÞ

For n ¼ 1 to N (total number of particles)

For each sk�DþLþ1:kþL 2 SD

Kalman prediction: flk�jjk�j�1;Rk�jjk�j�1g
D�1
j¼0

Draw tðnÞk � NðatðnÞk�1; s
2
uÞ

Draw oðnÞ
k � NðgoðnÞ

k�1; s
2
f Þ

Draw s
ðnÞ
k�DþL � rðnÞðsk�DþLÞ according to Eq. (50)

Build s
ðnÞ
k�D

Update weights ~wðnÞ
k according to Eq. (43)

Normalize weights w
ðnÞ
k ¼ ð

PN
i¼1 ~wðiÞ

k Þ
�1 ~wðnÞ

k

Kalman update: l
ðnÞ
k�D;R

ðnÞ
k�D

Resample if N̂eff ¼
1

SN
n¼1

ðw
ðnÞ
k

Þ2
oN=2

Timing recovery, channel estimation and symbol detection

t̂k ¼
PN

n¼1 t
ðnÞ
k w

ðnÞ
k

ôk ¼
PN

n¼1 o
ðnÞ
k w

ðnÞ
k

ĥk�D ¼
PN

n¼1 c
>l

ðnÞ
k�Dw

ðnÞ
k

ŝk�D ¼ arg mins2S j yk�De
�jððk�DÞT�~tk Þôk�D ĥ

n

k�D � s j

Timing prediction: ~tkþ1 ¼ at̂k
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5. Posterior Cramér–Rao bound

Posterior distribution estimates based on SIS
algorithms converge asymptotically to the true
posterior distribution as the number particles, N,
approaches infinity. In practice, however, a finite
number particles is used to estimate parameters of
interest. As a result of this approximations a
certain degradation in performance of the estima-
tion is expected. In order to study the efficiency of
the proposed estimation method, it is of great
interest to compute the variance bounds on the
estimation errors and compare them with the
lowest bounds corresponding to the optimal
estimator. In this section, we will derive a lower
bound for the mean square error (MSE) in the
estimation of the delay process, t0:k:
When the parameter of interest is assumed
fixed, the lower bound for the variance of
any unbiased estimator is given by the
well-known Cramér–Rao bound (CRB) [20]
which, in turn, is obtained from the inverse
of the Fisher information matrix (FIM).
However, for Bayesian models where the
parameter of interest is considered random, the
lowest achievable variance is given by the PCRB
[1,21]. Therefore, we wish to derive the PCRB
associated to the timing process, t0:k; in order
to obtain a lower bound for the MSE of the
delay estimates.
We define the k þ 1 dimensional vectors t ¼

½t0; t1; . . . ; tk�
> and t̂ ¼ ½t̂0; t̂1; . . . ; t̂k�

>; where t̂k

is an arbitrary estimate of tk: For the signal
model of interest in this paper, the PCRB can be
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stated as

Pk ¼ Epðs0:k ;t0:k ;o0:k ;h0:k ;y0:kÞ t̂� tð Þ t̂� tð Þ
>

� �
XJðt0:kÞ

�1

(60)

where Jðt0:kÞ is the ðk þ 1Þ � ðk þ 1Þ FIM, which is
defined, element-wise, as

Jðt0:kÞ½ �ij ¼ Epðs0:k ;t0:k ;o0:k ;h0:k ;y0:kÞ

�
�@2log pðs0:k; t0:k;o0:k; h0:k; y0:kÞ

� �
@ti@tj

" #
:

ð61Þ

Notice that the ith element in the diagonal of
Jðt0:kÞ; which we subsequently denote as Ji ¼

Jðt0:kÞ½ �ii; corresponds to the inverse of the lowest
achievable MSE in the estimation of ti:
The direct computation of the FIM is compu-

tationally prohibitive as it requires the inversion of
a big matrix which grows with k. It is shown,
however, in [21] that a recursive method, which
sequentially evaluates the inverse of the MSE of
t̂kþ1; can be applied to compute the FIM.
Specifically

Jkþ1 ¼ D22
k � D21

k ðJk þ D11
k Þ

�1D12
k : (62)

The terms in the above equation are

D11
k ¼ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

�½�4tk
tk
log pðtkþ1jtkÞð Þ� ð63Þ

D12
k ¼ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

�½�4tkþ1
tk

log pðtkþ1jtkÞð Þ� ð64Þ

D21
k ¼ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

�½�4tk
tkþ1

log pðtkþ1jtkÞð Þ� ð65Þ

D22
k ¼ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

�½�4tkþ1
tkþ1

log pðtkþ1jtkÞð Þ� ð66Þ

þ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

�½�4tkþ1
tkþ1

log pðykþ1jtkþ1; skþ1Þ
� �

�; ð67Þ

where 4 denotes the second derivative operator,
defined as 4

tkþ1
tk

¼ @2=ð@tk@tkþ1Þ and logð�Þ is the
natural logarithm. Recursion (62) is initialized at
time t ¼ �1; in the absence of observations, by
considering J�1 ¼ 12=T2; which is the inverse of
the variance of the uniform distribution in ½0;TÞ:
Notice that this is the only a priori information
regarding the delay.
It is straightforward to numerically evaluate

Eqs. (63)–(66), which yield

D11
k ¼

a2

s2u

D12
k ¼ D21

k ¼ �
a
s2u

while, as for Eq. (67),

D22
k ¼

1

s2u
þ Epðs0:kþ1;t0:kþ1;o0:kþ1;h0:kþ1;y0:kþ1Þ

0
B@

1

j Sj2L

X
sk2S

L

j ejkTok hkj
2 s>k 5tkþ1

gðtkþ1Þ

� �2
s2v

2
64

3
75
1
CA:

ð68Þ

Unfortunately, it is not possible to obtain a closed-
form expression for the expectation in the above
equation. Instead, as suggested in [21], we can
estimate it using Monte Carlo simulation. When Q

i.i.d. state trajectories are generated, we approx-
imate D22

k as

D̂
22

k ¼
1

s2u
þ

1

j Sj2LQ

0
B@

�
X
sk2S

L

XQ

j¼1

j ejkTok hkj
2 s>k 5tkþ1

gðtðjÞkþ1Þ

� �2
s2v

1
CA
ð69Þ

where 5tkþ1
¼ @

@tkþ1
:

6. Computer simulations

Finally, we present computer simulations that
illustrate the validity of our approach. We have
considered a differentially encoded BPSK mod-
ulation (symbol alphabet S ¼ f�1g) with symbol
period of T ¼ 10�4 and a flat fading channel with
fading rate 0:0022 (AR parameters b1; b2 and s2e
selected accordingly). The delay has been modeled
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as a first-order AR process with parameter a ¼

0:999 and noise variance s2u ¼ 3� 10�4: Similarly,
the frequency error AR process is assigned
parameters g ¼ 0:999 and noise variance of s2f ¼

1� 10�4: A time-limited causal raised-cosine pulse
with a roll-off factor a ¼ 0:9 and an ISI spread of
2L ¼ 4 symbols has been used.
The performance of the proposed SMC recei-

vers is addressed in terms of the normalized MSE
attained in timing estimation and the overall SER
achieved by the detectors. For comparison pur-
poses, we have also studied the performance of
classical algorithms for timing error detection and
frequency offset estimation. In particular, we have
studied the performance of the approximate ML
timing error detector (TED) in [14, Section 7.5],
the open-loop frequency estimator of [14, Section
3.4] and decision-directed Kalman filtering for
estimation of the complex fading process [13]. We
have combined these three standard procedures to
yield a conventional receiver. A genie-aided version
of the latter, where the frequency error is perfectly
corrected and only timing error detection and
Kalman filtering are performed, has also been
evaluated. In both cases, detection is carried out
by simple thresholding (the same as in the
proposed SMC receivers).
Fig. 3 shows the normalized timing MSE

attained by the proposed SMC algorithms for
several values of the SNR. The normalized MSE is
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Fig. 3. MSE for several adaptive timing estimators.
computed as

MSE ¼
1

MQ

XM�1

k¼0

XQ

i¼1

tk � t̂k
ðiÞ

T

 !2

(70)

where Q ¼ 100 denotes the number of independent
simulation trials we have carried out and t̂k is the
delay estimate. The open-loop and closed-loop
SMC receivers described in Tables 1 and 2,
respectively, with smoothing lagD ¼ 2 and N ¼

650 particles, attain a similar MSE for the whole
SNR range, which is consistently lower than the
MSE of the conventional and the genie-aided
receivers described above. The main reason for this
performance gap is that the approximate ML TED
is derived under the assumption of fixed delay
(tk ¼ t 8k) and low SNR and, as a consequence, it
is relatively simple to implement but a clearly
suboptimal algorithm.
Fig. 4 shows the variation of the MSE with time

for SNR¼ 25 dB. We have plotted the lower
bound of the MSE given the PCRB as described
in Section 5. It can be seen that the proposed
algorithms perform close to the optimal bound
and outperform the ML TEDs.
Finally, Fig. 5 shows the SER of the SMC

receivers for increasing SNR. It should be noted
here that there is a delay ambiguity inherent to the
blind estimation of tk; i.e., t̂k ¼ tk and t̂k ¼ mT þ

tk; with integer m, are equally valid estimates of
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the delay, from a statistical point of view, as long
as the data sequence is also delayed by m.
However, this ambiguity is easily removed if the
data sequence length, M, is a priori known, as
assumed in this paper (and always the case in
practice). It is apparent that the SER achieved by
the proposed SMC adaptive receivers is very close
to the optimal SER, obtained using a clairvoyant
receiver with perfect knowledge of t0:k; o0:k; and
the channel process h0:k: The symbol error rate of
the ML TED based receivers is shown to be
considerably worse.
7. Conclusions

We have presented a novel algorithm for blind
generalized synchronization and data detection in
frequency-flat fast-fading wireless channels based
on a Bayesian estimation approach and the SMC
methodology. The proposed SMC technique
allows to obtain asymptotically optimal estimates
of the symbol time varying delays, the also time-
varying frequency error and the fast fading
complex channel process (which includes both
amplitude attenuation and phase offset). The
design of the resulting blind receiver is completed
by considering suitable receiver architectures that
allow the exploitation of the sequential estimation
of the reference parameters in order to remove the
ISI before detection and, thus, to attain close to
optimal symbol error rate. The performance of the
new receiver is assessed both analytically, through
the posterior Crámer–Rao bound of the timing
process, and numerically, through computer simu-
lations that illustrate the superiority of the
proposed detector when compared with conven-
tional techniques based on approximate maximum
likelihood timing error detection, Kalman filtering
and open-loop frequency error estimation.
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