EURASIP Journal on Applied Signal Processing 2004:15, 2267-2277
(© 2004 Hindawi Publishing Corporation

Resampling Algorithms for Particle Filters:
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Newly developed resampling algorithms for particle filters suitable for real-time implementation are described and their analysis
is presented. The new algorithms reduce the complexity of both hardware and DSP realization through addressing common issues
such as decreasing the number of operations and memory access. Moreover, the algorithms allow for use of higher sampling
frequencies by overlapping in time the resampling step with the other particle filtering steps. Since resampling is not dependent
on any particular application, the analysis is appropriate for all types of particle filters that use resampling. The performance of
the algorithms is evaluated on particle filters applied to bearings-only tracking and joint detection and estimation in wireless
communications. We have demonstrated that the proposed algorithms reduce the complexity without performance degradation.
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1. INTRODUCTION

Particle filters (PFs) are very suitable for nonlinear and/or
non-Gaussian applications. In their operation, the main
principle is recursive generation of random measures, which
approximate the distributions of the unknowns. The ran-
dom measures are composed of particles (samples) drawn
from relevant distributions and of importance weights of
the particles. These random measures allow for computation
of all sorts of estimates of the unknowns, including mini-
mum mean square error (MMSE) and maximum a posteriori
(MAP) estimates. As new observations become available, the
particles and the weights are propagated by exploiting Bayes
theorem and the concept of sequential importance sampling
1,2].

The main goals of this paper are the development of re-
sampling methods that allow for increased speeds of PFs, that
require less memory, that achieve fixed timings regardless of
the statistics of the particles, and that are computationally
less complex. Development of such algorithms is extremely

critical for practical implementations. The performance of
the algorithms is analyzed when they are executed on a dig-
ital signal processor (DSP) and specially designed hardware.
Note that resampling is the only PF step that does not de-
pend on the application or the state-space model. Therefore,
the analysis and the algorithms for resampling are general.
From an algorithmic standpoint, the main challenges in-
clude development of algorithms for resampling that are
suitable for applications requiring temporal concurrency.!
A possibility of overlapping PF operations is considered be-
cause it directly affects hardware performance, that is, it in-
creases speed and reduces memory access. We investigate se-
quential resampling algorithms and analyze their computa-
tional complexity metrics including the number of opera-
tions as well as the class and type of operation by perform-
ing behavioral profiling [3]. We do not consider fixed point

!Temporal concurrency quantifies the expected number of operations
that are simultaneously executed, that is, are overlapped in time.
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precision issues, where a hardware solution of resampling
suitable for fixed precision implementation has already been
presented [4].

The analysis in this paper is related to the sample
importance resampling (SIR) type of PFs. However, the anal-
ysis can be easily extended to any PF that performs resam-
pling, for instance, the auxiliary SIR (ASIR) filter. First, in
Section 2 we provide a brief review of the resampling opera-
tion. We then consider random and deterministic resampling
algorithms as well as their combinations. The main feature
of the random resampling algorithm, referred to as residual-
systematic resampling (RSR) and described in Section 3, is
to perform resampling in fixed time that does not depend on
the number of particles at the output of the resampling pro-
cedure. The deterministic algorithms, discussed in Section 4,
are threshold-based algorithms, where particles with mod-
erate weights are not resampled. Thereby significant savings
can be achieved in computations and in the number of times
the memories are accessed. We show two characteristic types
of deterministic algorithms: a low-complexity algorithm and
an algorithm that allows for overlapping of the resampling
operation with the particle generation and weight computa-
tion. The performance and complexity analysis are presented
in Section 5 and the summary of our contributions is out-
lined in Section 6.

2. OVERVIEW OF RESAMPLING IN PFs

PFs are used for tracking states of dynamic state-space mod-
els described by the set of equations

Xp = f(xn—l) +uy,
(1)

Yo = &(Xn) + ¥,
where x,, is an evolving state vector of interest, y, is a vector
of observations, u, and v, are independent noise vectors with
known distributions, and f(-) and g(-) are known functions.
The most common objective is to estimate x,, as it evolves in
time.

PFs accomplish tracking of x, by updating a random

m m
measure {xl,, ) w™ M

which is composed of M parti-
cles x"™ and their weights wi™ defined at time instant
recursively in time [5, 6, 7]. The random measure approxi-
mates the posterior density of the unknown trajectory xi.,,
P(X1:11Y1:0), where y1., is the set of observations.

In the implementation of PFs, there are three important
operations: particle generation, weight computation, and re-
sampling. Resampling is a critical operation in particle filter-
ing because with time, a small number of weights dominate
the remaining weights, thereby leading to poor approxima-
tion of the posterior density and consequently to inferior es-
timates. With resampling, the particles with large weights are
replicated and the ones with negligible weights are removed.

2The notation Xi., signifies X1, = {X1,X2,...,Xn}.

After resampling, the future particles are more concentrated
in domains of higher posterior probability, which entails im-
proved estimates.

The PF operations are performed according to

)
~ (XX,

(1) generation of particles (samples) x™
Yin)» where (X an 1 ,y1 .n) 1s an importance density
and zn is an array of indexes, which shows that the
particle m should be reallocated to the position i

(2) computation of weights by

(in-1) (i1)
WO Wyt P (Y |Xitm) xi” [ %,") (2)
p o
a;lifll) 77: ) |}(nr111)’),1 n)

followed by normallzatlon wim = yrm), Z?’il w:(j);

(3) resampling i i ~ a™ where a\" is a suitable resam-

pling function whose support is defined by the particle
(m)
wo [8].

The above representation of the PF algorithm provides a

certain level of generality. For example, the SIR filter with

a stratlﬁed resampling is implemented by choosing ay" =

. M. When a{™ = 1/M, there is no re-

= m The ASIR filter can be implemented
(m)

" for m = 1,
sampling and iy") =
by setting a” = wi” plys 7)) and m(x) = plxal
where " is the mean, the mode, or some other likely Value
associated with the density p(x, |x’(1n_1)] ).

3. RESIDUAL SYSTEMATIC RESAMPLING
ALGORITHM

In this section, we consider stratified random resampling al-

gorithms, where a; m _ wﬁm) [9, 10, 11]. Standard algorithms
used for random resampling are different variants of strati-
fied sampling such as residual resampling (RR) [12], branch-
ing corrections, [13] and systematic resampling (SR) [6]. SR
is the most commonly used since it is the fastest resampling
algorithm for computer simulations.

We propose a new resampling algorithm which is based
on stratified resampling, and we refer to it as RSR [14]. Sim-
ilar to RR, RSR calculates the number of times each particle
is replicated except that it avoids the second iteration of RR
when residual particles need to be resampled. Recall that in
RR, the number of replications of a specific particle is deter-
mined in the first loop by truncating the product of the num-
ber of particles and the particle weight. In RSR instead, the
updated uniform random number is formed in a different
fashion, which allows for only one iteration loop and pro-
cessing time that is independent of the distribution of the
weights at the input. The RSR algorithm for N input and M
output (resampled) particles is summarized by Algorithm 1.

Figure 1 graphically illustrates the SR and RSR methods
for the case of N = M = 5 particles with weights given
in Table 1. SR calculates the cumulative sum of the weights
Ccm = 3m w? and compares C™ with the updated uni-
form number U™ for m = 1,...,N. The uniform number
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Purpose: generation of an array of indexes {i} at time
instant n, n > 0.
Input: an array of weights {w, }\', input and output
number of particles, N and M, respectively.
Method:
(i) = RSR(N, M, w)
Generate a random number AU® ~ U[0, 1/M]
form = 1-N
im = | (W™ — AU™DY . M| +1
AU = AU 4 j0m /AL — ™
end

ALGoRrITHM 1: Residual systematic resampling algorithm.

U is generated by drawing from the uniform distribution
U[0,1/M] and updated by U™ = U1 + 1/M. The num-
ber of replications for particle m is determined as the num-
ber of times the updated uniform number is in the range
[Cm=D Cm), For particle 1, U® and U belong to the
range [0, C"), so that this particle is replicated twice, which
is shown with two arrows that correspond to particle 1. Par-
ticles 2 and 3 are replicated once. Particle 4 is discarded
(i® = 0) because no U™ form = 1,...,N appears in the
range [C®),C¥),

The RSR algorithm draws the uniform random number
U® = AU in the same way but updates it by AU™ =
AU 4 im/p — wi™ In the figure, we display both
U = AUM=D 4im /M and AU = U™ — (™ Here, the
uniform number is updated with reference to the origin of the
currently considered weight, while in SR, it is propagated with
reference to the origin of the coordinate system. The difference
AU between the updated uniform number and the cur-
rent weight is propagated. Figure 1 shows that i) = 2 and
that AU is calculated and then used as the initial uniform
random number for particle 2. Particle 4 is discarded because
AU® = UW > w®, 5o that | (wh - AU®) - M| = ~1 and
i® = 0. If we compare AUV with the relative position of the
U® and C in SR, AU in RSR with the relative position
of U® and C? in SR, and so on, we see that they are equal.
Therefore, SR and RSR produce identical resampling result.

3.1. Particle allocation and memory usage

We call particle allocation the way in which particles are
placed in their new memory locations as a result of resam-
pling. With proper allocation, we want to reduce the number
of memory accesses and the size of state memory. The allo-
cation is performed through index addressing, and its execu-
tion can be overlapped in time with the particle generation
step. In Figure 2, three different outputs of resampling for
the input weights from Figure 1 are considered. In Figure 2a,
the indexes represent positions of the replicated particles. For

example, i?) = 1 means that particle 1 replaces particle 2.
Particle allocation is easily overlapped with particle genera-
tion using X = x™) for m = 1,..., M, where {X™}M_

is the set of resampled particles. The randomness of the re-
sampling output makes it difficult to realize in-place storage
so that additional temporary memory for storing resampled

particles ¥ is necessary. In Figure 2a, particle 1 is replicated
twice and occupies the locations of particles 1 and 2. Particle
2 is replicated once and must be stored in the memory of X
or it would be rewritten. We refer to this method as particle
allocation with index addressing.

In Figure 2b, the indexes represent the number of times
each particle is replicated. For example, i) = 2 means that
particle 1 is replicated twice. We refer to this method as par-
ticle allocation with replication factors. This method still re-
quires additional memory for particles and memory for stor-
ing indexes.

The additional memory for storing the particles X" is
not necessary if the particles are replicated to the positions
of the discarded particles. We call this method particle alloca-
tion with arranged indexes of positions and replication factors
(Figure 2¢). Here, the addresses of both replicated particles
and discarded particles as well as the number of times they
are replicated (replication factor) are stored. The indexes are
arranged in a way so that the replicated particles are placed
in the upper and the discarded particles in the lower part of
the index memory. In Figure 2c, the replicated particles take
the addresses 1 — 4 and the discarded particle is on the ad-
dress 5. When one knows in advance the addresses of the dis-
carded particles, there is no need for additional memory for
storing the resampled particles X" because the new particles
are placed on the addresses occupied by the particles that are
discarded. It is useful for PFs applied to multidimensional
models since it avoids need for excessive memory for storing
temporary particles.

For the RSR method, it is natural to use particle alloca-
tion with replication factor and arranged indexes because the
RSR produces replication factors. In the particle generation
step, the for loop with the number of iterations that corre-
sponds to the replication factors is used for each replicated
particle. The difference between the SR and the RSR meth-
ods is in the way the inner loop in the resampling step for SR
and particle generation step for RSR is performed. Since the
number of replicated particles is random, the while loop in
SR has an unspecified number of operations. To allow for an
unspecified number of iterations, complicated control struc-
tures in hardware are needed [15]. The main advantage of
our approach is that the while loop of SR is replaced with a
for loop with known number of iterations.

4. DETERMINISTIC RESAMPLING

4.1. Overview

In the literature, threshold-based resampling algorithms are
based on the combination of RR and rejection control and
they result in nondeterministic timing and increased com-
plexity [8, 16]. Here, we develop threshold-based algorithms
whose purpose is to reduce complexity and processing time.
We refer to these methods as partial resampling (PR) because
only a part of the particles is resampled.

In PR, the particles are grouped in two separate classes:
one composed of particles with moderate weights and an-
other with dominating and negligible weights. The particles
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FIGURE I: (a) Systematic and (b) residual systematic resampling for an example with M = 5 particles.

TABLE 1: Weights of particles.

wm) j(m)
7/20 2
6/20 1
2/20 1
0
1

2/20
3/20

G |w(o|— 3

with moderate weights are not resampled, whereas the negli-
gible and dominating particles are resampled. It is clear that
on average, resampling would be performed much faster be-
cause the particles with moderate weights are not resampled.
We propose several PR algorithms which differ in the resam-
pling function.

4.2. Partial resampling: suboptimal algorithms

PR could be seen as a way of a partial correction of the vari-
ance of the weights at each time instant. PR methods con-
sist of two steps: one in which the particles are classified as
moderate, negligible, or dominating and the other in which
one determines the number of times each particle is repli-
cated. In the first step of PR, the weight of each particle is
compared with a high and a low threshold, T and T, re-
spectively, where T, > 1/M and 0 < T; < Tj. Let the num-
ber of particles with weights greater than T}, and less than T;
be denoted by Nj, and Nj, respectively. A sum of the weights
of resampled particles is computed as a sum of dominat-
ing Wy, = ¥ wi™ for wy™ > T, and negligible weights
Wi = SN wi™ for wi™ < T). We define three different

types of resampling with distinct resampling functions asm.

u®
_______ w3
T Iww
C
4 5
Particle
(b)

1 1 1 2 1 1 2
2 1 2 1 2 2 1
3 2 3 1 3 3 1
4 3 4 0 4 5 1
5 5 5 1 5 4

(a) (b) (c)

FIGURE 2: Types of memory usages: (a) indexes are positions of the
replicated particles, (b) indexes are replication factors, and (c) in-
dexes are arranged as positions and replication factors.

The resampling function of the first PR algorithm (PR1)
is shown in Figure 3a and it corresponds to the stratified re-
sampling case. The number of particles at the input and at
the output of the resampling procedure is the same and equal
to Nj, + Nj. The resampling function is given by

- wi™ for wi™ > Ty, or wi™ < Ty,
a™=41-W, - W, . 3
" m otherwise. (3)

The second step can be performed using any resampling al-
gorithm. For example, the RSR algorithm can be called using
(i) = RSR(Ny+Nj, Ny +Nj, wi™ /(Wy+W))), where the RSR is
performed on the Nj, + N; particles with negligible and dom-
inating weights. The weights have to be normalized before
they are processed by the RSR method.

The second PR algorithm (PR2) is shown in Figure 3b.
The assumption that is made here is that most of the
negligible particles will be discarded after resampling, and
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FIGURE 3: Resampling functions for the PR algorithms (a) PR1, (b) PR2, and (c) PR3.
consequently, particles with negligible weights are not used =~ whose resampling function is given as
in the resampling procedure. Particles with dominating
weights replace those with negligible weights with certainty. Ny +N; for w™ s T
The resampling function is given as ) M orwn= > Lh»
agm) =1— for T; < wﬁ,m) < Ty, (5)
wir ¢ Wi for wy™ > T, M .
1” W N w n h> 0 otherwise.
ap) =11 =M= W e e, (4
M = Ny = Ni ) The number of replications of each dominating particle may
0 otherwise.

The number of times each particle is replicated can be found
using (i) = RSR(Ni Ny + Ni, (wi™ + Wi/Np)/(Wj, + W),
where the weights satisfy the condition wiy™ > T, There are
only Nj, input particles and Nj, + N particles are produced at
the output.

The third PR algorithm (PR3) is shown in Figure 3c. The
weights of all the particles above the threshold T}, are scaled
with the same number. So, PR3 is a deterministic algorithm

be less by one particle than necessary because of the round-
ing operation. One way of resolving this problem is to assign
that the first Ny = N; — | Ni//Nj, I[N}, dominating particles are
replicated r = | Ni/Nj | + 2 times, while the rest of N, — N;
dominating particles are replicated r | Ni/Np | + 1 times.
The weights are calculated as w*"™ = w(™ where m rep-
resents positions of particles with moderate weights, and as
w* = wm /r + Wi/(Ny + Nj), where m are positions of par-
ticles with dominating weights and / of particles with both
dominating and negligible weights.
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Initial weights Classification PR3 algorithm

m w(m) Ty =1 m j(m) ik (m)

1 7/10 PLP2 1 2 4.5/20,4.5/20

2 6/10 T = 172 2 2 4/20,4/20

’ 2/10 /;E Z Z 1/4< WM =2/5<1/2 = 3 0 -

4 2/10 T, = 14 4 0 —
5 1 3/20

5 3/10 P3.p4

Sum 2 Ty =0 Sum 5 1

FIGURE 4: OPR method combined with the PR3 method used for final computation of weights and replication factors.

Another way of performing PR is to use a set of thresh-
olds. The idea is to perform initial classification of the parti-
cles while the weights are computed and then to carry out the
actual resampling together with the particle generation step.
So, the resampling consists of two steps as in the PR2 algo-
rithm, where classification of the particles is overlapped with
the weight computation. We refer to this method as over-
lapped PR (OPR).

A problem with the classification of the particles is the
necessity of knowing the overall sum of nonnormalized
weights in advance. The problem can be resolved as follows.
The particles are partitioned according to their weights. The
thresholds for group i are defined as T, T; fori = 1,..., K,
where K is the number of groups, Ti-; < T; and Ty = 0. The
selection of thresholds is problem dependent. The thresholds
that define the moderate group of particles satisfy Tx—; <
W/M < Ty. The particles that have weights greater than T
are dominant particles, and the ones with weights less than
Ty-1, negligible particles.

In Figure 4, we provide a simple example of how this
works. There are four thresholds (T, to T3) and non-
normalized particles are compared with the thresholds and
properly grouped. After obtaining the sum of weights W, the
second group for which T, < W/M < T, is the group of par-
ticles with moderate weights. The first group contains parti-
cles with negligible weights, and the third group is composed
of particles with dominating weights. An additional loop is
necessary to determine the number of times each of the dom-
inating particles is replicated. However, the complexity of
this loop is of order O(K), which is several orders of mag-
nitude lower than the complexity of the second step in the
PRI algorithm (O(M)). Because the weights are classified, it
is possible to apply similar logic for the second resampling
step as in the PR2 and PR3 algorithms. In the figure, the par-
ticles P1 and P2 are replicated twice and their weights are cal-
culated using the formulae for weights for the PR3 method.

4.3. Discussion

In the PR1, PR2, and PR3 algorithms, the first step requires
aloop of M iterations for the worst case (of number of com-
putations) with two comparisons per each iteration (classi-
fication in three groups). Resampling in the PR1 algorithm
is performed on Nj + Nj, particles. The worst case for the
PRI algorithm occurs when N; + N, = M, which means

that all the particles must be resampled, thereby implying
that there cannot be improvements from an implementation
standpoint. The main purpose of the PR2 algorithm is to im-
prove the worst-case timing of the PR1 algorithm. Here, only
N, dominating particles are resampled. So, the input num-
ber of particles in the resampling procedure is Ny, while the
output number of particles is Nj + N;. If the RSR algorithm is
used for resampling, then the complexity of the second step
is O(Ny).

PR1 and PR2 contain two loops and their timings depend
on the weight statistics. As such, they do not have advan-
tages for real-time implementation in comparison with RSR,
which has only one loop of M iterations and whose process-
ing time does not depend on the weight statistics. In the PR3
algorithm, there is no stratified resampling. The number of
times each dominating particle is replicated is calculated af-
ter the first step and it depends on the current distribution
of particle weights and of the thresholds. This number is cal-
culated in O(1) time, which means that there is no need for
another loop in the second step. Thus, PR3 has simpler op-
erations than the RSR algorithm.

The PR algorithms have the following advantages from
the perspective of hardware implementation: (1) the resam-
pling is performed faster on average because it is done on a
much smaller number of particles; (2) there is a possibility
of overlapping the resampling with the particle generation
and weight computation; and (3) if the resampling is used
in a parallel implementation [17], the number of exchanged
particles among the processing elements is smaller because
there are less particles to be replicated and replaced. There are
also problems with the three algorithms. When N; = 0 and
Nj, = 0, resampling is not necessary. However, when N; = 0
or N, = 0 but not at same time, the PR algorithms would not
perform resampling even though it could be useful.

Application of the OPR algorithm requires a method for
fast classification. For hardware and DSP implementation, it
is suitable to define thresholds that are a power of two. So, we
take that T; = 1/2X~ fori = 1,...,K and Ty = 0. The group
is determined by the position of the most significant “one”
in the fixed point representation of weights. Memory alloca-
tion for the groups could be static or dynamic. Static alloca-
tion requires K memory banks, where the size of each bank
is equal to the number of particles because all the particles
could be located in one of the groups. Dynamic allocation is
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—=— SR-effective —— PR3(10)

FIGURE 5: Performance of the PR3 algorithm for different threshold
values applied to joint detection and estimation.

more efficient and it could be implemented using ways simi-
lar to the linked lists, where the element in a group contains
two fields: the field with the address of the particle and the
field that points out to the next element on the list. Thus,
dynamic allocation requires memory with capacity of 2M
words. As expected, overlapping increases the resources.

5. PARTICLE FILTERING PERFORMANCE
AND COMPLEXITY

5.1. Performance analysis

The proposed resampling algorithms are applied and their
performance is evaluated for the joint detection and esti-
mation problem in communication [18, 19] and for the
bearings-only tracking problem [7].

5.1.1. Joint detection and estimation

The experiment considered a Rayleigh fading channel with
additive Gaussian noise with a differentially encoded BPSK
modulation scheme. The detector was implemented for a
channel with normalized Doppler spreads given by B; =
0.01, which corresponds to fast fading. An AR(3) process
was used to model the channel. The AR coefficients were ob-
tained from the method suggested in [20]. The proposed de-
tectors were compared with the clairvoyant detector, which
performs matched filtering and detection assuming that the
channel is known exactly by the receiver. The number of
particles was N = 1000.

In Figure 5, the bit error rate (BER) versus signal-to-
noise ratio (SNR) is depicted for the PR3 algorithm with
different sets of thresholds, that is, T, = {2M,5M,10M}
and T; = {1/(2M), 1/(5M), 1/(10M)}. In the figure, the PR3
algorithm with the thresholds 2M and 1/2M is denoted as
PR3(2), the one with thresholds 5M and 1/5M as PR3(5),
and so on. The BERs for the matched filter (MF) and for

SNR

o

BER

0.001

-a— MF —*— OPR
SR —e— PR2
—=— SR-effective —— PR3

Figure 6: Comparison of the PR2, PR3, and OPR algorithms with
SR applied to the joint detection and estimation problem.

the case when the SR is performed are shown as well. It is
observed that the BER is similar for all types of resampling.
However, the best results are obtained when the thresholds
2M and 1/2M were used. Here, the effective number of par-
ticles that is used is the largest in comparison with the PR3 al-
gorithm with greater Tj, and smaller T). This is a logical result
because according to PR3, all the particles are concentrated
in the narrower area between the two thresholds producing
in this way a larger effective sample size. PR3 with thresholds
2M and 1/2M slightly outperforms the SR algorithm which
is a bit surprising. The reason for this could be that the parti-
cles with moderate weights are not unnecessarily resampled
in the PR3 algorithm. The same result is obtained even with
different values of Doppler spread.

In Figure 6, BER versus SNR is shown for different re-
sampling algorithms: PR2, PR3, OPR, and SR. The thresh-
olds that are used for the PR2 and PR3 are 2M and 1/2M. The
OPR uses K = 24 groups and thresholds which are power of
two. Again, all the results are comparable. The OPR and PR2
algorithms slightly outperform the other algorithms.

5.1.2. Bearings-only tracking

We tested the performance of PFs by applying the resampling
algorithms to bearings-only tracking [7] with different initial
conditions. In the experiment, PR2 and PR3 are used with
two sets of threshold values, that is, T, = {2M,10M} and
T; = {1/(2M),1/(10M)}. In Figure 7, we show the number
of times when the track is lost versus number of particles, for
two different pairs of thresholds. We consider that the track
is lost if all the particles have zero weights. In the figure, the
PR3 algorithm with thresholds 2M and 1/2M is denoted as
PR3(2) and the one 10M and 1/10M as PR3(10). The used
algorithms are SR, SR performed after every 5th observation,
PR2, and PR3. The resampling algorithms show again similar
performances. The best results for PR2 and PR3 are obtained
when the thresholds 10M and 1/10M are used.
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FiGure 7: Number of times when the track is lost for the PR2, PR3,
and SR applied to the bearings-only tracking problem.

5.2. Complexity analysis

The complexity of the proposed resampling algorithms is
evaluated. We consider both computation complexity as well
as memory requirements. We also present benefits of the
proposed algorithms when concurrency in hardware is ex-
ploited.

5.2.1. Computational complexity

In Table 2, we provide a comparison of the different resam-
pling algorithms. The results for RR are obtained for the
worst-case scenario. The complexity of the RR, RSR, and PR
algorithms is of O(N), and the complexity of the SR algo-
rithm is of O(max (N, M)), where N and M are the input and
output numbers of particles of the resampling procedure.

When the number of particles at the input of the resam-
pling algorithm is equal to the number of particles at the out-
put, the RR algorithm is by far the most complex. While the
number of additions for the SR and RSR algorithms are the
same, the RSR algorithm performs M multiplications. Since
multiplication is more complex than addition, we can view
that the SR is a less complex algorithm. However, when N is a
power of two such that the multiplications by N are avoided,
the RSR algorithm is the least complex.

The resampling algorithms SR, RSR, and PR3 were im-
plemented on the Texas Instruments (TI) floating-point
DSP TMS320C67xx. Several steps of profiling brought about
five-fold speed-up when the number of resampled parti-
cles was 1000. The particle allocation step was not consid-
ered. The number of clock cycles per particle was around
18 for RSR and 4.1 for PR3. The SR algorithm does not
have fixed timing. The mean duration was 24.125 cycles
per particle with standard deviation of 5.17. On the pro-
cessor TMS320C6711C whose cycle time is 5 nanoseconds,
the processing of RSR with 1000 particles took 90 microsec-
onds.

only for resampling, but also for the complete PE. The mem-
ory size of the weights and the memory access during weight
computation do not depend on the resampling algorithm.
We consider particle allocation without indexes and with in-
dex addressing for the SR algorithm, and with arranged in-
dexing for RSR, PR2, PR3, and OPR. For both particle allo-
cation methods, the SR algorithm has to use two memories
for storing particles. In Table 3, we can see the memory ca-
pacity for the RSR, PR2, and PR3 algorithms. The difference
among these methods is only in the size of the index memory.
For the RSR algorithm which uses particle allocation with ar-
ranged indexes, the index memory has a size of 2M, where M
words are used for storing the addresses of the particles that
are replicated or discarded. The other M words represent the
replication factors.

The number of resampled particles for the worst case of
the PR2 algorithm corresponds to the number of particles in
the RSR algorithm. Therefore, their index memories are of
the same size. From an implementation standpoint, the most
promising algorithm is the PR3 algorithm. It is the simplest
one and it requires the smallest size of memory. The replica-
tion factor of the dominating particles is the same and of the
moderate particles is one. So, the size of the index memory of
PR3 is M, and it requires only one additional bit to represent
whether a particle is dominant or moderate.

The OPR algorithm needs the largest index memory.
When all the PF steps are overlapped, it requires a different
access pattern than the other deterministic algorithms. Due
to possible overwriting of indexes that are formed during the
weight computation step with the ones that are read during
particle generation, it is necessary to use two index-memory
banks. Furthermore, particle generation and weight compu-
tation should access these memories alternately. Writing to
the first memory is performed in the resampling step in one
time instance whereas in the next one, the same memory is
used by particle generation for reading. The second mem-
ory bank is used alternately. If we compare the memory re-
quirements of the OPR algorithm with that of the PR3 algo-
rithm, it is clear that OPR requires four times more memory
for storing indexes for resampling.

5.2.3. PF speed improvements

The PF sampling frequency can be increased in hardware
by exploiting temporal concurrency. Since there are no data
dependencies among the particles in the particle generation
and weight computation, the operations of these two steps
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TaBLE 3: Memory capacity for different resampling algorithms.
SR without indexes SR with indexes RSR PR2 PR3 OPR
States 2N;M 2NsM NM NM NM N:M
Weights M M M M M M
Indexes 0 M 2M 2M M 4M
Generation of particles |
Generation of particles Weight computation |
Weight computation
Resampling
Resampling
L T T L T L,

(a)

(b)

FIGURE 8: The timing of the PF with the (a) RSR or PR methods and (b) with the OPR method.

can be overlapped. Furthermore, the number of memory ac-
cesses is reduced because during weight computation, the
values of the states do not need to be read from the mem-
ory since they are already in the registers.

The normalization step requires the use of an additional
loop of M iterations as well as M divisions per observation. It
has been noted that the normalization represents an unnec-
essary step which can be merged with the resampling and/or
the computation of the importance weights. Avoidance of
normalization requires additional changes which depend on
whether resampling is carried out at each time instant and
on the type of resampling. For PFs which perform SR or RSR
at each time instant, the uniform random number in the re-
sampling algorithm should be drawn from [0, W)/M) and
updated with Wy/M, where W), is the sum of the weights.
Normalization in the PR methods could be avoided by in-
cluding information about the sum W)y in the thresholds by
using Ty, = TyWy and Ty, = T;Wy. With this approach,
dynamic range problems for fixed precision arithmetics that
appear usually with division are reduced. The computational
burden is decreased as well because the number of divisions
is reduced from M to 1.

The timing operations for a hardware implementation,
where all the blocks are fine-grain pipelined are shown in
Figure 8a. Here, the particle generation and weight calcula-
tion operations are overlapped in time and normalization is
avoided. The symbol L is the constant hardware latency de-
fined by the depth of pipelining in the particle generation and
weight computation, T is the clock period, M is the num-
ber of particles, and T is the minimum processing time of any
of the basic PF operations. The SR is not suitable for hard-
ware implementations, where fixed and minimal timings are
required, because its processing time depends on the weight
distribution and it is longer than M T¢. So, in order to have

resampling operation performed in M clock cycles, RSR or
PR3 algorithms with particle allocation with arranged in-
dexes must be used. The minimum PF sampling period that
can be achieved is (2M Ty + L).

OPR in combination with the PR3 algorithm allows for
higher sampling frequencies. In the OPR, the classification
of the particles is overlapped with the weight calculation as
shown in Figure 8b. The symbol L, is the constant latency of
the part of the OPR algorithm that determines which group
contains moderate, and which contains negligible and domi-
nating particles. The latency L, is proportional to the number
of OPR groups. The speed of the PF can almost be increased
twice if we consider pipelined hardware implementation. In
Figure 8D, it is obvious that the PF processing time is reduced
to (MTe+L+L,).

5.3. Final remarks

We summarize the impact of the proposed resampling algo-
rithms on the PF speed and memory requirements.

(1) The RSR is an improved RR algorithm with higher
speed and fixed processing time. As such, besides for
hardware implementations, it is a better algorithm for
resampling that is executed on standard computers.

(2) Memory requirements are reduced. The number of
memory access and the size of the memory are reduced
when RSR or any of PR algorithms are used for mul-
tidimensional state-space models. These methods can
be appropriate for both hardware and DSP applica-
tions, where the available memory is limited. When the
state-space model is one dimensional, then there is no
purpose of adding an index memory and introducing
a more complex control. In this case, the SR algorithm
is reccommended.
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(3) In hardware implementation and with the use of tem-
poral concurrency, the PF sampling frequency can be
considerably improved. The best results are achieved
for the OPR algorithm at the expense of hardware re-
sources.

(4) The average amount of operations is reduced. This is
true for PR1, PR2, and PR3 since they perform re-
sampling on a smaller number of particles. This is
desirable in PC simulations and some DSP applica-
tions.

6. CONCLUSION

Resampling is a critical step in the hardware implementation
of PFs. We have identified design issues of resampling algo-
rithms related to execution time and storage requirement.
We have proposed new resampling algorithms whose pro-
cessing time is not random and that are more suitable for
hardware implementation. The new resampling algorithms
reduce the number of operations and memory access or al-
low for overlapping the resampling step with weight compu-
tation and particle generation. While these algorithms min-
imize performance degradation, their complexity is reduced
remarkably. We have also provided performance analysis of
PFs that use our resampling algorithms when applied to
joint detection and estimation in wireless communications
and bearings-only tracking. Even though the algorithms are
developed with the aim of improving the hardware imple-
mentation, these algorithms should also be considered as
resampling methods in simulations on standard comput-
ers.
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