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Abstract—This work demonstrates the use of the Bayesian
methodology for detection in Bell Laboratories Layered
Space-Time (BLAST) systems. First, we introduce a procedure for
constructing prior distributions and propose the use of two types
of prior distributions for the problem. From the corresponding
posterior distributions, we obtain the Bayesian linear and deci-
sion-feedback detectors and show their equivalence to the popular
zero forcing and minimum mean square error (MMSE)-based
detectors. Then, we establish an equivalent whitening filter output
system model whose unique structure lends itself to constructing
a dynamic state space model (DSSM) for BLAST systems, which
evolves in space. This DSSM allows for the application of sequen-
tial Monte Carlo sampling, or particle filtering (PF), for detection
in BLAST systems. We introduce two different particle filtering
detectors: the generic particle filtering detector and the stochastic

algorithm. The stochastic algorithm exploits the discrete
nature of the problem in the implementation and, therefore, is
much more efficient. Overall, a distinct advantage of the PF detec-
tors is that they can greatly reduce error propagation and thereby
achieve near optimum performance. In addition, since they aim
at the approximation of the posterior distribution using weighted
samples, they can provide soft (probabilistic) information about
the unknowns.

Index Terms—Bell Laboratories Layered Space-Time (BLAST)
systems, Gibbs sampling, Monte Carlo sampling, particle filtering,
Space-time processing, Stochastic M-algorithm.

I. INTRODUCTION

RECENT studies on bandwidth efficient transmission for
broadband wireless communications have been focused

on the exploitation of spatial diversity of antennas. It has been
shown that the use of multiple transmitting and receiving an-
tennas in rich scattered multipath communication environments
can provide enormous capacity gain over the state-of-the-art
systems. Much of the recent work on bandwidth efficient trans-
mission was propelled with the architecture called Bell Labora-
tories Layered Space-Time (BLAST) [1], [2].

In BLAST systems, different data streams are transmitted on
different transmitting antennas simultaneously. At the receiver,
detection is performed by separating and extracting the streams
from the received signals. Although the maximum likelihood
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(ML) criterion provides optimum performance, its complexity
increases exponentially with the number of transmitting an-
tennas. Thus, its practical implementation is prohibitive for
systems with large number of transmitting antennas. To achieve
manageable complexity, linear and recursive decision feedback
algorithms have been proposed, most of which are based on
either zero-forcing (ZF) or the minimum mean square error
(MMSE) principle. A notable algorithm based on ZF and the
use of ordered successive interference cancellation (OSI) has
been developed and named vertical BLAST (V-BLAST) [3].
The V-BLAST system is rather simple for implementation, but
its performance is limited due to error propagation. To alleviate
the error propagation, various new schemes based on hard deci-
sion have been proposed, but the performance improvement has
often been only marginal [4]–[6]. New algorithms based on soft
decision as in [7], [8], however, show promising improvement
over those based on hard decisions. Note that all these methods
assume that the channels are estimated through, for example,
pilot transmissions, and so is the case in this work.

In our paper, we study the detection problem under the
Bayesian paradigm. The advantage of the Bayesian method-
ology is its ability to combine prior knowledge with information
collected from the data. We introduce a procedure for con-
structing of prior distributions for VBLAST systems and
propose the use of two types of priors. From the corresponding
posterior distributions, we obtain the Bayesian linear and
decision feedback (DF) detectors and show their equivalence to
the ZF and MMSE based detectors. Moreover, we establish an
equivalent whitening filter output (WFO) system model. Based
on the WFO model, we develop Bayesian decision feedback
detectors as well as an -detector, which is based on the
principle of the -algorithm. Particularly, the unique structure
of the model enables the construction of a dynamic state space
model (DSSM) for BLAST systems that evolves in space. This
DSSM allows for the application of sequential Monte Carlo
sampling, or particle filtering (PF) [9]–[11], for detection in
BLAST systems. We introduce two different PF detectors:
the generic particle filtering detector and the stochastic
algorithm. The stochastic algorithm exploits the discrete
nature of the problem in the implementation and therefore is
much more efficient. A distinct advantage of detection by PF is
that the error propagation is greatly reduced and that near-op-
timum performance is achieved. In addition, since PFs aim at
the approximation of the posterior distribution using weighted
samples, they can provide soft (probabilitic) information about
the unknowns, which can be used in turbo BLAST algorithms
[12], [13].

The remaining of the paper is organized as follows. In Sec-
tion II, we describe the system model and state the detection
objective. We derive the posterior distributions and discuss
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Fig. 1. BLAST system diagram.

the Bayesian decision-feedback detectors in Section III. In
Section IV, after briefly reviewing Monte Carlo and importance
sampling, we demonstrate the DSSM of BLAST systems and
develop a PF solution for detection. We present simulation
results in Section V and provide final remarks in Section VI.

II. PROBLEM FORMULATION

We consider a flat-fading MIMO system, as illustrated in
Fig. 1. At the transmitter, a single data stream is first divided into

substreams or layers, and they are then encoded, mapped,
and transmitted in parallel by transmitting antennas. The re-
ceiver consists of receiving antennas (assume ) and
at time , the sampled discrete signal vector can be written as

(1)

where is an channel matrix that is known at the
receiver, is an vector that represents the transmitted
signal, and is an noise vector. The data are assumed
to have narrow bands, and therefore, the channels are consid-
ered flat Rayleigh fading channels. Thus, the entries of are
independent identically distributed (i.i.d.) zero mean complex
Gaussian random variables of equal variance. The total signal
power 1 is , where is the power of a single sub-
stream, and is a zero mean complex additive white Gaussian
noise vector with covariance matrix , where

is the identity matrix of dimension . We are concerned
with detection of the transmitted signal from the received ob-
servations . Note that problems of multiuser detection [14] and
equalization also have the structure as model (1), and therefore,
the algorithms discussed hereafter are applicable to these prob-
lems as well.

III. BAYESIAN DETECTION

A. Objective

We approach the problem from a Bayesian perspective, and
in particular, we are interested in obtaining soft information,

1The superscript represents Hermitian transpose.

i.e., the marginalized posterior distribution of , which can be
expressed by

(2)

where is the alphabet set of the constel-
lation in use, is the vector of unknown signals except ,
and is the full posterior distribution.

Once we obtain , a final decision on can be cal-
culated according to the maximum a posteriori decision as

(3)

Note that can be also the extrinsic information in per-
forming the Turbo BLAST.

When evaluating , the full posterior distribution
must be calculated, and the complexity of the calcu-

lation is exponential. Therefore, exact evaluation of
is prohibitive in practice. In Sections III-B–D, we develop
suboptimum Bayesian detectors with reduced complexity.

B. Posterior Distributions

As indicated above, the posterior distribution of is needed
for calculating . The desired posterior distribution of
is obtained according to Bayes’ rule as

(4)

where and are the likelihood function and the prior
distribution, respectively. Since the likelihood function is de-
fined by the system model (1), the posterior varies ac-
cording to the different choices of the prior distribution. In the
following, we unfold our derivation of based on two par-
ticular choices for .

1) Noninformative Prior: When nothing is known about a
priori, it is natural to set

(5)
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where is a constant. This choice leads to a noninformative
prior. The corresponding posterior distribution is

(6)

where .
2) Gaussian-Type Prior: In cases when we know the co-

variance matrix of the transmitted signals, for , we can
choose a Gaussian-type function, i.e.,

(7)

Then, the corresponding posterior distribution is

(8)

where . For uncoded systems,
, where is defined in Section II.

We observe that the above two posterior distributions have
similar structures, and for convenience of exposition, we work
with a unified posterior distribution of , which is expressed as

(9)

This general posterior distribution corresponds to (6) and (8)
with replaced by and , respectively. Notice that the
maximum a posteriori (MAP) rule on (9) with the noninfor-
mative prior is equivalent to the ML criterion. Optimum detec-
tion based on (6) and (8) is exponentially complex, and there-
fore, suboptimum linear detectors are constructed from (9) by
treating as continuous variables. These linear detectors are ex-
pressed as

(10)

and

(11)

where is the quantization function appropriate to the con-
stellation in use which, for instance, maps to the nearest con-
stellation point in . It is not surprising that and obtained
within the Bayesian framework are the same as the conventional
ZF and MMSE detectors, respectively. We want to point out,
however, that the conventional MMSE detector is different from
the Bayesian MMSE decision rule described here. The pop-
ular ZF and MMSE detectors can be viewed as linear Bayesian
MMSE detectors that use noninformative and Gaussian-type
priors, respectively. The Bayesian MMSE is equal to the mean
of the posterior distribution, and it depends on the applied prior.
It is shown in the literature that the MMSE detector outperforms
the ZF detector, which is to be expected from a Bayesian stand-
point because the MMSE detector exploits a more informative
prior. Like in many applications, the two discussed priors lead to
mathematically tractable posterior distributions, and thus, they
are the most common choices. However, when more specific

prior information is available, such as the applied modulation
scheme, functions other than the above two might be more de-
sirable and could produce better solutions.

C. Bayesian Decision Feedback Detectors

The performance of linear detectors is often poor because the
detectors treat the discrete variables as continuous variables.
Their performance can be improved by employing the DF prin-
ciple. To derive a Bayesian DF (BDF) detector, we first perform
Cholesky factorization on as2

(12)

where is a lower triangular matrix. Replacing in (9) by
its factors yields

(13)

where , and . When (13) is
the posterior distribution obtained by using the noninformative
prior, or , the QR decomposition can be ap-
plied, and further simplification is possible as

. The derivation of (13) resembles a noise whitening pro-
cedure, and thus, we refer to as the WFO. Then, an equivalent
system model using WFO can be constructed from (13) as

(14)

or equivalently

...
...

(15)

where and are the th and th elements of and , re-
spectively, and is white Gaussian noise with zero mean
and variance . From (15), a BDF scheme can be readily car-
ried out according to

For

The BDF detector turns out to be the same as the generalized DF
detectors discussed in [15], which are proved to be equivalent
to the V-BLAST schemes. In particular, the BDF detector using
the noninformative prior is equivalent to the ZF V-BLAST, and
the BDF detector using the Gaussian-type prior corresponds to
the MMSE V-BLAST. However, the implementation using a DF

2Note that the Cholesky factorization is not unique due to the ordering of the
received data stream.
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principle is computationally more efficient [8], [16]. As before
and for the same reason, the MMSE V-BLAST has better per-
formance than the ZF V-BLAST.

A key performance limitation of the DF detector is the error
propagation. A popular approach to reduce this effect is to em-
ploy reordering of the data stream according to their SNR, where
data streams with higher SNR are detected first. It should be
noted, however, that reordering only decreases the effect of error
propagation and does not overcome it. In [17], a PF algorithm
is reported for multiuser detection in CDMA systems, which is
very effective in combating error propagation.

D. -Detectors

The WFO (15) induces a tree structure with levels,
and the BDF algorithm can be considered to be a subop-
timum tree search algorithm, where, at level , only the
branch with the largest conditional posterior probability

is retained from all candidate branches
where and .
An improvement over the BDF algorithm can be achieved by
using the key principle of the -algorithm [18], [19], where

branches with the largest conditional posterior probability
are kept instead. We call this detector the -detector, and its
algorithm can be outlined as follows.

Initialization: set with ;
At the -th iteration,
Breath
For each branch , iterate

for to
—Append to and obtain the can-

didate branch .

—Evaluate

and calculate the metric by
.

Selection
—If ,
Let and .

Set
—else
Reorder the branches such that

. Select the first
branches and set and
for . Set

The decision on is made when the above algorithm exits
at and is taken as . Both the -detector and
the BDF detector make hard decisions and cannot provide soft
information about . In Sections IV and V, we discuss PRF
detectors that aim primarily at calculating soft information.

IV. PF DETECTORS

A. Review of Monte Carlo Sampling

Monte Carlo (MC) sampling is a powerful methodology for
approximating desired distributions and calculating high-di-

mensional integrals [20]. It has been intensively studied by the
statistics community in the past decade and has become of great
interest to researchers in the area of statistical signal processing
[21] and communications [17], [22]–[27] in the past few years.

The use of the MC method in computing the posterior dis-
tribution (2) requires generation of random samples
from the posterior distribution , where indicates the
sample size. With the samples, MC methods approximate

by

(16)

and the approximation can be shown to converge to as
increases [28].
One difficulty associated with the MC method is the direct

sampling from . This is because the calculation of the
normalizing constant of requires evaluation of all the

points in the variable space, which again is intractable for
large . To circumvent the difficulty, various sampling pro-
cedures can be applied, and we describe here the importance
sampling scheme. In implementing importance sampling, one
first draws samples from an importance distribution

, which must be easy for sampling. Then, the weights of
the samples are calculated by

(17)

and normalized according to . It
should be noted that this normalization process eliminates
the necessity of knowing the normalizing constant of
and in computing the weights (17). These samples and
weights then approximate according to

(18)

The effectiveness of the importance sampling is affected by the
choice of the importance distribution. In general, if more similar

is to , fewer samples will be needed to achieve the
same performance.

B. PF Detector

PF is a sequential MC (SMC) method that allows for pro-
ducing samples (particles) from a desired posterior distribution
of unobserved states of an evolving system. The most appealing
approach to implementing PF is the one based on sequential im-
portance sampling (SIS), which is the adopted framework in the
paper.

PF is commonly employed to dynamic systems described by
DSSM. Recently, it has also been used as an alternative impor-
tance sampling method for static systems [27]. Recall that the
effectiveness of generic importance sampling is affected by the
selected importance distribution. Effective importance distribu-
tion is often difficult to obtain, and in the case of static systems,
special care is needed in the application of PF.
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For static systems such as the VBLAST system (15), it is in-
strumental to identify a Markovian factorization of the poste-
rior distribution or, equivalently, to establish a DSSM for the
addressed problem. In our case, the WFO system model (15) al-
lows for construction of a DSSM, which evolves in space from

to ,3 and where is considered to be a vector of static state
variables. Further, the posterior distribution of interest is .
By using the Markovian property of the DSSM, can be
calculated recursively from 1 to as follows:

(19)

where , and the subscript denotes a col-
lection of variables with subscripts from to , where, for in-
stance, . The last equality is arrived at
by using , i.e., is indepen-
dent of data from other antennas and previous observations. The
objective here is to obtain samples from the posterior distribu-
tion . Since the posterior distributions can be calculated
recursively, it is then desirable to produce samples from them
recursively. This is possible if we apply importance sampling
and choose the importance distribution at step according to

(20)

The associated importance weight for the th sample is then
calculated by (21), shown at the bottom of the page, where the

3The z s can be viewed as observations at antennas of the equivalent system.
We refer to passing from z to z as evolution in space.

second equality is obtained by using factorization (19), and
is called incremental weight. In deriving the above equation,
we also ignored the term because it is the same
for all samples and is eliminated by weight normalization. The
importance distribution (20) is known as the optimal importance
function in the PF literature because it produces weights with
minimal variance conditional on and [9]. From
(20) and (21), it is clear that the samples and the weights can
be obtained recursively based on those acquired at step ,
and this recursive implementation of importance sampling is
known as SIS. In the jargon of PF, is called a particle, and

is referred to as a trajectory. If, at step , we have

the trajectories with weights , the

procedure at the th step can be summarized by the following
chart.

For to ,
Draw a particle from the trial dis-

tribution .

Append to and obtain the ex-

tended trajectory .
Evaluate the incremental weight and

calculate the weight using (21).
Perform weight normalization by

.

Implementation of the above PF procedure requires samples
from the importance distribution and cal-

culation of the incremental weights . The two requirements
amount to calculation of the likelihood functions for all ,
which are easily obtained as

(22)

(21)
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Then, a sample from is drawn with

probability , which rests on the fact that

(23)

The last proportional relation is arrived at from the fact that the
prior density of is noninformative and that

. Next, since

(24)

the incremental weight is also readily obtained from the s.
When the algorithm exits at step , the trajectories

and their weights are properly

weighted samples from or, equivalently, , which
is the desired posterior distribution. Finally, we can form our
decision using the weighted samples according to (18). It is
worth stressing that the weighted samples are essentially prob-
ability masses that represent the posterior distribution. With
them, we can easily calculate not only the MMMSE solution
but perform other difficult tasks pertaining to the posterior
distribution. For example, we can compute the MAP estimate
by choosing the trajectory with the largest cumulative weight,4

or we can derive extrinsic information from the weights for a
Turbo implementation.

As has been pointed out, the advantage of PF over the DF
principle is its ability to reduce and even prevent error propaga-
tion. To see this, we recall that a PF detector approximates the
MMMSE solution, and it approaches the true solution with in-
crease of the sample size . Since the MMMSE solution is based
on the marginalized posterior distribution (MPD) and the MPD
is independent of the decision on symbols from other antennas,
the MMMSE decision on the symbol of interest is immune to
decision errors on other symbols. Consequently, the PF can be
very effective in reducing and eventually preventing error prop-
agation. However, when the sample size is limited, there would
be error propagation to a certain degree. In those cases an im-
provement can be achieved by including a Gibbs move at the
end of the PF algorithm, and that would invoke additional com-
putation. An easier approach would be to order the observations
according to SNR as in [8].

An important issue of PF is the need for resampling. In PF,
after several steps, some weights of the samples become trivial
and stop contributing to the overall evaluation. Then, resampling
is inserted so that samples with negligible weights are replaced
by those from the high density area of the desired posterior dis-
tribution. The use of resampling moves the mass of the sam-

4The cumulative weight is the sum of the weights associated with the trajec-
tories carrying the same sample values.

ples closer to the true state and therefore yields a more effec-
tive representation of the distribution than the generic impor-
tance sampling. Nonetheless, excessive use of resampling im-
poverishes the sample diversity, and thus, it must be used with
care. In practice, resampling can be inserted after a fixed number
of steps. There are also many strategies for resampling, and
we use the residual resampling procedure as described in [10].
There is a slight difference here with respect to its standard im-
plementation. Usually, when a sample trajectory is selected in
the resampling, only the present particle in the trajectory is re-
tained, and therefore, after resampling, the connection between
the present weights and previous particles is broken. Note that
in our application, the weight must be clearly associated with
all the particles in the trajectory at all times because otherwise,
the MMMSE cannot be performed. As a result, we especially
emphasize that a whole trajectory must be taken together as an
entity in performing resampling.

The complexity of the algorithm is , i.e., it is
proportional to the product of the size of the alphabet set, the
number of samples, and the number of transmitting antennas. If
the size of the alphabet set and the number of samples are fixed,
then the complexity is only linear with respect to the number
of transmitting antennas.

C. Stochastic -Detector

Even though the above particle filtering detector has potential
to provide accurate soft information and near-optimum perfor-
mance, the implementation is, in fact, very inefficient and the
resampling may also lead to suboptimum solutions. First of all,
at the th iteration of PF, the variable space of the desired pos-
terior distribution is of size . For small , it
might be affordable to compute the exact posterior distribution.
When this is true, no sampling is needed for the first steps,
and PF should start from the th iteration. Second, among
the trajectories, there could be multiple copies of the same
trajectory. The original idea of having these multiple copies is
that they may produce particles with different values in subse-
quent steps and therefore increase the diversity of the particles
generated from the trajectory. Although this is maybe true for
continuous sample spaces since the size of the sample space is
infinite, it is, however, not always the case for discrete sample
spaces. For our problem, there are only possible values in the
sample space that each trajectory can visit. When the probability
mass only concentrates on a few values, the particles generated
would be replicates of those few sample values. As a result, mul-
tiple copies of the same trajectory at present would produce par-
ticles with the same value in subsequent iterations and therefore
still remain multiple copies of the same trajectory.

The phenomenon becomes more evident after resampling be-
cause more duplicates of the same copy are produced. It is then
a waste of resources to record many copies of the same trajec-
tory, which otherwise should be given to process other trajecto-
ries. To overcome the problem, these multiple copies should be
combined and treated as one trajectory. However, this step re-
duces the diversity of the generated particles. Another problem
is due to resampling, which impoverishes the sample diversity
and could discard optimum trajectories in early iterations be-
cause of smaller weights. Last, there is another drawback of the
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current PF scheme. Suppose that there are no duplicates among
the trajectories. To evolve the th trajectory from iteration
to , candidates are first calculated, and a new particle
is then sampled from them. Accordingly, no matter how large
or small the weight is, there is only one candidate of the
th trajectory that is selected for . Nevertheless, it may be

desirable to retain more than one candidate of a trajectory when
its weight is large. Note that overall, there are candi-
date trajectories that can be selected for . It is, therefore,
preferable to sample the new trajectories from all the
candidates together with the th candidate of the th trajectories
weighted by . This drawback of PF was also noted in
[29].

We, therefore, propose to use an alternative implementation
of PF, which overcomes the aforementioned drawbacks.

Initialization: Set ;
At the -th iteration,

Trajectory expansion
For to
For to
—Append to and obtain the ex-

tended trajectory .
—Evaluate according to (22) and

calculate the weight by .
Trajectory sampling
—If ,
Let and .

Set
—else
Sample trajectories from ex-

tended trajectories with probability
proportional to using the optimal re-
sampling algorithm to obtain and
for . Set ;

Perform weight normalization by
.

The optimal resampling algorithm is proposed in [30], and
it is optimal in the sense that the mean square error between
the original weights and the sampled weights is minimized. The
algorithm for sampling trajectories from extended
trajectories weighted by is summarized as follows:

Ordering: Reorder the weights such
that
Calculating : Calculate as the solu-

tion of .
Inheriting: Determine the largest index
such that . Inherit the trajec-

tory and weights by setting and
for .

Stratified Sampling:
—Set , , ,
and where .
—Do while
if , then

Set , , and
.

else
Pick an index for ; Set

and ;

Set and ;

It is shown in [30] that calculating can be performed in a
recursive fashion and that the computational complexity of the
optimal sampling is of , which is the same order as
the residual sampling. While alternative resampling algorithms
such as residual sampling can be used here instead, an attractive
feature of the optimal resampling algorithm is that it produces

distinct trajectories and therefore maintains the largest pos-
sible diversity of particles. We found through experiments that
the diversity of particles is essential in obtaining good perfor-
mance. A very similar particle filtering algorithm is proposed
in [30] in sampling from a Gaussian–Markovian model. How-
ever, our algorithm is more efficient. Here, we notice that the
above algorithm resembles the -algorithm discussed in Sec-
tion III-D. However, there are also clear differences. The -al-
gorithm is a deterministic algorithm where only the trajec-
tories (branches) with the largest weights (metrics) are retained,
and its objective is to find the best trajectory. By contrast, the se-
lection of trajectories in the above algorithm is based on random
sampling, and the goal of it is to obtain best random measures
that approximate the posterior distribution. We, therefore, call
the algorithm the stochastic -algorithm. Since the stochastic

-algorithm can provide soft information about the unknowns,
it is more versatile and can be used in broader applications such
as turbo BLAST. However, we want to stress that our stochastic

-algorithm is still a particle filtering algorithm.

V. SIMULATION RESULTS

We present several simulation results that show the perfor-
mance of the proposed PF detectors. In the simulation, the signal
is -quadrature amplitude modulated (QAM), and the average
power per bit is equal to 1. Thus, the symbol energy is

, and the SNR per receiving antenna per transmitted
bit is defined by

SNR (25)

Additionally, we assume independent channels and the entries
of the channel matrix are generated from complex Gaussian
distributions with zero mean and variance . The detectors
were tested with noninformative (NON) and Gaussian-type
(GAU) priors on different sample sizes and with ordering and
no ordering. For convenience of presentation, we use ORD-
to represent the implementation with ordering and using
samples. Thus, for instance, PF-GAU-ORD-100 denotes a PF
implementation with the Gaussian-like prior, ordering, and 100
samples, and SM-NON-8 stands for the stochastic -algorithm
with noninformative prior, no ordering, and eight samples. Fur-
ther, for comparisons, we tested the VBLAST detectors, and
we use ZF-VBLAST and MMSE-VBLAST to denote the zero
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Fig. 2. Plot of SER versus SNR for a system with N = 4, N = 4, and
4-QAM. The sample size J is 100.

forcing and MMSE VBLAST detectors, respectively. The
sampling-based algorithms make decisions using the MAP
rule. In evaluating the performance, we simulated symbol error
rates (SERs) for each detector under different system settings.
To obtain an SER for a particular setting, Monte Carlo trials
were repeated until 200 errors were collected.

In the first experiment, we chose a small system of
transmitting and receiving antennas with 4-QAM mod-
ulation. For this setting, the optimum solution can be calculated
and, thus, used to provide performance lower bound. We simu-
lated both the MAP and MMMSE solutions under the two dif-
ferent priors and found that their performances are almost the
same. As a result, we only used the result of the MAP under
the noninformative prior or, equivalently, the ML in our simu-
lation. We compared the SER versus SNRs of various PF de-
tectors with the SERs of the ZF-VBLAST, MMSE-VBLAST,
and the Gibbs sampling-based detector with Gaussian-type prior
(Gibbs-GAU) (the Gibbs sampling based detector is described
in the Appendix). In the simulation of the Gibbs sampler, the
first 50 samples are used as burn-in, and the next 200 samples
are collected for detection. The generic PF detectors with and
without ordering were tested for , and resampling was
performed at every two steps.

The results are presented in Fig. 2. Overall, the performance
gain of the PF detectors over the VBLASTs is considerable.
For instance, the PF-NON-100 exhibits about ten fold improve-
ment in SER at 10 dB and more than 50 fold at 14 dB over
the MMSE-VBLAST. In comparing the PF detectors, as ex-
pected, we notice that the PF-GAUs have a clear edge over the
PF-NONs. Given the fact that the performances of the optimum
MMMSE under the two priors are the same, the result implies
that the PF-GAUs are more effective. Namely, with the same
sample size, the PF-GAUs achieve higher performance. We also
see that the ordering demonstrates its advantage, especially at
high SNR regions. The performance of the PF-GAU-ORD-50 is
within less than 1-dB difference to the ML bound. Note that the
performance of all these PF detectors can be further improved
with the increase of sample size.

Fig. 3. Plot of SER versus SNR for a system with N = 4, N = 4, and
4-QAM. The sample size J is 200.

Fig. 4. Plot of SER versus SNR for a system with N = 4, N = 4, and
4-QAM.

The results for are depicted in Fig. 3. In the figure,
the performance relationship remains similar as that for

. While the other detectors attained slight performance gain,
the PF-GAU-ORD almost achieved the ML bound for .
This indicates that even though the performance for
is already satisfactory, the performance of the PFs can be al-
ways pushed closer to the bound by increasing , which is a
distinct feature not possessed by deterministic algorithms such
as the DFs. However, with a reasonable small sample size ,
usually, the performance is already close to the bound, and the
slight gain by the additional increase in might not be worth
the required extra computation. For example, for this exper-
iment, for PF-GAU-ORD, we can use . By com-
paring the Gibbs-GAU-200 with PF, we see that even though
the Gibbs-GAU-200 performs well at low SNRs, it exhibits clear
error floor at high SNRs, which is a phenomenon that is also ob-
served in its application to multiuser detection [27].

Next, in Fig. 4, we studied the -detector and the sto-
chastic -detector (SM) with different types of priors and
compared there performance with PF-GAU-ORD-200. For
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Fig. 5. Plot of SER versus SNR for a system with N = 8, N = 8, and
16-QAM. The sample size J is 200.

Fig. 6. Plot of SER versus SNR for a system with N = 8, N = 8, and
16-QAM. The sample size J is 250.

the two -detectors, we used or, equivalently, four
trajectories in the PF detectors. We observe that both -de-
tectors have near optimum performance, and particularly, the
SM-GAU-ORD and M-GAU-ORD have exactly the same per-
formance over the tested SNRs. In addition, the SM-NON-ORD
and M-NON-ORD reach the optimum solution at high SNRs.
The two -detectors, therefore, can provide similar or even
better performance than the PF detectors but with much less
complexity. Both the stochastic -algorithm and the PF detec-
tors can produce soft information.

In the second experiment, we used a larger system with
16-QAM modulation employing transmitting antennas
and receiving antennas. This time the sample sizes for
PF were set to and , and resampling was
performed at every three steps. For the Gibbs sampler, 300 sam-
ples were generated, and the first 50 were used as burn-in. The
simulation results are shown in Figs. 5 and 6. One can clearly
see big improvements of the PF algorithms over V-BLAST.
For example, at 20 dB, PF-GAU-ORDs achieved almost 200

Fig. 7. Plot of SER versus SNR for a system with N = 8, N = 8, and
16-QAM.

times gain in SER. In addition, the Gibbs sampler shows similar
behavior as in the first experiment where an error floor is clearly
seen at high SNRs. By comparing the PF detectors, we see
again that the PF-GAUs are more efficient than the PF-NONs,
and the ordering is again beneficial, especially at high SNRs.
Note that the increase of sample size from to
does not result in clear improvement in performance, and thus,
we can choose .

We then tested the -algorithm and the stochastic -algo-
rithm and plotted the results in Fig. 7 along with the results of
PF-GAU-ORD-250. This time, we used eight trajectories, or

. Overall, the and SM methods have similar per-
formance, but the SM method can provide soft information.
Even though the PF-GAU-ORD-250 performs better than all
the and SM methods at low SNRs (below 13 dB), the
and SM algorithms with Gaussian type prior and ordering stand
out clearly as the best methods for high SNRs. At 16 dB, the
and SM algorithms have about ten-fold improvement over the
PF-GAU-ORD-250. Note that only eight trajectories were used
for the and SM methods, which is a very small fraction of
250, which obviously makes them more efficient and effective
than the PFs.

VI. CONCLUSIONS

We studied the detection in BLAST systems using Bayesian
methods. We introduced a general way of constructing prior dis-
tributions and proposed the use of two priors. The corresponding
posterior distributions were derived, and a WFO system model
was established. Based on them, the Bayesian linear and DF de-
tectors were obtained, which were shown to be equivalent to the
linear and VBLAST detectors under the ZF and MMSE princi-
ples. We identified a tree structure of the WFO model and pro-
posed a detector based on the -algorithm.

We also developed two different PF detectors for BLAST sys-
tems: generic PFs and the stochastic -algorithm. Two PF al-
gorithms were constructed on a novel DSSM that evolves in
space. The proposed schemes were demonstrated to have great
improvement over the V-BLAST system. Between the two, the
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stochastic -algorithm is much more efficient and can also pro-
vide better performance. We also noticed that it is very benefi-
cial to use the Gaussian type prior and ordering. Even though the

-algorithm has similar performance as the stochastic -al-
gorithm, the stochastic -algorithm has the advantage of pro-
viding soft information.

APPENDIX

DERIVATION OF THE GIBBS SAMPLING DETECTOR

The Gibbs sampler [20], [28], [31], [32] is a Markov chain
MC sampling algorithm, and its objective in our paper is to draw
samples from the posterior distribution (9). The algorithm can
be described as follows.

Given an initial sample , iterate for
to ,

Sample from

Sample from
...

...

Sample from

Once samples are collected, the first samples are consid-
ered as burn-in and discarded. The remaining samples are used
to perform the detection. The choice of the initial sample affects
the length of the burn-in period. In our simulations, the results
of the zero forcing VBLAST method were used as initial sam-
ples.
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