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We present a general method for the computation of molecular population distributions in a system
of first-order chemical reactions. The method is based on the observation that the molecules in
first-order reactions do not interact with each other. Therefore, the population distributions are a
convolution of densities for one molecule. With this method one can study reactions involving any
number of molecules. Such analysis is demonstrated on several examples, including an enzyme
catalyst reaction and a first-order reaction chain. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1855311g

I. INTRODUCTION

In small biological systems, it is often more appropriate
to model the chemical reactions in a stochastic way rather
than with the traditional differential equations for evolution
of concentrations. The reasons aresad the number of mol-
ecules involved in a biological system can be very small;1 sbd
there are many situations in which molecules are not homo-
geneously distributed;2,3 scd the change of molecular popula-
tion levels is a discrete integer amount; andsdd the popula-
tion change is not a deterministic process.4,5

There are mainly two approaches for the stochastic study
of the number of molecules in biochemical reactions: the first
is based on the analysis of the master equation6–8 and the
second relies on Monte Carlo simulation methods.9–11 Here,
we adopt the first approach.

In 1967, McQuarrie summarized the stochastic study us-
ing the master equation approach.7 For a reaction, it is as-
sumed that in an infinitesimal time interval, the probability
of having one reaction per unit reactant molecule combina-
tion is proportional to the length of the time interval. A prob-
ability difference function is first obtained based on the as-
sumption, which leads to a differential-difference equation
called the master equation of the reaction. The moment-
generating function is then employed to transform the master
equation into a partial differential equation. It can sometimes
be solved to obtain the analytic solution. More often, the
mean and variance of the number of molecules can only be
obtained.

In 2000, Laurenzi introduced a different way of solving
the master equation.8 Instead of using the moment-
generating function, he applied the Laplace transform. In this
way, solving the partial differential equations is avoided,
which is important for more complicated reactions. Instead,
one needs to solve a set of linear equations. We will show

how to obtain the solution of the master equation for any
system of first-order reactions in yet another way.

In this paper we study systems of first-order reactions,
i.e., combinations ofscoupledd reactions of the typeSi →Sj.
Because in such systems molecules do not chemically inter-
act, the analysis is much simpler than when second-order
reactions are involved. Although this situation might occur
only rarely in practice, our analysis is also useful for systems
where the first-order reactions are dominant and for systems
where second-order reactions can be approximated by first-
order reactionsssee Sec. IV for an exampled.

The independence of the molecules in a first-order reac-
tion system is exploited to derive the population distributions
of the molecules in the system. Instead of solving the master
equation for the complete system, where the number of states
grows with the number of molecules, we first solve the mas-
ter equation for only one molecule and use its solution to find
the population distributions for all species.

The structure of the paper is as follows. In Sec. II we
solve the master equation for one molecule in a first-order
reaction system. The resulting probability distribution func-
tions are used in Sec. III to obtain the population distribu-
tions when more molecules are introduced. In Sec. IV we
illustrate the general results of Sec. III with specific ex-
amples. Finally, in Sec. V we give some concluding remarks.

II. ONE MOLECULE

In this section we study the master equation for one mol-
ecule in a system of first-order reactions. The solution will
then be used to solve more general cases in Sec. III.

Assume that there areM molecule species,S1,S2, . . . ,SM

in the reaction system, and let the probability rate constant of
the reactionSi →Sj be denoted bycij . For a first-order reac-
tion the specific probability rate constant is such that

cijDtsi Þ jd ; the probability for the first-order reaction
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Si→
cij

Sj to happen per molecule in an infinitesimally

small time intervalDt.

The master equation describes the evolution of the mol-
ecules’ population distribution in the chemical system as a
function of time. When there is only one molecule in a first-
order reaction system, the master equation gives the time
evolution of the probability that this molecule has become a
certain chemical species. Letpsidstd be the probability that the
molecule is anSi molecule at timet. For example, in the
simple system of reactions

S1�
c21

c12

S2→
c23

S3, s1d

the differential equation describing the time evolution ofps2d

is the following first-order linear differential equation:

dps2dstd
dt

= c12 ps1dstd − sc21 + c23dps2dstd. s2d

We assume in the rest of this paper that the initial values for
the probabilities are equal to zero:psids0d=0, i =1, . . . ,M.
The injection of the molecule in the system is modeled by a
source probability density function. For the given example, if
the molecule begins as anS2 molecule, the differential equa-
tion becomes

dps2dstd
dt

= c12 ps1dstd − sc21 + c23dps2dstd + f s2dstd, s3d

where f s2dstd is the source’s probability density, i.e.,
f s2dstdDt is the probability that a molecule from the source is
injected in stateS2 in the intervalft ,t+Dtg. If the injection
time is known precisely, e.g.,t=t, the source’s probability
density function is a delta function:f s2dstd=dst−td. Other-
wise, the density function for the injection time of the mol-
ecule can have forms such asae−ast−tdust−td, adst−t1d
+s1−addst−t2d, and

o
n=0

`
lne−l

n!
dst − ntd.

In general, the system can be represented by a Markov
chain with a transition matrix

C =1
c11 c12 ¯ c1M

c21 c22 ¯ c2M

] ] � ]

cM1 cM2 ¯ cMM

2, wherecii = − o
j=1,jÞi

M

cij ,

s4d

and the set of first-order linear differential equations has the
following form:

1
dps1dstd

dt

dps2dstd
dt

]

dpsMdstd
dt

2 = CT1
ps1dstd
ps2dstd
]

psMdstd
2 +1

f s1dstd
f s2dstd
]

f sMdstd
2 , s5d

where

o
i=1

M

psidstd = 1,

and

5Et=0

`

f sidstddt = 1 if the molecule from source is injected

into statei ,

f sidstd = 0 otherwise.
6

The equations can be solved by first applying the
Laplace transform, followed by solving the resulting alge-
braic equation, and finally using the inverse Laplace trans-
form. More specifically, after taking the Laplace transform
on both sides ofs5d, we obtain

sp = CTp + f , s6d

wherep is an M 31 vector whose elementspsidssd are the
Laplace transforms ofpsidstd, the sought-after probability
density functions, andf is an M 31 vector with elements
f sidssd, which are the Laplace transforms of the source func-
tions f sidstd. Note thatf has only one nonzero element.

After solving for p in s6d, we get

p = ssI − CTd−1f . s7d

Let

L = ssI − CTd−1 s8d

and

G = L−1sL d, s9d

whereL−1 is the inverse Laplace operator. If the elements of
G are denoted bygijstd, andf smdssd is the nonzero element of
f, the solutionspsidstd are given by

psidstd = gimstd ^ f smdstd, i = 1,2, . . . ,M , s10d

where the symbol̂ denotes convolution. Finding the in-
verse Laplace transforms of the elements ofL may be te-
dious but it is straightforward.

This method is illustrated in details by example 1. As
already mentioned, the technique of using the Laplace trans-
form for solving the master equation was introduced by Lau-
renzi in Ref. 8. The difference between his and our approach
is that Laurenzi was solving the many-molecule master equa-
tion, while here we only solve the one-molecule master
equation.

In the deterministic framework, the concentrations of the
species are found by solving the same differential equations
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s5d, without the stochastic sources, but taking into account
the initial concentrations. Furthermore, the so-obtained re-
sults there yield only the means of the stochastic distribu-
tions.

III. MORE MOLECULES

In this section we treat the case when several molecules
are injected into the system. First, in Sec. III A, we assume
that all molecules are inserted by the same source, so that
they all start as the same chemical species. In Sec. III B, the
molecules can originate from different sources.

A. One source

Suppose that there arex molecules of speciesSk injected
into the system with the same probability densityf skdstd, and
no molecules of other species. Denote the number of mol-
ecules at stateSi si =1, . . . ,Md at time t by Nsidstd, and let
Kj

sidstd=1 if moleculej is at stateSi at timet andKj
sidstd=0 if

it is not. Thus, Nsidstd=S j=1
x Kj

sidstd. Note that K1
sidstd,

K2
sidstd , . . . ,Kx

sidstd are independent Bernoulli random vari-
ables with the same probabilitypsidstd, which can be com-
puted by solvings5d. Therefore,Nsidstd has a binomial distri-
bution. The probability that there aren molecules in stateSi

at time t is

Pn
sidstd = Sx

n
Dspsidstddns1 − psidstddx−n, s11d

with meanmistd and variancesi
2std equal to

mistd = xpsidstd,

si
2std = xpsidstds1 − psidstdd,

respectively. Moreover, the joint probability of findingni

molecules in stateSi si =1, . . . ,Md at time t is equal to

Psn1, . . . ,nM ;td =
x!

n1! ¯ nM!
sps1dstddn1

¯ spsMdstddnM ,

s12d

where Si=1
M ni =x. Equations11d is one of the marginals of

s12d.
When the number of molecules is large, i.e., when

xpsidstds1−psidstdd@1, the binomial distributions11d can be
well approximated by a Gaussian distribution, or

Pn
sidstd .

1

Î2psi
2std

e−fsn − mistdd
2/2si

2stdg.

The purpose for employing the Gaussian approximation is to
save computation time when the number of molecules is very
large, as well as to make the analysis more tractable. Nu-
merical examples of the comparison between analytic distri-
butions and their Gaussian approximations can be found in
Ref. 12.

The same purpose can be achieved if the binomial dis-
tribution s11d is approximated by a Poisson distribution.
Conditions for the validity of such approximation are stricter.
First, the number of molecules should be large. Second, the
probability for a single molecule in statei should be small

fe.g.,psidstd,0.1g. Finally, the product ofx andpsidstd should
be a sizable number. Under such conditions, the variance of
the binomial distribution roughly equals the mean. Thens11d
can be approximated by the Poisson distribution with param-
eterli =xpsidstd, or

Pn
sidstd .

li
n

n!
e−li .

B. More sources

If there are several sources which are independent from
each other, the probability mass function for stateSi is the
convolution of binomial distributions. Suppose there areJ
independent sources. Denote the number of molecules at
stateSi si =1, . . . ,Md at timet by Nsidstd, and denote the num-
ber of molecules at stateSi that are injected from sourcej by
Kj

sidstd s j =1, . . . ,Jd. Then, Nsidstd=S j=1
J Kj

sidstd. Since Kj
sidstd

s j =1, . . . ,Jd are independent random variables, the probabil-
ity mass function of the random variableNsidstd is the con-
volution of the probability mass functions of the random
variablesKj

sidstd.13

For example, letx Sk molecules be injected by the source
functions f skdstd andy Sl molecules byf sldstd. Each of thex
Sk molecules gives rise to the state probabilitiespk

sidstd si
=1, . . . ,Md, whereas a molecule introduced byf sldstd, to
pl

sidstd si =1, . . . ,Md. Then, the number of molecules at state
Si that are injected from sourcek is Kk

sidstd, which has a
binomial distributions x

n
dspk

sidstddns1−pk
sidstddx−n. Similarly, the

number of molecules at stateSi that are injected from source
l is Kl

sidstd, which has a binomial distributions y
n

dspl
sidstddns1

−pl
sidstddy−n. The probability mass function ofNsidstd, the total

number of molecules at stateSi is equal to the convolution of
two binomial distributions, i.e.,

Pn
sidstd = Sx

n
Dspk

sidstddns1 − pk
sidstddx−n

^ Sy

n
Dspl

sidstddns1 − pl
sidstddy−n, s13d

where the convolution is along then axis, that is

y1snd ^ y2snd = o
m=0

`

y1smdy2sn − md.

The meanmistd and variancesi
2std of Nsidstd are

mistd = xpk
sidstd + ypl

sidstd, s14d

si
2std = xpk

sidstds1 − pk
sidstdd + ypl

sidstds1 − pl
sidstdd, s15d

respectively.
As we mentioned before, when the number of molecules

is large, the binomial distribution can be well approximated
by a Gaussian distribution with the same mean and variance.
One property of Gaussian distributions is that the convolu-
tion of two Gaussian distributions yields a Gaussian distri-
bution. Therefore, the convolution result ins13d can be ap-
proximated by a Gaussian distribution with means14d and
variances15d. The Poisson distribution has the same prop-
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erty: the convolution of Poisson distributions with param-
etersa andb, respectively, yields a Poisson distribution with
parameteru=a+b.

IV. EXAMPLES

In this section several examples of systems of first-order
reactions are discussed. For some systems, an analytic solu-
tion for the population distribution is derived. This section
also includes two numerical examples: the first is a one-
directional reaction chain and the second an enzyme sub-
strate reaction.

A. Example 1: The first-order irreversible reaction

Consider the first-order reactionS1→
c

S2, where only
moleculesS1 are injected into the system with probability
density functionf s1dstd=dstd. The first step is to rewrites5d
with M =2, c12=c, c21=0, andf s2dstd=0

1
dps1dstd

dt

dps2dstd
dt

2 = S− c c

0 0
DTSps1dstd

ps2dstd
D + Sdstd

0
D . s16d

Taking the Laplace transform leads to

sSps1dssd
ps2dssd

D = S− c c

0 0
DTSps1dssd

ps2dssd
D + S1

0
D .

The matrixL from s8d is given by

L =1
1

s+ c
0

1

s
−

1

s+ c

1

s
2 .

After taking the inverse Laplace transform ofL , we obtain

G = S e−ct 0

1 − e−ct ustd
D ,

whereustd is the unit step function. The final solution is

ps1dstd = e−ctustd, s17d

ps2dstd = s1 − e−ctdustd. s18d

In the rest of the paper we will drop the use ofustd, and so
we point out that the given solutions forpstd are valid only
for tù0.When f s1dstd is some other density function

ps1dstd =E
0

`

f s1dstde−cst−tddt,

ps2dstd =E
0

`

f s1dstds1 − e−cst−tdddt.

Note that if anS2 instead of anS1 molecule was injected into
the system withf s2dstd, ps1dstd=0 andps2dstd=e0

t f s2dstddt.
By substituting the probabilitiess17d ands18d in s11d, we

obtain the well-known result forf std
s1d=dstd

Pn
s1dstd = Sx

n
De−ncts1 − e−ctdx−n,

Pn
s2dstd = Sx

n
Ds1 − e−ctdne−csx−ndt.

B. Example 2. The first-order
reversible reaction

Consider the first-order reversible reactionS1

c2

c1

S2 which

starts withx S1 molecules andy S2 molecules. Each of thex
S1 molecules gives rise to the following probabilities, which
are obtained by solvings5d with M =2, f s1dstd=dstd, and
f s2dstd=0:

p1
s1dstd =

1

c1 + c2
sc2 + c1e

−sc1+c2dtd,

p1
s2dstd =

c1

c1 + c2
s1 − e−sc1+c2dtd. s19d

For the effect of each of they S2 molecules, we take
f s1dstd=0 and f s2dstd=dstd and obtain

p2
s1dstd =

c2

c2 + c1
s1 − e−sc2+c1dtd,

p2
s2dstd =

1

c2 + c1
sc1 + c2e

−sc2+c1dtd. s20d

By substituting the probabilities ofs19d ands20d in s13d, we
obtain the distribution for theS1 molecules.

Pn
s1dstd = Sx

n
DS 1

c1 + c2
sc2 + c1e

−sc1+c2dtdDn

3S1 −
1

c1 + c2
sc2 + c1e

−sc1+c2dtdDx−n

^ Sy

n
DS c2

c2 + c1
s1 − e−sc1+c2dtdDn

3S1 −
c2

c2 + c1
s1 − e−sc1+c2dtdDy−n

, s21d

and similarly for theS2 molecules.
Note that when onlyS1 or only S2 molecules are present

at t=0, the distribution reduces to the first and second con-
volution factor ins21d, respectively. The population distribu-
tion for this special case has already been given by
McQuarrie.7

Also note that deriving the mean and variance for the
number ofS1 and S2 molecules is straightforward, as ex-
plained in Sec. III B, and leads to the same results as re-
ported in Refs. 14 and 15.

C. Example 3: A combination of the first-order
irreversible and first-order reversible reaction

Consider the reaction system
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S1�
c2

c1

S2→
c3

S3, s22d

and assume there arex S1 molecules andy S2 molecules at
t=0. Again, we first solves5d with f s1dstd=dstd, f s2dstd
= f s3dstd=0 to find the probabilities due to oneS1 molecule
and obtain

p1
s1dstd =

Îm− c1 + c2 + c3

2Îm
e−s1/2ds−Îm+c1+c2+c3dt

+
Îm+ c1 − c2 − c3

2Îm
e−s1/2dsÎm+c1+c2+c3dt,

p1
s2dstd =

c1

Îm
e−s1/2ds−Îm+c1+c2+c3dt −

c1

Îm
e−s1/2dsÎm+c1+c2+c3dt,

s23d

p1
s3dstd = 1 −

Îm+ c1 + c2 + c3

2Îm
e−s1/2ds−Îm+c1+c2+c3dt

−
Îm− c1 − c2 − c3

2Îm
e−s1/2dsÎm+c1+c2+c3dt,

where

m= c1
2 + 2c1c2 − 2c1c3 + c2

2 + 2c2c3 + c3
2.

Next, we solves5d with f s1dstd= f s3dstd=0, f s2d=dstd to find
the probabilities due to oneS2 molecule and find that

p2
s1dstd =

c2

Îm
e−s1/2ds−Îm+c1+c2+c3dt −

c2

Îm
e−s1/2dsÎm+c1+c2+c3dt,

p2
s2dstd =

Îm+ c1 − c2 − c3

2Îm
e−s1/2ds−Îm+c1+c2+c3dt

+
Îm− c1 + c2 + c3

2Îm
e−s1/2dsÎm+c1+c2+c3dt, s24d

p2
s3dstd = 1 −

Îm+ c1 + c2 − c3

2Îm
e−s1/2ds−Îm+c1+c2−c3dt

−
Îm− c1 − c2 + c3

2Îm
e−s1/2dsÎm+c1+c2+c3dt.

The substitution of the probabilities ins13d by the probabili-
ties in s23d ands24d yields the population distribution for the
S1, S2, andS3 molecules.

D. Example 4: A first-order reaction chain

Consider a first-order reaction chain in its general form

S1→
c1

S2→
c2

¯ →
ci−1

Si→
ci

¯ →
cN−1

SN. s25d

Assume thatci Þcj when i Þ j si =1, . . . ,N and j =1, . . . ,Nd
and thatx molecules enter the system in stateS1 at time t
=0. The input probability distribution of stateS1 is f s1dstd

FIG. 1. Direct calculation of the probability mass function ofS7 at time t
=1.5 s.

FIG. 2. The probability mass ofS7 at timet=1.5 s calculated using the SSA,
with 500 realizations.

FIG. 3. The probabilities for a single molecule to be in stateSi si
=1,2, . . . ,7d at time t.
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=dstd. Then, using the method introduced in the previous
sections, the state probabilities for one molecule are equal to

psidstd =5
1

ci
o
j=1

i

Mj
s1,idcje

−cjt, ci . 0

1 − o
j=1

i−1

Mj
s1,i−1de−cjt, ci = 0,i ù 2,

1, ci = 0,i = 1
6

where

Mp
sk,md = 5 p

j=k,jÞp

m
cj

cj − cp
, m. k

1, m= k.
6

The probability thatn of the x molecules are in stateSi at
time t is given by

Pn
sidstd = Sx

n
Dspsidstddns1 − psidstddx−n. s26d

If there areci’s equal tocj’s, a closed-form solution is also
possible.

E. Example 5: A numerical example for the first-order
reaction chain

Consider the first-order reaction chain

S1→
c1

S2→
c2

S3→
c3

S4→
c4

S5→
c5

S6→
c6

S7. s27d

Suppose there are 1000S1 molecules at timet=0. The values
of the reaction parametersc1, . . . ,c6 are 4.3, 16.6, 1.2, 2.8,
11.4, 11.9, respectively, with unit s−1. We used two methods
to obtain the probability mass ofS7 at time t=1.5 s

s1d by direct calculationsDCd using s26d, and
s2d by running 500 realizations of the SSAsstochastic simu-

lation algorithmd, which is a Monte Carlo method for
numerically computing the time evolution of a chemical
system.9

The resulting probability mass functions are shown in
Figs. 1 and 2. From Fig. 2 it is clear that the 500 SSA
realizations are not enough for an accurate evaluation of the
probability distribution, even though the computation time it
took is much longer than the direct calculation usings26d.
Obviously, methods based on analytic solutions are better
than those based on Monte Carlo simulations. However, in
cases of more complex reactions where neither analytic so-
lutions nor good approximations of population distributions
exist, the SSA is the method of choice.

We have shown in Sec. III A that whenx→` and
psidstd→0 fe.g., psidstd,0.1g, the binomial distributions11d
can be approximated by the Poisson distribution with mean
l=xpsidstd. The purpose of the approximation is to make the
analysis more tractable. In many situations, however, the
condition psidstd→0 is not valid. Using the reaction chain
s25d and reaction parameterc1, . . . ,c6 of this example, the
probabilities of a single molecule to be in stateSi si

FIG. 4. sad A cell on which enzyme molecules are immobilized. The sub-
strate molecules float around freely.sbd Illustration of the chemical reaction.
The substrate moleculeAB approaches the enzyme moleculeR sleftd. The
enzyme recognizes theA molecule of theAB structuresmiddled. The en-
zyme destroys the bond betweenA andB, A remains attached toR, andB is
released into the solutionsrightd.

FIG. 5. Mean for the population of molecule speciesR sfull lined, ARB
sdot-dashed lined, andB sdashed lined.

FIG. 6. Zoomed plots of the mean for the population of molecule speciesR
sfull lined, ARB sdot-dashed lined, andB sdashed lined.

104101-6 Zhang et al. J. Chem. Phys. 122, 104101 ~2005!

Downloaded 30 Apr 2010 to 129.49.69.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



=1,2, . . . ,7d at timet are drawn in Fig. 3, from which it can
be seen that during the first 1.5 s, manypsidstd’s have values
greater than 0.1, which implies that the Poisson approxima-
tion in that period is not suitable.

F. Example 6: An enzyme–substrate reaction

Let us consider an enzyme reaction where a soluble sub-
strate with anA–B structure reacts with immobilized en-
zyme molecules located on the surface of cellsfsee Fig.
4sadg. The formulation of this chemical reaction is given by

AB+ R�
c2

c1
s2d

ARB→
c3

AR+ B, s28d

whereAB is the substrate molecule,R is the enzyme mol-
ecule, andARB is the enzyme–substrate complex, known as
the intermediate product. This reaction is illustrated in Fig.
4sbd. The superscript ofc1

s2d emphasizes that this specific
probability rate constant is for a second-order reaction.

Several simplifications can be applied. First,AR can be
eliminated because the number ofAR molecules has the

same probability distribution as the number ofB molecules.
Such elimination obviously has no effect on the accuracy of
the obtained results. Furthermore, if the number ofAB mol-
ecules isXAB, the product ofXAB and the reaction parameter
c1

s2d represents the probability rate for anR molecule to trans-
fer into stateARB. If c1=c1

s2dXAB, the reactions28d can be
simplified as

R�
c2

c1

ARB→
c3

B.

This equation has the same structure as Eq.s22d. The only
difference is that the value ofc1 varies with time.

A property for many enzyme reactions is that the number
of substrate molecules is sufficiently large,16 and that the
number of substrate molecules consumed during the course
of the reaction is negligible in comparison to the total num-
ber of substrate molecules. Therefore, we can assume that
XAB is approximately equal to its initial value, andc1 can be
seen as constant. Thus, after simplification and approxima-
tion, the results ins23d can be used here.

As an example, we have calculated the mean and vari-
ance of the population of molecule speciesR, ARB, and B
with the following initial values: XRs0d=10 000, XABs0d
=4.817631019, XARs0d=XARBs0d=XBs0d=0, and reaction
parameters c2=1 s−1, c3=100 s−1, and c1

s2d=4.1930
310−16 s−1. The volume in which the reactions are observed
is equal to 0.01 l.

The obtained results are shown in Figs. 5–8. The ex-
pected population of molecule species are given in Figs. 5
and 6szoomed plotd. The variance is shown in Figs. 7 and 8.

V. CONCLUSIONS

In this paper we have presented a general approach for
studying systems of first-order reactions. By exploiting the
independence of the molecules in such systems, we can use
this method for studying chemical reactions with any number
of molecules and obtain the probability distributions of mol-
ecule populations.

With this approach, we have analyzed an enzyme cata-
lyst reaction and have obtained results for both the transient
and steady states of the reaction. In addition, we have also
derived an analytic solution for the probability distribution of
first-order chain reactions. We have found that the Gaussian
approximation is more appropriate than the Poisson approxi-
mation when the molecule population is large.
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