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A general method for the computation of probabilities in systems of first
order chemical reactions
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We present a general method for the computation of molecular population distributions in a system
of first-order chemical reactions. The method is based on the observation that the molecules in
first-order reactions do not interact with each other. Therefore, the population distributions are a
convolution of densities for one molecule. With this method one can study reactions involving any
number of molecules. Such analysis is demonstrated on several examples, including an enzyme
catalyst reaction and a first-order reaction chain2@®5 American Institute of Physics
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I. INTRODUCTION how to obtain the solution of the master equation for any
system of first-order reactions in yet another way.

In small biological systems, it is often more appropriate In this paper we study systems of first-order reactions,
to model the chemical reactions in a stochastic way ratheire., combinations ofcoupled reactions of the typ§ — S
than with the traditional differential equations for evolution Because in such systems molecules do not chemically inter-
of concentrations. The reasons de¢ the number of mol- act, the analysis is much simpler than when second-order
ecules involved in a biological system can be very sthé);  reactions are involved. Although this situation might occur
there are many situations in which molecules are not homoenly rarely in practice, our analysis is also useful for systems
geneously distribute®t® (c) the change of molecular popula- where the first-order reactions are dominant and for systems
tion levels is a discrete integer amount; &gl the popula-  where second-order reactions can be approximated by first-
tion change is not a deterministic procéés. order reactiongsee Sec. IV for an example

There are mainly two approaches for the stochastic study The independence of the molecules in a first-order reac-
of the number of molecules in biochemical reactions: the firstion system is exploited to derive the population distributions
is based on the analysis of the master equéffoand the  of the molecules in the system. Instead of solving the master
second relies on Monte Carlo simulation methddSHere,  equation for the complete system, where the number of states
we adopt the first approach. grows with the number of molecules, we first solve the mas-

In 1967, McQuarrie summarized the stochastic study uster equation for only one molecule and use its solution to find
ing the master equation approackor a reaction, it is as- the population distributions for all species.
sumed that in an infinitesimal time interval, the probability The structure of the paper is as follows. In Sec. Il we
of having one reaction per unit reactant molecule combinasolve the master equation for one molecule in a first-order
tion is proportional to the length of the time interval. A prob- reaction system. The resulting probability distribution func-
ability difference function is first obtained based on the astions are used in Sec. Il to obtain the population distribu-
sumption, which leads to a differential-difference equationtions when more molecules are introduced. In Sec. IV we
called the master equation of the reaction. The momentillustrate the general results of Sec. Il with specific ex-
generating function is then employed to transform the masteamples. Finally, in Sec. V we give some concluding remarks.
equation into a partial differential equation. It can sometimes
be solved to obtain the analytic solution. More often, the
mean and variance of the number of molecules can only be
obtained.

In 2000, Laurenzi introduced a different way of solving |l ONE MOLECULE
the master equatioah. Instead of using the moment-
generating function, he applied the Laplace transform. In this ~ In this section we study the master equation for one mol-
way, solving the partial differential equations is avoided,€cule in a system of first-order reactions. The solution will
which is important for more complicated reactions. Insteadthen be used to solve more general cases in Sec. Il.

one needs to solve a set of linear equations. We will show Assume that there afd molecule species3,, S, ... ,Sy
in the reaction system, and let the probability rate constant of

the reactionS — §; be denoted by;;. For a first-order reac-

3Electronic mail: sherry@ece.sunysb.edu

bElectronic mail: decock@ece.sunysb.edu tion the specific probability rate constant is such that
°Electronic mail: monica@ece.sunysb.edu ) ) N ] )
YElectronic mail: djuric@ece.sunysb.edu C;jAt(i # j) = the probability for the first-order reaction
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Gij _ P dp(t)
S—§ to happen per molecule in an infinitesimally at
small time intervalAt. dp2(0) p(t) f D(t)
ap—tH @ £
dt =C' P + ® (5)
The master equation describes the evolution of the mol- . : : ’
ecules’ population distribution in the chemical system as a : p™(t) £ M)(p)
function of time. When there is only one molecule in a first- dp™(t)
order reaction system, the master equation gives the time dt
evolution of the probability that this molecule has become a
certain chemical species. Lt(t) be the probability that the Where
molecule is an§ molecule at timet. For example, in the Mo
simple system of reactions > e =1,
i=1
€12 C23
S S S, (1) and
C21 ©
f f O(t)dt=1 if the molecule from source is injected
the differential equation describing the time evolutiorp& =0
is the following first-order linear differential equation: into statei,
fO(t)=0 otherwise.
dp?(t i i i
pd():clz pD(t) = (Cpy + Cra) p2(1). 2) The equations can be solved_by first app_lylng the
t Laplace transform, followed by solving the resulting alge-

braic equation, and finally using the inverse Laplace trans-
We assume in the rest of this paper that the initial values foform. More specifically, after taking the Laplace transform
the probabilities are equal to zerp’(0)=0, i=1,... M.  on both sides of5), we obtain
The injection of the molecule in the system is modeled by a T
source probability density function. For the given example, if sp=Clp+f, (6)
the molecule begins as &) molecule, the differential equa- \herep is an M x 1 vector whose elements’(s) are the
tion becomes Laplace transforms op®(t), the sought-after probability

density functions, and is an M X1 vector with elements

dp@(t) @ @ @ f ©(s), which are the Laplace transforms of the source func-
ar c1zP () = (Ca1 + Coa)p 7(1) + F(1), () tionsf (t). Note thatf has only one nonzero element.
After solving forp in (6), we get

where f@(t) is the source’s probability density, i.e., p=(sl -CT)Y, (7)
f @(t)At is the probability that a molecule from the source is
injected in stateS, in the interval[t,t+At]. If the injection Let
time is known precisely, e.gt=7, the source’s probability L=(sl-Cc")™? (8)
density function is a delta functiorf:?(t)=8(t— 7). Other-
wise, the density function for the injection time of the mol- and
ecule can have forms such a2 7Iyu(t-7), adt-n) G=LYL), (9)
+(1-a)8(t—-7), and
where£ ™t is the inverse Laplace operator. If the elements of
G are denoted bygj;(t), andf ™(s) is the nonzero element of
St-nm. f, the solutiongp(t) are given by

pV(t) = gin(t) ® fM(1), i=1,2,... M, (10)
_In g_eneral, the_ _system can be represented by a I\/larko\\//vhere the symbolw denotes convolution. Finding the in-
chain with a transition matrix

verse Laplace transforms of the elementsLofmay be te-
dious but it is straightforward.
Ciz C2 "+ Cam This method is illustrated in details by example 1. As

[}

Na—A\

2)\e

n=0 N!

M . . .

| €1 Cx  Com S already mentioned, the technique of using the Laplace trans-

c=\ .~ . . . | whereci=- 2 g, form for solving the master equation was introduced by Lau-

. . . . j=1,)#i .. . .

o e e G renzi in Ref. 8. The difference between his and our approach
M1 M2 MM is that Laurenzi was solving the many-molecule master equa-

(4)  tion, while here we only solve the one-molecule master

equation.

and the set of first-order linear differential equations has the In the deterministic framework, the concentrations of the

following form: species are found by solving the same differential equations
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(5), without the stochastic sources, but taking into accounfe.g.,p'(t) <0.1]. Finally, the product ok andp'(t) should

the initial concentrations. Furthermore, the so-obtained rebe a sizable number. Under such conditions, the variance of

sults there yield only the means of the stochastic distributhe binomial distribution roughly equals the mean. TKED

tions. can be approximated by the Poisson distribution with param-
eter\;=xp(t), or

I1l. MORE MOLECULES

n

N
() (4) ~ _I wi
In this section we treat the case when several molecules Pn'(t)

are injected into the system. First, in Sec. Ill A, we assume
that all molecules are inserted by the same source, so that
they all start as the same chemical species. In Sec. Ill B, thg nore sources

molecules can originate from different sources. _ _
If there are several sources which are independent from

each other, the probability mass function for st§tés the
convolution of binomial distributions. Suppose there are
independent sources. Denote the number of molecules at
stateS (i= . M) at timet by N®(t), and denote the num-
ber of moIecuIes at statg that are |njected from sourgeby
(t) (J— J). Then, NO(t)=37_ K{"(t). Since K["(t)
(j J) are mdependent random vanables the probabil-
ity mass function of the random variabM/(t) is the con-

A. One source

Suppose that there aramolecules of specieS, injected
into the system with the same probability dendit§(t), and
no molecules of other species. Denote the number of mol
ecules at stat& (i=1,... M) at timet by NO(t), and let
K(')(t) 1 if moleculej is at state§ at timet and K(')(t) 0 if
it is not Thus NO(t) =% lK(')(t) Note that K (),

K(')(t) (t) are mdependent Bernoulli random vari-
ables with the same probabiliy”(t), which can be com-
puted by solving5). ThereforeN¥(t) has a binomial distri-
bution. The probability that there aremolecules in stat§

volution of the probability mass functions of the random
variablesk(t).1°

For example, lek S molecules be injected by the source
functionsf ¥(t) andy § molecules byf (t). Each of thex

at timet is S, molecules gives rise to the state probabilitig5(t) (i

—1 ), whereas a molecule introduced Hy'(t), to
(t) (| ..M). Then, the number of molecules at state
S that are |nJected from sourck is K(')(t) which has a
binomial distribution(* )(p('>(t))”(1 p(')(t))x‘n Similarly, the
number of molecules at staBthat are injected from source
I |s K(')(t) which has a binomial dlstrlbutloﬁ’; (P ()1
pI t))y‘ The probability mass function M(t), the total
number of molecules at stagis equal to the convolution of
two binomial distributions, i.e.,

PR(t) = (z )(p(”(t))”(l -pV()y™, (11

with meang;(t) and variance)iz(t) equal to
wi®) =xp?(®),

o?(t) =xp ()1 - pP(p)),

respectively. Moreover, the joint probability of finding
molecules in stat& (i= .,M) at timet is equal to

Py = ( )(p“%t))”(l—p@(t))*‘“

x!
P(Ny, .. i) = ————(p(O)"- (p™M(t)™,
nl. M nM!
(12) ® (ﬁ)(pf“(t))”(l -p Y, (13)
where EMln, x. Equation(11) is one of the marginals of o ) )
(12). where the convolution is along threaxis, that is
‘When the number of molecules is large, i.e., when *
xpP(t)(1-p(t))>1, the binomial distributio(11) can be y1(N) @ yo(n) = > y4(M)y,(n—m).
well approximated by a Gaussian distribution, or m=0
) i 2 ()
Pﬂ)(t) _ 1 e—[(n—ﬂi(t»?/za?(t)]_ The meanu,(t.) and verlancer, (t) of NV(t) are
V2mal(t) (0 =xp () +yp' (), (14)
The purpose for employing the Gaussian approximation is to aiz(t) X ')(t)(l p(')(t)) +yp,(‘>(t)(1 _ pfi)(t)), (15)

save computation time when the number of molecules is very
large, as well as to make the analysis more tractable. Nuespectively.
merical examples of the comparison between analytic distri- As we mentioned before, when the number of molecules
butions and their Gaussian approximations can be found iis large, the binomial distribution can be well approximated
Ref. 12. by a Gaussian distribution with the same mean and variance.
The same purpose can be achieved if the binomial disOne property of Gaussian distributions is that the convolu-
tribution (11) is approximated by a Poisson distribution. tion of two Gaussian distributions yields a Gaussian distri-
Conditions for the validity of such approximation are stricter.bution. Therefore, the convolution result (b#3) can be ap-
First, the number of molecules should be large. Second, theroximated by a Gaussian distribution with medd) and
probability for a single molecule in stateshould be small variance(15). The Poisson distribution has the same prop-
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erty: the convolution of Poisson distributions with param-
etersa and B, respectively, yields a Poisson distribution with

paramete=a+ 3.

IV. EXAMPLES

J. Chem. Phys. 122, 104101 (2005)
P(l)(t) — (X )e—nct(l _ e—Ct)X_n
n n ]

X
PA(t) = (n )(1 — g g et

In this section several examples of systems of first-order
reactions are discussed. For some systems, an analytic solu- ]
tion for the population distribution is derived. This section B- Example 2. The first-order

also includes two numerical examples: the first is a one
directional reaction chain and the second an enzyme sub-

strate reaction.

A. Example 1: The first-order irreversible reaction

C
Consider the first-order reactio8,—S,, where only

moleculesS,; are injected into the system with probability

density functionf M(t)=45(t). The first step is to rewrit¢s)
with M=2, ¢;,=c, ¢»;=0, andf @(t)=0

dp®(t)

dt [-c c\T p<1>(t)> (5(t)>

dp@(t) '(o o) (p(z)(t) o /) (16)
dt

Taking the Laplace transform leads to
{ma)=(o o) (e )]
p?s)/ \o 0o/ \pP/ \o/’

The matrixL from (8) is given by
1

— 0
S+cC
L=
111
S S+C S

After taking the inverse Laplace transform lof we obtain

(150 o)

G= ,

1-e° u()

whereu(t) is the unit step function. The final solution is
p(t) =e (), (17)
p@(1) = (1 -eHu(v). (18)

In the rest of the paper we will drop the useuf), and so
we point out that the given solutions fpft) are valid only
for t=0.Whenf (1) is some other density function

p( = f f D(n)e7dr,
0

p2(t) = J f D(7)(1-e)dr.
0

Note that if anS; instead of ar; molecule was injected into

the system withf 2(t), p(t)=0 andp@(t)=[4f @(7)dr.
By substituting the probabilitied 7) and(18) in (11), we
obtain the well-known result fof Et1)>=5(t)

reversible reaction

C1
Consider the first-order reversible reacti®i=S, which

C:
starts withx S, molecules ang S, molecules. Eéch of the
S, molecules gives rise to the following probabilities, which
are obtained by solving5) with M=2, f D(t)=4(t), and
f @(t)=0:

1
(1) t) = Co+C e—(cl+02)t
p1 (D) Lt Cz( 2 T Cq ),
@1y = 1 _ a(cpteot
p;~(t) ot C2(1 e ). (19

For the effect of each of thgy S, molecules, we take
f W(t)=0 andf@(t)= &(t) and obtain

(o
(1) ) = 2 1- e‘(Cz"'Cl)t
Pz (1) o 1( ),

p2(t) = (Cy + e (Crenty, (20)

2 1

By substituting the probabilities @fL9) and(20) in (13), we
obtain the distribution for th&, molecules.

P(l)(t) _ <X>< 1 (C +c e—(c1+c2)t)>n
n n C1+Cy 2 1

1 X-n
X (1 - (co+ cle‘<°1+°2>t))
1 +Cp

® <y><L(1 - e‘("1+°"’)t)>n
n/\c,+¢,

C y=n
><<1— 2
C2+Cl

(1- e‘<°1+°2“>) (21)
and similarly for theS, molecules.

Note that when onl\5; or only S, molecules are present
at t=0, the distribution reduces to the first and second con-
volution factor in(21), respectively. The population distribu-
tion for this special case has already been given by
McQuarrie.7

Also note that deriving the mean and variance for the
number ofS; and S, molecules is straightforward, as ex-
plained in Sec. Il B, and leads to the same results as re-
ported in Refs. 14 and 15.

C. Example 3: A combination of the first-order
irreversible and first-order reversible reaction

Consider the reaction system
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FIG. 1. Direct calculation of the probability mass function$fat timet
=1.5s.

Cq C3
S=5—S;, (22
C2
and assume there areS, molecules and/ S, molecules at
t=0. Again, we first solve(5) with fD(t)=4t), f@(t)

=f ®(t)=0 to find the probabilities due to or§y molecule
and obtain

() = NMZCL T Co T Cy )~ mecyropresit
2ym
+ vm+ ] ,__CZ —C3 e—(1/2)(\‘ﬁ+01+02+03)1'
2ym

p2(t) = C_i (12 (—\mreprepregt _ L e (12 Mrepreyregt
ym ym

(23)
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FIG. 3. The probabilities for a single molecule to be in st&e(i
=1,2,...,7 at timet.

0¥ =1 - Vm+cy +Cp+ Gy
O=1-—-=>2=2"273

e (U2 (=/mteyteyreg)t
2Vym

—
Vm—Cl—CZ—C3

[

e (L2 Jmtcp+eptegt ,
2ym

where
_ 2 _ 2 2
M= cj + 2C;C, — 2C,C3 + C5 + 2C,C3 + C35.

Next, we solve(5) with f V(t)=f ®(t)=0, f @=4(t) to find
the probabilities due to on8, molecule and find that
c

(1) = 2 g WA mrerrezeyt %e—(llz)(\ﬁ+cl+c2+c3)t'
vm 'm
p2(t) = ym+ ¢, ;CZ = C3 ~(112)(~\mrepropreqt
2Vm
’/_
/ - + + —
+ M~ G+ G+ G J_Cz C3e—(l/2)(\‘mF01+C2+03)1, (24)
2Vm
p(zg) (t) -1- ym+cq -,LCZ - C3e—(1/2)(—\’5+01+02—03)t

ym

_ ym—-¢Cc;—Cyt+ CSe—(1/2)(\’E+Cl+Cz+03)t

2\m
The substitution of the probabilities {13) by the probabili-

ties in(23) and(24) yields the population distribution for the
Si, S, andS; molecules.

D. Example 4: A first-order reaction chain

Consider a first-order reaction chain in its general form

C2

Ci-1 G

—§—

S-S s (25

Assume that; #c; wheni#j (i=1,... Nandj=1,... N)

FIG. 2. The probability mass &, at timet=1.5 s calculated using the SsA, and thatx_ molecules gr_1ter '_[he_ sy;tem in Stfﬁﬁ_at timet
with 500 realizations. =0. The input probability distribution of stat§, is f (V(t)
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FIG. 4. (a) A cell on which enzyme molecules are immobilized. The sub- time (seconds) %107

strate molecules float around freefl) lllustration of the chemical reaction.
The substrate molecul&B approaches the enzyme moleci€gleft). The
enzyme recognizes th& molecule of theAB structure(middle). The en-
zyme destroys the bond betwefrandB, A remains attached t, andB is
released into the solutiofright).

FIG. 6. Zoomed plots of the mean for the population of molecule spé&ies
(full line), ARB (dot-dashed ling andB (dashed ling

. X . .
Pﬂ)(t)=< )(p(')(t))”(l—p“)(t))x‘”- (26)
=48(t). Then, using the method introduced in the previous n

sections, the state probabilities for one molecule are equal tg there arec;’s equal toc;’s, a closed-form solution is also

r

1
1 .
_E M](]-J)Cje—Cjt, C| > O

Cij=1
(i) 4y — i-1
p(t) = A
1 _E Mj(l,l—l)e_(:jt’ C| - O,l = 2,
j=1
1, ¢=0,i=1
\
where
" c
&
il , m>Kk
MEe™ =1 j=kj%p €~ Cp

1, m=k.

The probability thatn of the x molecules are in stat§ at
timet is given by

10000

-—

9000
8000
7000 B / _
6000 |

5000
A

4000 F I/ \ : .
3000 'l v E
2000} ':' N ]
]
!

number of molecules

1000

~——

0.02 0.08 0.04 005 0.06 0.07 0.08
time (seconds)

0 0.01

FIG. 5. Mean for the population of molecule specRgfull line), ARB
(dot-dashed ling andB (dashed ling

possible.

E. Example 5: A numerical example for the first-order
reaction chain

Consider the first-order reaction chain

Cg C €3 C C5 Cg
S=5 S5 SS S S, (27)

Suppose there are 10@) molecules at tim¢=0. The values
of the reaction parameters, ... ,cs are 4.3, 16.6, 1.2, 2.8,
11.4, 11.9, respectively, with unit’s We used two methods
to obtain the probability mass &; at timet=1.5s

(1) by direct calculationDC) using(26), and

(2) by running 500 realizations of the S$stochastic simu-
lation algorithm), which is a Monte Carlo method for
numerically computing the time evolution of a chemical
system’

The resulting probability mass functions are shown in
Figs. 1 and 2. From Fig. 2 it is clear that the 500 SSA
realizations are not enough for an accurate evaluation of the
probability distribution, even though the computation time it
took is much longer than the direct calculation usi2®).
Obviously, methods based on analytic solutions are better
than those based on Monte Carlo simulations. However, in
cases of more complex reactions where neither analytic so-
lutions nor good approximations of population distributions
exist, the SSA is the method of choice.

We have shown in Sec. Ill A that wher— > and
pP(t)—0 [e.g., p¥(t)<0.1], the binomial distribution(11)
can be approximated by the Poisson distribution with mean
A=xp')(t). The purpose of the approximation is to make the
analysis more tractable. In many situations, however, the
condition p?)(t) -0 is not valid. Using the reaction chain
(25 and reaction parametey, ... ,cg of this example, the
probabilities of a single molecule to be in stag (i
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2500F | ' ' ' ' ' —nr 1] same probability distribution as the numberBmolecules.
/\ == ARB Such elimination obviously has no effect on the accuracy of
I\ ---B the obtained results. Furthermore, if the numbeABfmol-
20001 " \ ] ecules isX,g, the product ofX,g and the reaction parameter
I \\ 0(12) represents the probability rate for Rrmolecule to trans-
o 18001 [ \ 1 fer into stateARB If clzc(lz)XAB, the reaction(28) can be
g ! \ simplified as
> 1000 ', ] RARB.B
i «— .
C2
5001 T This equation has the same structure as (28). The only
difference is that the value af; varies with time.
ok A property for many enzyme reactions is that the number
of substrate molecules is sufficiently lafeand that the

0 001 002 003 004 005 006 007 008 :
time (seconds) number of substrate molecules consumed during the course

FIG. 7. Var i \ation of molecul ol line), ARB of the reaction is negligible in comparison to the total num-

. [. Variance o € population of molecule spe ull line),

(dot-dashed ling andB (dashed ling ber _of substrate molecules. T_he_re_fpre, we can assume that
Xag is approximately equal to its initial value, amg can be

—1 9 7 at timet d in Fio. 3. f hich it seen as constant. Thus, after simplification and approxima-
=4,2,...,/atimet are drawn In Fg. 3, from which it can tion, the results in23) can be used here.

be seen that during t.he first .1‘5 5, mam?(t)’g have valueg As an example, we have calculated the mean and vari-

grea_ter than O._l, vyh|ch |mplles that the Poisson approxima . ¢ the population of molecule specRSARB andB

tion in that period is not suitable. with the following initial values: Xx(0)=10 000, X4g(0)
=4.8176x 10'% Xar(0)=Xxre(0)=Xg(0)=0, and reaction

F. Example 6: An enzyme-substrate reaction parameters c,=1s?, ¢,=100s%, and c¢?=4.1930

. . 16 -1 i i i
Let us consider an enzyme reaction where a soluble sub® 10** s The volume in which the reactions are observed

strate with anA—B structure reacts with immobilized en- 1S €qual to 0.01 . S
zyme molecules located on the surface of céiee Fig. The obtained results are shown in Figs. 5-8. The ex-

4(a)]. The formulation of this chemical reaction is given by Pected population of molecule species are given in Figs. 5
and 6(zoomed plok. The variance is shown in Figs. 7 and 8.

@)
1 Cs
AB+R=ARB—AR+B, (29
C2 V. CONCLUSIONS
where AB is the substrate molecul® is the enzyme mol- In this paper we have presented a general approach for

ecule, andARBis the enzyme-substrate complex, known asgy,dying systems of first-order reactions. By exploiting the
the intermediate product. This reaction is illustrated in Fig-independence of the molecules in such systems, we can use
4(b). The superscript of{? emphasizes that this specific this method for studying chemical reactions with any number
probability rate constant is for a second-order reaction.  of molecules and obtain the probability distributions of mol-
Several simplifications can be applied. FidR can be  g¢yle populations.
eliminated because the number AR molecules has the With this approach, we have analyzed an enzyme cata-
lyst reaction and have obtained results for both the transient
' ' ' ' —=Rr | and steady states of the reaction. In addition, we have also
== ARB derived an analytic solution for the probability distribution of
--- 8B first-order chain reactions. We have found that the Gaussian
approximation is more appropriate than the Poisson approxi-
mation when the molecule population is large.
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