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Abstract—In this paper, we propose novel resampling algorithms
with architectures for efficient distributed implementation of par-
ticle filters. The proposed algorithms improve the scalability of the
filter architectures affected by the resampling process. Problems in
the particle filter implementation due to resampling are described,
and appropriate modifications of the resampling algorithms are
proposed so that distributed implementations are developed and
studied. Distributed resampling algorithms with proportional al-
location (RPA) and nonproportional allocation (RNA) of particles
are considered. The components of the filter architectures are the
processing elements (PEs), a central unit (CU), and an interconnec-
tion network. One of the main advantages of the new resampling
algorithms is that communication through the interconnection net-
work is reduced and made deterministic, which results in simpler
network structure and increased sampling frequency. Particle filter
performances are estimated for the bearings-only tracking applica-
tions. In the architectural part of the analysis, the area and speed
of the particle filter implementation are estimated for a different
number of particles and a different level of parallelism with field
programmable gate array (FPGA) implementation. In this paper,
only sampling importance resampling (SIR) particle filters are con-
sidered, but the analysis can be extended to any particle filters with
resampling.

Index Terms—Algorithms for parallel implementation, dis-
tributed resampling, FPGA implementation, parallel architecture,
particle filter.

I. INTRODUCTION

PARTICLE FILTERS (PFs) are very suitable for non-
linear and/or non-Gaussian applications. They show great

promise in addressing a wide variety of complex problems [6],
[18]. However, their application in real-time systems is limited
due to their inherent computational complexity. The main goal
of this paper is to develop distributed PF algorithms and to
propose corresponding parallel architectures which allow for
shorter particle-filter execution time. We show that the parallel
architectures can be implemented on state-of-the-art field
programmable gate array (FPGA) chips. By showing that fast
implementation of PFs is feasible, we hope that the gap that
exists between PF theory and their hardware implementation
will be reduced.
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The SIR algorithm [7] is composed of three steps:

1) sampling step: generation of new particles, in which
particles for are drawn from an im-
portance function ,

2) importance step: computation of particle weights
for ;

3) resampling step: drawing of particles from the
set for according to the resampling
function whose support is defined by the particles

[17]; commonly for .
The resampling step is critical in every implementation of

particle filtering because without it, the variance of the particle
weights quickly increases, i.e., very few normalized weights
are substantial. Then, the inference is degraded because it is
made by using only a very small number of particles. The idea
of resampling is to remove the particle trajectories with small
weights and replicate the trajectories with large weights. Re-
sampling was proposed for use in particle filtering in various
works including [2], [3], [13]–[16]. The following problems are
recognized and addressed for distributed implementation of re-
sampling: a) There is no natural concurrency among iterations
because the new iterations depend on the previous ones; b) com-
munication among the PEs after resampling is extensive; c) con-
nections among the PEs are not known before the run-time and
are changed after each sampling period. Modifications of the re-
sampling algorithms that intend to overcome these barriers and
move toward a fully distributed implementation are developed
and studied.

The main design goal here is to minimize the execution time
of the PF. This is done through exploiting data parallelism and
pipelining of operations. In Section II, a parallel architecture for
PFs is introduced, and the minimum execution time is defined.
In order to decrease PF execution time, an algorithm that allows
for distributed resampling and reduced communication in the
network is proposed. This algorithm is presented in Section III
and is named distributed Resampling with Proportional Al-
location (RPA). It yields the same resampling result as the
sequential resampling method (for example, systematic resam-
pling). Further improvement of the execution time is achieved
by making the communication through the network determin-
istic and local. These algorithms use nonproportional sampling
[Resampling with Nonproportional Allocation (RNA)], and
they are presented in Section IV. Different architectures suit-
able for distributed RPA and RNA algorithms are discussed in
Section V. The objective in these architectures is to pipeline
the communication through interconnection network (particle
routing) with the subsequent sampling step. There, we also
evaluate architecture parameters on an FPGA platform.
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II. DISTRIBUTED PFS

A. Distributed Architecture

The distributed architecture for the PFs is shown in Fig. 1. It
consists of processing elements (PEs) and a central unit (CU).
Since there are no data dependencies during particle generation
and calculation of the weights, these steps can be easily paral-
lelized and pipelined. This segment of particle filtering is a data
parallel single instruction multiple data (SIMD) algorithm [4].
As such, particle generation and weight calculation for the
particles can be partitioned in PEs, where . Each
PE performs the same operations in time on different particles
and each PE is responsible for processing particles,
where both and are integers. The CU carries out partial or
full resampling and particle routing as well as overall control.
Full resampling means that the overall resampling procedure is
performed by one logic unit. In the following sections, we will
show that resampling can be distributed to PEs and that the CU
is then responsible only for a small portion of resampling.

We distinguish three operations that carry out the resampling
task.

1) Computation: This involves the bare resampling proce-
dure whose result is an array of indexes that show the
replicated particles and their addresses.

2) Communication: This represents the exchange of particles
among the PEs based on the resampling results. We refer
to it as particle routing. Particle routing defines the pro-
tocol and the network architecture for exchanging parti-
cles, and it is the main focus of the paper.

3) Scheduling: This includes a) determination of which par-
ticles in the PEs are routed and which are stored locally,
b) placing of particles in the destination PEs, and c) ad-
dressing used for indexes.

In this paper, we define the execution time of PFs as the time
necessary to process one observation by the PF, and it corre-
sponds to the sampling period.

In order to achieve minimum execution time, one-to-one
mapping between the PF operations and hardware resources
is done, which allows for utilizing operational concurrency.
Hence, several operations can be executed at the same time
and their blocks are pipelined in hardware implementation.
The execution time of the generation and weight computation
of every particle is , where is the clock period, and

is the latency due to pipelining. Thus, the first particle is
available at the output of the importance step block after ,
and every next particle, due to pipelining, after . Therefore,
operations of the particle generation and weight computation
steps for particles take clock cycles. Resampling
cannot start until the sum of all the weights is calculated so that
resampling cannot be overlapped in time with the sampling and
importance steps. The internal operations of resampling are
also pipelined so that they take approximately clock cycles.
Hence, the minimum execution time of nondistributed PF is

[1].
Further reduction of execution time is achieved by replicating

hardware resources (parallelism). When PEs are used, the

Fig. 1. Architecture of the distributed PF with a CU and four PEs.

minimum execution time is . The main goal
of this paper is to develop algorithms and architectures that
can reach the minimum execution time. Our strategy toward
achieving the minimum execution time is to allow for deter-
ministic communication during particle routing. Then, we can
overlap the particle routing and the next sampling step to allow
for pipelining in hardware of their operations so that the particle
routing will not increase the execution time of the PF.

Next, we show why the communication pattern is nondeter-
ministic and why the connections among the PEs are changed
after each sampling period. Let the number of particles that
PE produces after resampling be for

and . It is important to note that
is a random number that depends on the overall distribu-

tion of the weights. The PEs with have surplus of
particles, and they need to exchange particles with the PEs with
shortage of particles for which . The number
changes after each sampling period so that it is necessary to
connect different PEs in order to perform particle routing. The
number of particles that have to be exchanged among the PEs is

.

B. Centralized Resampling

In centralized resampling, particle generation and weight
calculation are performed in parallel in PEs and resampling
is sequential, and it is carried out by the CU. The sequence
of operations and directions of communication are shown in
Fig. 2(a). The CU collects the weights from each PE (
weights overall) in order to perform resampling and returns
replication factors to each PE ( replication factors overall).

The number of particles transferred between PE and the CU
is for . The direction of communi-
cation is from the PE to the CU for the PE with particle sur-
plus after resampling and from the CU to the
PE for the PE with particle shortage . While
the communication of weights and indexes is deterministic, the
particles are routed in a nondeterministic fashion. The overall
amount of particles that has to be transferred through the net-
work is for the worst case. Even in the fully connected
network, the scalability of the implementation is significantly
affected by the sequential resampling and particle routing. One
version of centralized resampling which is implemented on a
network of personal computers is described in [21].
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Fig. 2. Sequence of operations performed by the kth PE and the CU for
(a) centralized resampling and (b) RPA. The direction of communication as
well as data that are sent are presented. The abbreviations are S (sampling),
I (importance computation), R (resampling), and PR (particle routing).

III. DISTRIBUTED RPA

In this section, a method based on stratified sampling with
proportional allocation is described. The sample space is
divided into disjoint areas or strata, where each stratum
corresponds to a PE. Proportional allocation among strata is
used, which means that more samples are drawn from the strata
with larger weights. After the weights of the strata are known,
the number of particles that each stratum replicates is calculated
using residual systematic resampling (RSR) described in [1],
and this process is denoted as inter-resampling since it treats
the PEs as single particles. Finally, resampling is performed
inside the strata which is referred to as intra-resampling. There-
fore, the resampling algorithm is accelerated by using loop
transformation or specifically loop distribution [22], which
allows for having an inner loop that can run in parallel on
the PEs (intra-resampling) with small sequential centralized
pre-processing (inter-resampling). The weight of the PE is
calculated as a sum of the weights of the particles inside the
PE, i.e., for . A diagram
and the sequence of operations performed by the PE and the
CU are shown in Fig. 2(b).

The algorithm for RPA is shown by Pseudocode 1. The in-
puts of the algorithm are the PE weights and the output is the
number of particles that each PE will produce after re-
sampling, where for . The
RSR algorithm is applied to get , for by
propagating the uniform random number in a similar fashion as
in the systematic resampling algorithm. In the algorithm,
is obtained by truncating , where is a
symmetrically propagated number, as shown by Pseudocode 1.
The minimum value of the truncated product is so that the
minimum value of is zero. Resampling is performed in

Fig. 3. Example of particle exchange for the RPA algorithm.

each PE in parallel during the intra-resampling step. The input
of the intra-resampling algorithm is the number of particles that
should be generated in the resampling procedure. We have to
stress that there is no difference in results between RPA and se-
quential resampling.

DISTRIBUTED RPA ALGORITHM

Purpose: Calculation of the number of particles for the intra-resampling

algorithm.

Input: Array of PE weights for .

Method:

Generate random number

for to

Send to PE

end

do in parallel

Intra-resampling for all PEs

end

Pseudocode 1: Distributed RPA algorithm that utilizes the
RSR approach.

The RSR algorithm is very attractive for hardware implemen-
tation since it has only one loop (there are two loops in system-
atic resampling), it can be easily pipelined so that it can calculate
a replication factor per clock cycle, and it easily deals with dif-
ferent number of particles at the input and at the output. In sys-
tematic resampling, the while loop has unknown number of iter-
ations which makes it difficult to apply pipelining. Of course, the
same resampling result would be obtained if residual or system-
atic resampling are applied as the inter-resampling algorithms.

An example of particle exchange for the RPA algorithm is
shown in Fig. 3. The PF architecture with four PEs is considered,
where each PE processes particles. The distribution of
the normalized PE weights before resampling is presented in the
table. After inter-resampling, the number of particles that each
PE will produce is determined and it is 200, 50, 105, and 45
respectively. Therefore, PEs 1 and 3 have surpluses of particles.
In this example, PE sends 50 particles to both PE and PE ,
and PE sends five particles to PE .

The main advantage of distributed RPA over centralized re-
sampling lies in reducing the amount of deterministic commu-
nication and in the distributed resampling where the resampling
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is executed concurently in the PEs instead in the CU (Fig. 2).
The time for the resampling procedure in distributed RPA is re-
duced times, where corresponds to the
intra-resampling time, and is the time for inter-resampling.
It can readily be shown that maximum reduction is achieved
when . It is important to note that inter-resampling re-
quires global communication among the PEs, whereas intra-re-
sampling is completely local within the PEs. The words
representing weights and indexes that are exchanged in the cen-
tralized resampling are reduced to words ( and )
in RPA. However, scalability of the implementation is still af-
fected by the particle routing step, which is unchanged. If we as-
sume equal clock period for resampling and the other PFs steps,
then , where represents
the delay due to inter-resampling, and is the delay due to
particle routing. When the PEs and the CU are connected with
a single bus, then the delay becomes dominant. Scalability
of the design is affected so much by the bus structure that there
is almost no gain in pursuing parallel implementation. An ef-
ficient architecture that uses buses and supports pipelining
of the particle routing with the sampling step is proposed in
Section V-A.

IV. DISTRIBUTED RNA

Even though distributed RPA allows for distributed and par-
allel implementation of resampling, it requires a complicated
scheme for particle routing, which implies a complex CU de-
sign and area increase. Besides, there is a need for an additional
global preprocessing step (inter-resampling) which introduces
an extra delay. These problems can be solved by using an RNA
algorithm. The main advantage of RNA is that routing of parti-
cles can be deterministic and planned in advance by a designer.

A. RNA Algorithm

Here, we introduce the term group where a group is formed
from one or more PEs. In RPA, the number of particles drawn is
proportional to the weight of the stratum. On the other hand, in
RNA the number of particles within a group after resampling is
fixed and equal to the number of particles per group, .
Therefore, full independent resampling is performed by each
group.

The general PF algorithm with RNA is outlined by
Pseudocode 2.

1) Exchange particles among groups deterministically.
2) Generate particles in each group in parallel by sampling

for and .
3) Perform the importance step in each group in parallel. The

weights are calculated by

for and

Fig. 4. Example of particle exchange for RNA algorithms with (a) regrouping,
(b) adaptive regrouping, and (c) with local exchange. Here, S is the sum of
weights in the group.

4) Normalize the weights of the particles with the sum of the
weights in the group:

where

and

for

5) Perform resampling inside the groups and obtain
new random measures for

and .
6) Go to step 1.

Pseudocode 2: PF steps for distributed RNA.
There are several differences in comparison with the orig-

inal SIR filter and the RPA algorithm. Here, normalization is
performed with the local sum . Resampling is performed
locally per each group, and the weights are equal inside the
group. A characteristics of RNA is that the weights after resam-
pling are not equal to , but they are equal inside the groups

, for and . In
addition, routing of particles among the groups after resampling
is necessary due to the possibility of having very unequally dis-
tributed weights among the groups.

We distinguish between three methods of particle exchange
after resampling: regrouping, adaptive regrouping, and local ex-
change. These methods are presented in Fig. 4, which is based
on the same example described in Fig. 3. The description of
these methods is provided in the sequel.

1) Distributed RNA With Regrouping: In RNA with re-
grouping, resampling and particle routing are performed inside
the groups using the RPA method. For example, in Fig. 4(a),
PE and PE form one group, and PE and PE form another
group. The RPA algorithm is applied for both groups. As a
result, PE and PE produce 160 and 40 particles after re-
sampling so that 60 particles from PE are transferred to PE .
At the next sampling instant, the PEs are rearranged so that
they form different groups. For example, the new groups can
be composed of PE and PE , as well as PE and PE . After
each time instant, regrouping is performed so that particles are
exchanged among PEs, and the variance is reduced.
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Fig. 5. Routing in RNA with regrouping for the mesh architecture with K =

9; R = 3, and D = 2.

An example with PEs and PEs per group
is shown in Fig. 5. Only the group that consists of PE PE ,
and PE has particles with non-negligible weights after the im-
portance computation and resampling and these PEs are drawn
darker in the figure. At the next time instant, new groups are
formed so that the particles with significant weights are prop-
agated to all PEs. One period of regrouping is denoted as dis-
tribution factor . When all the particles with nonzero weights
are in one PE and the mesh architecture is used, determines
the number of cycles needed where these particles propagate to
all the other PEs. In Fig. 5, .

Since the simplicity of the controllers is one of the design
goals, we restrict the number of PEs per groups to be 2. If the
number of PEs in the group is larger, a very complicated con-
troller is necessary in order to perform fast particle routing, as
described in Section V-A. When , the local controllers
are simple because there is only one PE with surplus and one
with shortage of particles. Choosing so small a value for could
cause high distribution factor and a large number of periods until
full propagation of particles is achieved. If and ,
the minimal distribution factor is .

2) RNA With Adaptive Regrouping: RNA with regrouping
uses the predefined fixed rules to form the groups and does
not take advantage of knowing the distribution of the group
weights. By utilizing this knowledge, it is possible to reduce
the variance after resampling. RNA with adaptive regrouping
forms groups from the PEs with the largest and the smallest
PE weights. For example, in Fig. 4(b), PE and PE have the
largest and the smallest PE weights so that they form one group.
The other group is formed from the remaining PEs. Inside the
groups, the RPA algorithm is applied. Weights after resampling
are calculated based on step 5 of Pseudocode 2. This method
utilizes the Randez–Vouz load balancing algorithm [8], which
is a simple greedy algorithm that associates the heavily and the
lightly loaded groups. The main disadvantages of RNA with
adaptive regrouping are that groups containing only two PEs

and the connections among the PEs are not local in
general.

3) Distributed RNA With Local Exchange: In RNA with re-
grouping, the RPA algorithm is still performed inside groups so
that the particle routing process is still random, even though it
is done on a smaller set of particles. Randomness during par-
ticle routing makes it difficult for pipelining between the par-
ticle routing and sampling steps.

Fig. 6. MSE versus the number of particles for different levels of parallelism.
In the case of four, 16, and 64 PEs, RNA with local exchange is applied.

The example of the RNA algorithm with local exchange is
shown in Fig. 4(c). Resampling is done inside the PE, and then,
particles are exchanged in a deterministic way only among the
neighboring PEs. Routing is done through local communication.
The amount of particles sent between PEs is fixed and defined in
advance. In the example, it is . This is a very important
difference in comparison with the RNA with regrouping, where
particles are routed among the PEs in the group nondeterminis-
tically (except when ). Since groups are formed from one
PE, the weights after resampling are set to . Local com-
munication can give rise to a large number of periods until full
resampling is achieved, which restricts the level of parallelism.

B. Effects of Resampling on Obtained Estimates

In PFs, the output estimate before resampling can be calcu-
lated as , where are the states
of the particles, is an arbitrary function, and rep-
resents a normalized importance weight [9], [10]. For parallel
implementation, the estimate can be written in the form

,
where represents the expected value of from a distribu-
tion in the th PE. The estimate after applying distributed
RPA is of the form ,
where represents the number of times the particle
is replicated after resampling, and .
The estimate after applying distributed RNA is of the
form , where
the number of replications of each particle is calculated
as . It is easy to show that

, which is equal to . This
means that both estimates of are unbiased. The result is
expected for both types of sampling due to Theorem 5.1 from
Cochran [5], which claims that if in every stratum the sample
estimate is unbiased, then the overall estimate is also an unbi-
ased estimate of the population mean.

PFs with full and without resampling can be considered as
special cases of the RNA algorithm. In the first case, ,
and the whole resampling is performed inside one PE. In the
second case, so that resampling is performed on a
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Fig. 7. Architecture of the PF with distributed RPA with four PEs. The CU is implemented to support pipelining between the particle routing and sampling steps.

single particle. Since the input and output of the resampling is
only one particle, there is actually no resampling.

It is not easy to compare Var and Var in general. It was
observed by simulations that there was almost no difference in
the variances if the weights are equally distributed among the
PEs. However, the variance of the RNA algorithm was much
greater in the case when there was only one PE with nonzero
weights. This problem can be resolved by exchanging the par-
ticles between PEs after resampling deterministically (step 1 of
the RNA algorithm).

C. Performance Analysis

In this section, the performances of the sequential PF and
the PF with distributed RNA with local exchange with different
number of PEs are compared. The architectural model that was
chosen for the PF with distributed RNA was the two-cube torus
type network [19]. We considered 2-ary, 4-ary, and 8-ary torus
networks. In the model it was assumed that each PE had a single
input and output port. The deterministic particle routing was
implemented in a way that each PE exchanged particles with
the PE above and on the PE left. In this way, particles were
routed with a statically scheduled communication pattern. The
number of particles that was exchanged is the half of the number
of particles in PEs . Particles were exchanged in full duplex
mode, which means that resampled particles from one PE
were sent to another, and at the same time, of resampled
particles from the second PE were sent to the first one.

PFs were applied to the bearings-only tracking problem with
the model from [11]. As performance metrics, we chose the
mean square error (MSE). The simulation results are shown in
Fig. 6. We can see that all the MSEs are comparable.

V. PF ARCHITECTURES WITH DISTRIBUTED RESAMPLING

A. Distributed RPA Architectures

One possible architecture for distributed RPA with four PEs
that allows for pipelining the particle routing step with the next
sampling step is shown in Fig. 7. The main idea is to store the

particles that will be routed among the PEs into dedicated mem-
ories in the CU and to have very fast interface capable of reading
particles from the CU and routing them to the PEs in one clock
cycle.

The particles that are replicated as a result of the resampling
for PE are stored into local memories Mem for .
When there is a surplus of particles, these particles are stored in
CU memories Mem for and . For example,
the memory Mem is used to store the surplus of particles from
PE that should be routed to PE . If there is a shortage of par-
ticles in PE , then PE reads particles from the interface
which is connected to the memories Mem .

Routing is performed through three steps. First, particles from
the PEs with the particle surplus are sent to the CU through
the global interconnection network. Then, routing is performed
through the IF block inside the CU using the buses for

. Each IF is connected to the corresponding memories
with a bus and it acts as a master on the bus. Finally, particles
are transferred to the destination PEs through the global inter-
connection network. The size of the memories is determined for
the worst case (when one PE acquires all the particles from
another PE), and it is words, where each word consists of
the particles and their replication factors. Therefore, the overall
memory requirements are words, which is four
times more than in the sequential case.

The timing diagram for the PE with particle shortage together
with its communication with CU is presented in Fig. 8. Resam-
pling is performed using the following steps:

1) CU performs inter-resampling and sends the output
number of particles to PE for . The
CU also calculates the amount of data that should be
transferred among the PEs.

2) The PEs perform intra-resampling so that the first
particles are stored into the local memory Mem , and

when , the surplus is sent to the CU.
3) The particles are allocated to the corresponding memories

Mem . The PEs have no information how the particles
are further routed in the CU.
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Fig. 8. Timing diagrams for the PF with distributed RPA. Communication through the interconnection network is shown for the PEk with shortage of particles.

Fig. 9. Architectures for PFs withK = 4 PEs that support (a) all RNA algorithms and (b) does not support RNA with adaptive regrouping. The number of lines
for each bus is four 24-bit lines for the four-dimensional bearings-only tracking problem.

4) During the sampling step, the PE reads the particles first
from the local memories. The PEs with the shortage of
particles acquire the rest of particles from the IF, as shown
in Fig. 8.

This architecture has an execution time very close to the
minimum execution time at the expense of increased resources.
There are four parallel buses from the PEs to the CU and four
parallel buses inside the CU. The area is also increased because
particles are additionally stored inside the CU. The clock speed
is limited by the memory access and by the complexity of the
CU. The design methodology and implementation results for
the distributed RPA in ASIC are given in [12].

B. Distributed RNA Architectures

In Fig. 9(a), a PF architecture that can be used for all RNA
algorithms with four PEs is presented. Since the connections
are not local, it is especially suitable for RNA with adaptive
regrouping. Two lines in the figure represent buses used for
particle routing. The algorithm running on the CU configures
switches so that only two PEs access one bus at any given time.
In the case of RNA with fixed regrouping, the switches are con-
figured in fixed order. For example, if , the switches
can be configured so that the following sequence is repeated:
12 and 34, 13, and 24. In RNA with adaptive regrouping, the
switches are configured so that they connect the PEs with largest

and smallest weights. The RNA with local exchange can also
be run on the same architecture. We must stress here that the
buses consist of a significant number of lines. For example, for
the aforementioned bearings-only tracking problem, there are at
least four 24-bit lines for transferring particles.

A simpler architecture is shown in Fig. 9(b). The network
topology that is chosen is a 2 2 mesh. The network is static
and based only on local interconnections. The CU is simple and
its functions are collecting partial sums of weights and outputs,
returning the final sum of weights to the PEs and the overall
control. The CU is connected to the PEs through a single bus.
However, the RNA with adaptive regrouping cannot be applied
because not all the PEs are physically connected.

The architectures become more complex for a higher level
of parallelism. A scalable architecture that can support both
methods of RNA with regrouping (adaptive and fixed) for

and their ASIC implementation is presented in [12].

C. Area and Speed of Distributed PF With RNA With
Local Exchange

The area and speed of the distributed PF with RNA with local
exchange are estimated for the bearings-only tracking problem.
The same parameters and model are used, as in [11]. The range
of interest is restricted to the region . As
a benchmark, the chosen hardware platform is Xilinx Virtex-II
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TABLE I
NUMBER OF MEMORY BITS, SLICES, AND BLOCK MULTIPLIERS FOR THE DISTRIBUTED PF IMPLEMENTATION WITH RNA WITH LOCAL EXCHANGE. THE VIRTEX II

PRO CHIPS THAT CAN BE FITTED BY THE PF PARAMETERS ARE LISTED. THE STAR SHOWS WHICH PARAMETER DETERMINES THE CHOICE OF CHIP

Fig. 10. Execution time as a function of the number of PEs for RNA with local
exchange for M = 500; 1000;5000;10000, and 50000 particles.

Pro [23]. The resources are analyzed as a combination of the
number of logic slices, multiplier blocks, and memory bits.

The finite precision approximation of variables is performed
in the SystemC language [20]. The particles are represented
using 24 bits with one sign bit, five bits to the left, and 18 bits
to the right of the decimal point, whereas the weights are
represented with 16 bits with one bit in the decimal and 15 bits
in the fractional part. The final memory requirements are four

memories for storing hidden states, one
memory for storing weights, and two memory for
storing replication factors and indexes for resampling. There-
fore, the overall storage space is bits. The complex
mathematical functions are implemented using the coordi-
nate rotational digital computer (CORDIC) algorithm and the
Gaussian random number generator is implemented using the
Box–Muller method. The implementation is parallel in order to
achieve maximum speed.

In Fig. 10, we present the execution times as functions of .
The latency and the clock period that are used are and

ns. The area of the graph bounded by the bold line
represents the design space area for the Virtex II Pro family. For
smaller , the design space is determined by the logic blocks,
which increases with the level of parallelism, and for large
by the memory size.

It is interesting to compare the number of memory slices,
number of multiplers, and the number of bits with the cor-
responding values from the Virtex II Pro family, which are
shown in Table I. In the table, the number of particles is

. The number of slices for components in the
dataflow is calculated and is multiplied by the factor of 1.5 in

order to take into account the controllers and unused slices.
The approximate number of block RAM modules is calculated
as , where is the number of bits, and is
the size of block RAM memory, which is 18 Kb. The symbol
“ ” represents the parameter of the memory, number of slices,
or multipliers blocks that determines the choice of the Xilinx
chip. In the same table, the corresponding Xilinx chip is shown
as well. For a lower level of parallelism , the design is
memory dominated, whereas for a higher level of parallelism

, it is logic dominated. The design with PEs
cannot fit into commercial Virtex II Pro FPGAs.

VI. CONCLUSION

In this paper, two methods for distributing the resampling
step suitable for distributed real-time FPGA implementation are
proposed. The practical guidelines for choosing the resampling
method depend primarily on the desired performance, commu-
nication pattern, and complexity of the CU.

PF performance of the centralized resampling and the RPA
algorithm are the same as the sequentially implemented PF.
However, there are no advantages in using centralized resam-
pling since the RPA algorithm is faster and has a simpler CU.
On the other hand, the RNA algorithm trades PF performance
for speed improvement. Therefore, the RPA algorithm is a good
choice when it is necessary to preserve performance but with
significant increase in complexity.

Communication pattern in the RPA algorithm is nonde-
terministic. As such, it requires a point-to-point network to
achieve the minimum execution time. The RNA algorithm
can also achieve minimum execution time, but its architecture
consists only of local connections. The communication pat-
tern of the RNA algorithm with regrouping is somewhere in
between the RNA algorithm with local exchange and the RPA
algorithm. If the size of the group is larger than two, the RNA
algorithm with regrouping also suffers from a nondeterministic
communication pattern. However, the amount of particles that
have to be exchanged inside groups is smaller than for the RPA
algorithm.

The complexity of the CU of the RPA algorithm is very high
since it has to implement a complex routing protocol through
the point-to-point network. The CU of the RNA algorithm with
local exchange is simple and is not responsible for particle
routing after resampling. The RNA algorithm with regrouping
has to have control units in every group when groups contain
more than two PEs. Therefore, when speed is important and
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when it is required that design time is low (low complexity of
the CU and of the scheduling and protocol in interconnection
networks), the RNA algorithm with local exchange is the
preferred solution.
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