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Abstract—Accurate estimation of synchronization parameters is
critical for reliable data detection in digital transmission. Although
several techniques have been proposed in the literature for estima-
tion of the reference parameters, i.e., timing, carrier phase, and
carrier frequency offsets, they are based on either heuristic argu-
ments or approximations, since optimal estimation is analytically
intractable in most practical setups. In this paper, we introduce a
new alternative approach for blind synchronization and data de-
tection derived within the Bayesian framework and implemented
via the sequential Monte Carlo (SMC) methodology. By consid-
ering an extended dynamic system where the reference parameters
and the transmitted symbols are system-state variables, the pro-
posed SMC technique guarantees asymptotically minimal symbol
error rate when it is combined with adequate receiver architec-
tures, both in open-loop and closed-loop configurations. The per-
formance of the proposed technique is studied analytically, by de-
riving the posterior Crámer–Rao bound for timing estimation and
through computer simulations that illustrate the overall perfor-
mance of the resulting receivers.

Index Terms—Adaptive receivers, blind data detection, particle
filtering, synchronization, timing recovery.

I. INTRODUCTION

THERE are many scenarios where the wireless radio
channel can be described by a set of well-defined physical

parameters: the relative delay between the received signal and
the local clock reference, the amplitude attenuation, and the
carrier frequency and phase offsets. These parameters need
to be estimated, and compensated for, prior to detection. The
generalized synchronization problem [1], [2] consists of the
recovery of the aforementioned reference parameters using the
signal observed at the receiver front end, and it can be seen
as a special case of channel equalization [2]. Synchronization
algorithms obviously play a vital role in attaining reliable
digital transmission.
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Unfortunately, optimal estimators for synchronization param-
eters are impossible to obtain, in general [1], and, therefore,
most of the existing techniques are based on approximate max-
imum-likelihood (ML) arguments and heuristic methods [1],
[2]. Two classes of synchronization algorithms can be identified:
decision directed (or data aided) methods, which require the
transmission of pilot data, and nondecision directed (or nondata
aided) techniques [1]. Unlike data-aided techniques, nondata-
aided methods do not require pilot symbols and, instead, they
exploit statistics of digital waveforms. Nondata-aided schemes
are usually termed blind techniques, according to equalization
terminology [3].

In recent years, much attention has been devoted to a group
of techniques known as sequential Monte Carlo (SMC) algo-
rithms (also referred to as particle filtering methods) [4]. All
of these techniques are aimed at building a recursive Bayesian
filter, which estimates the posterior probability density function
(pdf) based on Monte Carlo simulations. Particle filters are an
important alternative for predicting and estimating unknown pa-
rameters of interest in real-time applications, especially in sys-
tems with nonlinearities and non-Gaussianities where classical
approaches based on the well-known Kalman filter [5], [6] pro-
vide solutions that may be far from optimal. Specifically, a main
stream of research in the application of particle filtering to com-
munications is currently under way [7].

In this paper, we propose the application of the SMC method-
ology to the generalized synchronization problem. In particular,
we investigate SMC techniques for blind adaptive estimation
of the synchronization parameters and the transmitted data se-
quence. We regard the application of particle filtering in this
context very appealing, as it leads to improved numerical so-
lutions for a problem where existing analytical approaches are
suboptimal.

The new SMC blind receivers are derived by representing dig-
ital transmission through the wireless fading channel with an ex-
tended dynamic system. Thus, the symbol delay is modeled as
a first-order autoregressive (AR) stochastic process [8], trans-
mitted data are assumed independent and identically distributed
(i.i.d.) random variables with a discrete uniform distribution,
and the complex fading channel coefficients are samples from
a second-order AR process driven by complex white Gaussian
noise [9]. The latter is a broadly accepted way of modeling
signal amplitude attenuation and carrier phase offset jointly.

The choice of a receiver architecture considerably constrains
the attainable minimal symbol error rate (SER). Here, we sug-
gest open- and closed-loop receiver structures which allow for
complete removal of intersymbol interference (ISI) and achieve
close-to-optimal SER. The performance of the resulting SMC-
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based receivers is assessed both analytically, by deriving the
posterior Cramér–Rao bound (PCRB) for timing estimation, and
through computer simulations.

The paper is organized as follows. Section II describes the
signal model. The proposed SMC algorithm for joint synchro-
nization and detection is presented in Section III. In Section IV,
we describe the receiver architectures. Performance is studied
analytically in Section V and numerically in Section VI. Finally,
conclusions are presented in Section VII.

II. SIGNAL MODEL

A. Received Signal

Let us consider a digital communication system where sym-
bols from a discrete alphabet, , are transmitted in frames
of length . The received signal at the front-end of the receiver,
that consists of a matched filter, has the form

(1)

where is the complex multiplicative noise introduced by
the frequency-flat Rayleigh fading channel, is the carrier
frequency error, is the th transmitted symbol, is a
raised-cosine pulse waveform, is the symbol period,

is the time-varying relative delay between the re-
ceived signal and the local clock reference, and is addi-
tive white Gaussian noise (AWGN) with power spectral density

. Sampling the matched filter output with rate and as-
suming that that the raised cosine waveform has finite du-
ration (which is always the case in practice), we can write the
resulting discrete-time signal as

(2)

where , , , ,
, denotes discrete-time, and in-

dicates the ISI span resulting from the limited time duration of
. Note that, after symbol rate sampling, the noise term

remains white with variance . Using vector notation, we ar-
rive at the convenient representation

(3)

by defining the channel vector

the symbol vector and
using the symbol to denote transposition.

The general objective is to jointly estimate the transmitted
symbols , the signal timing

, the complex fading coefficients
, and the frequency offsets
, using the set of received

signals . For clarity of presentation,

however, we will only consider here the detection of
and the estimation of and , while assuming

. The proposed technique, however, can be easily
extended to the general case where is also a time-varying
magnitude to be estimated.1

B. State-Space Representation

Before applying SMC techniques, we model the signal of in-
terest as a dynamic system in state space form. Following [8],
we can model the symbol timing as a first order autoregressive
(AR) process

(4)

where the perturbation variable is assumed to be a zero-mean
Gaussian with variance . It should be remarked that (4) is used
to model time selectivity in the wireless link, and, therefore, it
is not due to any timing corrections performed at the receiver.
The process parameters and should be chosen to account
for the physical channel rate of variation.

Similarly, the variation of the fading coefficient can be
modeled by a second order autoregression driven by a complex
white Gaussian process [9]

(5)

where the values of the coefficients of the autoregressive process
and and the variance of the zero-mean complex white

Gaussian noise are functions of the fading rate of the channel.
Taking into account the structure of , and combining (3)

with , (4) and (5), we obtain the following dynamic
state-space representation of the communication system:

state equation (6)

observation equation (7)

where

, and

...
...

...
. . .

...

is a shifting matrix, is
an vector, and is a
perturbation vector that contains the new symbol, . Note
that the system state at time is given by ( , , ), while
the model parameters, , , , , , , and are assumed
fixed and known.

1Specifically, the frequency offset can be handled in the same way as the delay
� , as described in the subsequent sections.
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III. SEQUENTIAL MONTE CARLO ALGORITHM

A. Particle Filtering

The fading coefficients in (6) and (7) can be considered
nuisance parameters, i.e., they must be handled properly but we
do not need to estimate them explicitly. Hence, we subsequently
focus on the estimation of the sequence of reduced states up to
time , , from the collected observations,

. From a Bayesian perspective, all necessary information
is contained in the joint posterior probability distribution func-
tion,2 . Since the latter distribution is, unfor-
tunately, analytically intractable and prevents the derivation of
closed-form Bayesian estimators, we use a particle filter to rep-
resent the posterior pdf by means of a discrete probability mea-
sure with random support. Specifically, we denote the measure
at time as

(8)

where and are sample trajectories, also referred as par-
ticles, and is the importance weight.

Using (8), the posterior pdf is approximated as

(9)

where

if
otherwise

and Bayesian estimators of the symbols, the delay, or both, are
straightforward to derive.

B. Sequential Importance Sampling

A major advantage of the particle filtering approach is the
possibility to build the discrete measure sequentially, i.e.,
to compute recursively from when the th observa-
tion becomes available. One of the most popular particle fil-
tering techniques is the so-called sequential importance sam-
pling (SIS) algorithm [10].

According to the importance sampling (IS) principle [4], an
empirical approximation of a desired pdf can be obtained
by drawing particles from an importance function or proposal
pdf, , which is strictly positive and has the same
domain as .

The resulting particles are assigned (non-nor-
malized) importance weights of the form

(10)

In the synchronization application presented in this paper, the
desired distribution is ; hence, an importance
function of the form is needed.

2Since � 2 [0; T ) is a continuous random process, the joint sequence
fs ; � g cannot be assigned a probability mass, despite the discrete
alphabet of the symbols S .

Assuming a proposal pdf that admits a factorization of the
form

(11)

the sequential application of the IS principle has the following
steps.

1) Importance sampling. We denote the probability mea-
sure at time as .
When is observed, the state is propagated one time step
according to

(12)
Note that given the only random variable in is

.
2) Weight update. Once the new particles have been drawn,

the importance weights are updated by

(13)

Last, the importance weights are normalized.

C. Computation

The proposed SIS algorithm requires the numerical evalua-
tion of the likelihood function in the weight update equation

. Let denote the multi-
variate Gaussian distribution with mean and covariance

, and assume a Gaussian prior for the fading process, i.e.,
. Then, it is straightforward to show

that

(14)

where

and

is a complex Gaussian pdf. Notice that the predictive channel
mean

(15)

and the predictive covariance matrix

(16)

can be obtained in closed-form using a Kalman filter [5], [6].
Therefore, the integral in (14) can be solved to yield

(17)
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where

and

As for the importance function, a tradeoff between sampling
efficiency and practical feasibility must be achieved. The op-
timal importance function, which minimizes the variance of the
weights [10], is the posterior pdf

but it cannot be sampled directly due to the nonlinearity of the
observations with respect to the delay, . On the other hand,
the simplest proposal density is the prior pdf

which turns out to be very inefficient [10], meaning that a large
number of particles is necessary in order to attain a good ap-
proximation of . Therefore, we propose a com-
promise importance function where the delay is sampled from
the prior while the new datum is drawn using likelihood
information. Specifically, at time , we will use the function

(18)

which can be sampled in two steps. First, we obtain a new delay
particle

(19)

and then we draw a sample of the transmitted symbol from the
first distribution on the right-hand side of (18). This is feasible
because we can rewrite as

(20)

where is a symbol in the modulation alphabet. Notice
that the likelihood on the right-hand side of (20) can be evalu-
ated using (17). The resulting importance weights for the new
particles are given by

(21)

where

(22)

(23)

, and and

are the predictive channel mean and covariance matrix,

respectively, obtained by Kalman filtering from the observations
and the th state trajectory, .

It is important to remark that the implementation of the pro-
posed SIS algorithm requires a bank of Kalman filters (one for
each particle) in order to compute the fading process statistics
that are needed for the importance pdf and the weight update
equation. The combination of the SIS algorithm and Kalman
filtering has already been applied to other communication prob-
lems and is sometimes termed mixture Kalman filter (MKF)
[11].

D. Smoothing

An important characteristic of the digital transmission system
represented by (6) and (7) is that, for , each transmitted
symbol contributes to successive observations, where is
the ISI span parameter. Specifically, the symbol , is a compo-
nent of each data vector in the sequence

(24)

and, therefore, it is statistically dependent on the corresponding
observations

(25)

As a consequence, a reliable detection of the symbol sequence
up to time , , requires adequate processing of (at least) the
observations .

A large ISI span has pernicious effects on the SIS algorithm,
which requires a very large number of particles to attain a good
performance. The usual strategy to account for this difficulty is
to perform some type of smoothing [10], [12]–[14]. Fixed-in-
terval smoothing algorithms [10], [15] do not fit the timing re-
covery problem requirements well because they involve reverse
time processing.3 Generic fixed-lag smoothing consists of es-
timating the state at time (where is the smoothing
lag) using the observations up to time . The simplest approach
to achieve this is to run the SIS algorithm, as described in the
previous section, up to time before detecting the symbol at
time . This method does not imply any extra computa-
tions but yields poor performance because it does not address the
true problem, which is the accurate weighting of particles [10].
Alternative approaches, based on approximations, have been
proposed [12], the most straightforward of which is to work
with the posterior distribution and its asso-
ciated likelihood, , instead of

and , respectively [13],
[14].

The proposed SIS algorithm can be used, with suitable mod-
ifications, to recursively compute a discrete smooth probability
measure of the form

(26)

which yields an approximation of the desired pdf,
. To obtain the new algorithm, we

substitute the importance and likelihood functions as in the

3Let x and y denote the states and available observations.
A fixed-interval smoothing algorithm approximates p(x jy )
sequentially and then performs a second stage of processing where
p(x jx ; y ); . . . ; p(x jx ; y ); . . . ;p(x jx ; y )
are approximated.
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equation shown at the bottom of the page. As a result, the
former importance sampling and weight update equations, (12)
and (13), respectively, become

(27)

and

(28)

where is the smooth likelihood given by

(29)

The summation in the above equation is car-
ried out over all possible combinations of the sequence

. Given the th particle , each
symbol combination yields one sequence of subsequent data
vectors .

A convenient form of the proposal distribution in (27) is

(30)

where the delay is drawn from the corresponding prior
, while the data are drawn from

. Recalling that the symbols are
modeled as i.i.d. uniform random variables, the latter distribu-
tion can be decomposed as

(31)

and each likelihood in the summation can be numerically com-
puted using

(32)

where and are defined as in (22) and (23), respec-
tively.

Some simplification can be achieved if we notice that in order
to build given only one symbol, , needs
to be sampled. Hence, we can write

(33)

and let

(34)

while the probability mass function (pmf) is de-
fined according to (31) [see (35), shown at the bottom of the
page], where the summation is over all possible com-
binations of the sequence .

The probability measure can be used to sequentially esti-
mate the epoch and the received data, namely

(36)

is the (approximate) minimum mean-square error (MMSE) es-
timate of the relative delay of the th symbol, while

(37)

is the marginal MAP estimate of given .

E. Resampling

A major problem in the practical implementation of the
SIS algorithm described so far is that the discrete measure

degenerates quickly, i.e., after a few time steps, most of
the importance weights have negligible values
and only a few particles with significant weights remain
useful. The common solution to this problem is to resample
the particles [10]. Resampling is an algorithmic step that
stochastically eliminates particles with small weights, while
those with larger weights are replicated. In its simplest form,
resampling takes as an input and produces a new dis-
crete measure , where

with probability . The
resampled trajectories are all equally weighted (i.e., all impor-
tance weights are reset to ).

Resampling at every time step is not needed in general. For
the algorithms proposed in this paper, we have considered that

SIS SIS with smoothing

(35)
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Fig. 1. Open-loop architecture.

resampling is carried out whenever the effective sample size of
the particle filter [10], approximated as

(38)

goes below a certain threshold (typically a fraction of ). Intu-
itively, the effective sample size represents the number of inde-
pendent particles drawn from the true posterior distribution of
interest that would be needed to compute signal estimates with
the same quality as those obtained from .

F. Complexity

Comments regarding the complexity of the proposed method
are in order. Equation (32) means that, at time , a Kalman
smoother has to be run for each particle and for each possible
combination of symbols , which involves
Kalman prediction and update steps for each symbol sequence.
Therefore, the complexity of processing each particle grows
exponentially with , yielding , where is the
number of elements in the symbol alphabet.

On the other hand, it must be taken into account that the
propagation of each particle in can be done independently,
so the algorithm lends itself to efficient implementation using
massively parallel hardware, except for the resampling step dis-
cussed in Section III-E (see [16] and [17] for a detailed discus-
sion on the parallelization of resampling). Using state of the art
techniques, resampling can be carried out with opera-
tions, where is the number of particles; hence, the overall
complexity of the proposed SMC smoothing algorithm grows
with .

IV. RECEIVER ARCHITECTURES

Although the transmitted data with their timing can be es-
timated together using the SIS algorithm described above, it
should be observed that the proposed method does not remove
ISI. In other words, although the relative symbol delays are
estimated, the sampling instants are not corrected to at-
tain a better timing and avoid ISI. As a consequence, the SER
that can be attained by detecting according to (37) is lower
bounded by the SER of the maximum likelihood sequence de-
tector (MLSD) with perfect knowledge of the sequence of com-
posite channel vectors . In general, with the assumption
that the autocorrelation of the continuous-time delay process,

is wider than the symbol period , a lower SER is achieved

with a matched-filter receiver sampled at because
ISI-free observations can be obtained.

The SER of the matched-filter detector can be attained with
the proposed SMC algorithm if an adequate receiver architec-
ture is used. Below, we present two possible configurations that
use the SMC approach for recovering the timing and the channel
complex amplitude, thereby allowing the removal of the ISI be-
fore detection.

A. Open-Loop Receiver

We consider first the double branch structure depicted in
Fig. 1. In the upper branch, the SMC block performs the pro-
posed SIS algorithm, which is used to compute Monte Carlo
MMSE estimates of the timing according to (36). The received
signal is held in the lower branch, until the delay estimate is
computed, and then sampled at to obtain the
observation

(39)

where and
, if , while ,

if . Ideally, when , the ISI is
removed and

(40)

Hence, minimal SER is achieved by multiplying by , followed
by a simple threshold detector that makes a decision based on
the minimal Euclidean distance between and the elements in
the symbol alphabet, . The aforementioned channel estimate
is computed as

(41)

where

(42)

is the posterior channel estimate associated with the th particle
and calculated by Kalman filtering. Note, however, that this es-
timate cannot be obtained until the symbol sequences up to time

, are available in the particle filter, which occurs at
time due to the smoothing. Hence, there is need to hold

until it can be conveniently de-rotated for accurate detection,
as depicted in Fig. 1.
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TABLE I
SIS WITH RESAMPLING FOR THE OPEN-LOOP ARCHITECTURE

Fig. 2. Closed-loop architecture.

The recursive steps of the proposed SMC algorithm with the
open-loop architecture are summarized in Table I.

B. Closed-Loop Receiver

The main drawback of the previous configuration is the ne-
cessity of sampling the received signal twice per symbol period.
To avoid this drawback, the closed-loop receiver architecture
shown in Fig. 2 can be used.

The SMC block represents the SIS algorithm with resampling
described in Section III, which yields asymptotically optimal
MMSE estimates of the relative symbol delay . This es-
timate is fed back and used to adjust the epoch of the next obser-
vation. Therefore, instead of sampling the received signal uni-
formly, to obtain , the sampling time is adaptively
selected according to the most recent estimate of the relative
symbol delay, to yield , where
is the MMSE prediction of .

The observations collected in this way have the form

(43)

where and the symbol vector
is , if , and

otherwise. Notice that if ,
the resulting observation is free of ISI and the
corresponding symbol can be optimally detected multiplying

by and using a simple threshold detector. As in the
open-loop structure, the final detection step has to be delayed
until is available at time .

The recursive steps of the proposed algorithm are summa-
rized in Table II.

V. POSTERIOR CRAMÉR–RAO BOUND

Although available statistical results guarantee that the MMSE
estimate of the delay provided by the SIS algorithm
converges asymptotically to the true MMSE delay estimate, it
is apparent that, for , we only obtain an approximation
to the desired estimator and, as a consequence, a certain
degradation in performance of the proposed adaptive receivers
can be expected. In order to study the efficiency of the proposed
estimation method, it is of a great interest to compute the

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:05:19 UTC from IEEE Xplore.  Restrictions apply. 



2862 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

TABLE II
SIS WITH RESAMPLING FOR THE CLOSED-LOOP ARCHITECTURE

variance bounds on the estimation errors and compare them
with the lowest bounds corresponding to the optimal estimator.

When the parameter of interest is assumed fixed, the lower
bound for the variance of any unbiased estimator is given by
the well-known Cramér–Rao bound (CRB) [18] which, in turn,
is obtained from the inverse of the Fisher information matrix
(FIM). However, for Bayesian models where the parameter of
interest is considered random, the lowest achievable variance
is given by the PCRB [19], [20]. Therefore, we wish to
derive the PCRB associated to the timing process in
order to obtain a lower bound for the MSE of the delay
estimates.

We define the dimensional vectors
and , where is an arbitrary estimate of

. For the signal model of interest in this paper, the PCRB can
be stated as

where is the FIM, which is defined,
element wise, as

Notice that the th element in the diagonal of , which
we subsequently denote as , corresponds to the
inverse of the lowest achievable MSE in the estimation of .

It has been shown [20] that the direct computation of the FIM
can be avoided by using a recursive method which sequentially
evaluates the inverse MSE of , specifically

(44)

The terms in (44) are

(45)

(46)

(47)

(48)

(49)

where denotes the second derivative operator, defined as
and is the natural logarithm.

Recursion (44) is initialized at time , in the absence
of observations, by considering , which is the
inverse of the variance of the uniform distribution in . No-
tice that this is the only a priori information we use regarding
the delay.

It is straightforward to numerically evaluate (45)–(48), which
yield

(50)

(51)

while, as for (49)

(52)

Unfortunately, it is not possible to obtain a closed-form expres-
sion for the expectation in the above equation. Instead, as sug-
gested in [20], we can estimate it using Monte Carlo simulation.
When i.i.d. state trajectories are generated, we approximate

as

(53)
where .

VI. COMPUTER SIMULATIONS

In order to obtain numerical results, we considered a differ-
entially encoded binary modulation with symbol alphabet { 1}
and symbol period and a flat fading channel with
fading rate 0.0022. The delay was modeled as a first order AR
process with parameter and noise variance

(unless otherwise specifically stated). The pulse waveform
was a time-limited raised-cosine with a roll-off factor
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Fig. 3. NMSE for SMC-based timing estimators and AML TEDs.

that yields an ISI span of symbols. Transmission in
frames of bits was simulated.

Timing recovery was assessed in terms of the normalized
mean-square error (NMSE) in the estimation of the symbol de-
lays, . The NMSE was numerically estimated by running sev-
eral independent simulations and averaging their results. Specif-
ically, for independent trials, the MSE was approximated as
NMSE where

is the estimate of the delay for the th symbol in the th
simulation. The NMSE of the proposed SMC techniques was
compared with the approximate maximum likelihood (AML)
timing error detector (TED) described in [1, Sec. 7.5]. The AML
TED is based on a low signal-to-noise ratio (SNR) assumption
and uses a receiver structure consisting of two matched filters
(see [1] for details) to adaptively estimate the delays and sup-
press the ISI. For this classical technique, we considered two al-
ternatives: one with known channel and another one where the
channel coefficients were estimated using a Kalman filter.

Fig. 3 shows the NMSE attained by the proposed SMC blind
receivers, both with open-loop and closed-loop configurations,
and the AML TEDs for several values of SNR. The particle
filtering algorithms were implemented with a smoothing lag

and 200, 300 particles. Each value of the NMSE
was averaged over independent simulations. The SMC
receivers with open- and closed-loop structures exhibited sim-
ilar performances and attained consistently lower NMSEs than
the AML TEDs.

Next, we considered the evolution of the NMSE within
one frame NMSE ,

and compared it with the lower bound
given by the PCRB as described in Section V. Fig. 4 shows the
results we obtained, for fixed SNR dB, after
independent simulation trials and using particle filters with

particles and lag . We observed that the
proposed SMC algorithms perform close to the theoretical
limit, while the NMSE of the AML TEDs fell considerably
further from the PCRB.

Fig. 4. Time evolution of the NMSE versus the PCRB.

Fig. 5. MSE versus variance of the delay AR process.

In order to establish the relative merit of the open- and
closed-loop architectures, we carried out a computer exper-
iment where different values of the variance of the timing
process were considered. Fig. 5 shows the NMSE for the
two proposed configurations and different values of . As
before, we kept , and show the average results
of simulations. The two receivers performed almost
identically for low values of while, for higher values of
the variance, the open-loop structure attained a clearly lower
NMSE. This is consistent with the fact that the closed-loop
receiver relies on a prediction of the delay in order to sample the
observed signal, while in the open-loop scheme it is estimated.

Finally, we assessed the bit-error rate (BER) of the proposed
receivers for increasing SNR. Let us remark that there is a delay
ambiguity inherent to blind data detection. In particular, any
shift of time steps in the optimal (MAP) data sequence esti-
mate is also a valid MAP estimate as long as the delay sequence
is also time-shifted accordingly, i.e., , with integer
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Fig. 6. BER versus SNR.

. This ambiguity is easily removed if the data sequence length,
, is a priori known, as assumed in this paper.
In Fig. 6, the performance of the two SMC algorithms is

compared with the two AML TEDs and also with the optimal
matched-filter detector (with perfect knowledge of and

) that provides a lower bound for the BER. The parameters
of the particle filters were 200, 300 and . It is
seen that the BER achieved by the SMC adaptive receivers is
very close to the optimal BER, obtained using the genie-aided
matched filter, and significantly lower than the BER of the
receivers based on the AML TEDs.

VII. CONCLUSION

We have presented a novel adaptive algorithm for blind syn-
chronizationanddatadetectioninfrequency-flatfast-fadingwire-
less channels based on a Bayesian estimation approach and the
SMC methodology. Assuming that the relative delay between the
received signal and the local clock reference and the fast fading
complex channel vary according to autoregressive models, the
proposed method obtains asymptotically optimal estimates and,
when combined with adequate receiver architectures, minimal
BER. In particular, we have proposed two candidate structures,
withopen-loopandclosed-loopconfigurations.Theperformance
of the resulting blind adaptive receivers is studied both analyti-
cally, through the derivation of the PCRB for timing estimation,
and through computer simulations. The latter show a close-to-
optimal performance of the proposed receivers both in terms of
timing recovery and BER.
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