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We propose a method for blind multiuser detection (MUD) in synchronous systems over flat and fast Rayleigh fading channels. We
adopt an autoregressive-moving-average (ARMA) process to model the temporal correlation of the channels. Based on the ARMA
process, we propose a novel time-observation state-space model (TOSSM) that describes the dynamics of the addressed multiuser
system. The TOSSM allows an MUD with natural blending of low-complexity particle filtering (PF) and mixture Kalman filtering
(for channel estimation). We further propose to use a more efficient PF algorithm known as the stochastic M-algorithm (SMA),
which, although having lower complexity than the generic PF implementation, maintains comparable performance.
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1. INTRODUCTION

When multiuser detection (MUD) was introduced in the
eighties, it has received a great deal of attention due to its
ability to reduce multiple access interference (MAI) and po-
tential for increasing the capacity of CDMA systems. Since
then, numerous detectors have been proposed in the litera-
ture for both synchronous and asynchronous transmission
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and some popular ones include the decorrelating detector,
the minimum mean square error (MMSE) detector, the mul-
tistage detector, and the decision feedback detector [1].

In practice, distortion in signal strength due to time-
varying fading channels must be attended while perform-
ing MUD. Even though noncoherent detection methods as
proposed in [2] are often appealing owing to their sim-
plicity since no inference on fading channels is needed, co-
herent detection has been proved to deliver better perfor-
mance [3]. With coherent detection, estimation of chan-
nels can be obtained with or without pilot signals. Between
them, significant amount of research has been devoted to
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schemes without using pilot signals, or blind MUD methods.
Blind MUD methods are bandwidth more efficient and the
approaches proposed, to name a few, include the recursive
least square (RLS) [4, 5], subspace-based [6], expectation-
maximization [7], genetic algorithm [8] and Kalman fil-
tering [9, 10, 11, 12, 13, 14]. However, most of the ap-
proaches cited above assume slow or quasi-static fading
channels.

In this paper, we focus on blind MUD for fast flat
Rayleigh fading channels and in synchronous systems. In
particular, we assume to know a priori the second-order
statistics of the underlying channel, based on which a
mathematical tractable approximation using autoregressive-
moving-average (ARMA) model is adopted. The approx-
imation enables a dynamic state-space modeling (DSSM)
of the problem, which lends itself naturally to a Kalman-
filtering-related detection solution. The use of Kalman fil-
tering for blind MUD on similar modeling has been seen in
[11, 12, 14], where the decision-directed approach was used
to estimate the channel variable necessary for the Kalman
filtering. One inherent drawback with the decision-directed
approach is the error propagation, which greatly limits the
performance of such implementation.

Recently, the combined (mixture) Kalman filtering and
sequential importance sampling (particle filtering) algo-
rithms have been applied to blind detection of convolutional
codes [15], space-time trellis codes [16], and blind MUD
[17] over fading channels. The mixture Kalman filtering
(MKF) approach is shown to greatly reduce the error prop-
agation of the decision-directed implementations and thus
exhibits considerable performance improvement. However,
in the proposed use of the MKF to blind MUD in [17], par-
ticle filtering (PF) was mainly intended for channel tracking
and the embedded MUD at a symbol interval was achieved
by an optimum detector, which has exponential complexity
with the number of users. Consequently, the proposed MKF
algorithm becomes prohibitively complex even for systems
with moderate number of users.

In this paper, unlike all existing Kalman filtering detec-
tors, a completely different viewpoint to multiuser systems is
taken and we propose a novel time-observation state-space
model (TOSSM). Even though the TOSSM is equivalent to
the common DSSM, it allows the PF-based multiuser detec-
tion to be naturally blended with the mixture Kalman fil-
tering for channel estimation. The new mixture Kalman fil-
tering algorithm samples one user at a time and therefore
permits efficient implementation. We further propose to use
a more efficient PF algorithm known as the stochastic M-
algorithm (SMA), which has shown to attain additional com-
plexity reduction over the generic PF implementation and yet
maintain comparable performance.

The rest of the paper is organized as follows. In Section 2,
the problem of blind MUD is formulated. In Section 3, a
novel TOSSM is described and in Section 4, the optimum so-
lution is discussed. Particle filtering and SMA solutions are
proposed in Sections 6 and 7, respectively. The simulation
results are presented in Section 8. Section 9 contains some
concluding remarks.

2. PROBLEM FORMULATION

Consider a synchronous CDMA system with a processing
gain C and K users. Let T denote the symbol duration and
sk(t) the normalized deterministic signature waveform as-
signed to the kth user. Then, at the nth symbol interval, the
received signal y(t) can be expressed as a summation ofK an-
tipodally modulated synchronous signature waveforms plus
noise, that is,

y(t) =
K∑
k=1

an,kbn,ksk(t) + u(t), t ∈ [(n− 1)T ,nT
]
, (1)

where bn,k ∈ {−1, +1} is the BPSK modulated bit transmit-
ted by the kth user, ak,n the CSI (fading coefficient) of the kth
user, and u(t) the received zero mean additive complex white
Gaussian noise with variance σ2. The cross-correlation be-
tween the signature waveforms of the users is given by the
cross-correlation matrix R, where element rk1,k2 represents
the cross-correlation between the signature waveform of the
k1th and the k2th user and is defined as

rk1k2 =
〈
sk1 , sk2

〉 = ∫ nT

(n−1)T
sk1 (t)sk2 (t)dt. (2)

The channel for each user is considered as Rayleigh flat fad-
ing channel and ARMA processes can be adopted to model
its time correlation with satisfaction [11, 15, 18]. Given an
ARMA(r1, r2) process, the CSI of the kth user at the nth in-
terval ak,n can be represented as

an,k + φk,1an−1,k · · ·φk,r1an−r1,k

= ρk,0vn,k + · · · + ρk,r2vn−r2,k,
(3)

where vn,k is an i.i.d. random complex Gaussian process that
drives the ARMA process, {φk,1, . . . ,φk,r1} and {ρk,1, . . . , ρk,r2}
are the AR and MA coefficients of the model. We assume that
we know a priori the second-order statistics of the underlying
fading channel, and therefore the coefficients of the ARMA
model can be precomputed so that the power spectral density
of the ARMA process matches that of the fading channel. For
convenience, we assume that r1 = r2 = r; otherwise zeros can
be padded to the coefficients to make the orders equal.

An equivalent form of (1) consists of a set of sufficient
statistics represented by the matched filter output,

yn,k =
〈
y(t), sk(t)

〉 = ∫ nT

(n−1)T
yn(t)sk(t)dt. (4)

The set of matched filter outputs yn = [yn,1, . . . , yK ,n]T,
where (·)T stands for matrix transpose, can be represented
in vector-matrix form as

yn = RAnbn + un, (5)

where An = diag{an,1, . . . , an,K} is the diagonal matrix of the
channel state information, bn = [bn,1, . . . , bn,K ]T is the user
date vector, and un is the complex Gaussian noise vector with
independent real and imaginary components and with co-
variance matrix equal to σ2R. Our objective is to perform
sequential symbol detection without knowing the CSI an,k,
that is, blind multiuser detection.
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3. TIME-OBSERVATION STATE-SPACE
SYSTEM MODELING

A succinct mathematical representation of a time-varying
system is the dynamic state-space model (DSSM). The state-
space representation of CDMA systems in flat fading chan-
nels can be found in the existing literatures [11] and it can be
expressed as

hk,n = Qkhk,n−1 + gvk,n ∀k,

ak,n = ρT
k hk,n ∀k,

yn = RAnbn + un,

(6)

where hT
n,k = [hn,k · · · hn−r,k] is an (r + 1)× 1 channel state

vector, ρT
k = [ρk,0 · · · ρk,r],

Qk =


−φk,1 · · · −φk,r 0

1 · · · 0 0
...

...
...

...
0 · · · 1 0

 ,

g =


1
0
...
0

 .
(7)

In (6), hk,n for all k and bn are the unknowns to be esti-
mated. Note that the observation yn is not linear in hk,n for
all k and bn, and therefore the Kalman filter cannot pro-
vide the optimum solution. In fact, the optimum solution
can be obtained by a so-called splitting Kalman filter, where,
at time n, 2n Kalman filters are required. The complexity of
the splitting Kalman filter is exponential with both time and
users and thus computational prohibited. Instead, particle
filtering can be used to obtain good approximations of the
optimum solution with reduced complexity. PF algorithms
on (6) incorporated with Kalman filtering were proposed
in [17]. However, as mentioned in the introduction, due to
the structure of (6), particles of bn must be sampled jointly,
and the complexity becomes exponential with the number of
users. The prohibitive complexity on large user systems im-
plies that this PF algorithm is infeasible for practical applica-
tions. To circumvent this difficulty, in the following we intro-
duce a time-observation state-space model (TOSSM) for the
system:

p
(

b1:N , ȳ1:NK
) = p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(

b1:N , ȳ1:NK−1
)

= p
(
ȳNK |b1:N , ȳ1:NK−1

)
×p(bN ,K |bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(
bN ,K

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
.

(8)

In developing the TOSSM, we start with the Cholesky
factorization of the cross-correlation matrix R as

R = FTF, (9)

where F is a uniquely defined K × K lower triangular ma-
trix. Now, right multiplying (FT)−1 with the matched filter
output, we obtain

ȳn = (FT)−1yn = FAnbn + ūn (10)

or, equivalently,

ȳn = FBnan + ūn, (11)

where Bn = diag{bn,1, . . . , bn,K} is the diagonal user data
matrix, and an = [an,1, . . . , an,K ] is the K × 1 vector of
CSI. Since the covariance matrix of ūn becomes E[ūnūT

n] =
σ2F−TRF−1 = σ2I, where I is an identity matrix, ȳn is called
the whitened matched filter (WMF) output. Next, define a
tall channel vector of K(r + 1) × 1 as hn = [hT

1,n · · ·hT
K ,n]T

and the channel transition becomes

hn = Qhn−1 + Gvn, (12)

where vn = [v1,n, . . . , vK ,n]T, Q = diag(Q1, . . . , QK ), and G =
diag(g, . . . , g︸ ︷︷ ︸

K

) are K(r+1)×K(r+1) and K(r+1)×K matrices.

We can thus express an by hn in a compact form by

an = Phn, (13)

where P = diag(ρT
1 , . . . , ρT

K ) is of dimension K × K(r + 1).
Now by replacing an in (11) by (13), we have

ȳn = FBnPhn + ūn. (14)

If we denote the kth row of F by fT
k , the kth WMF output ȳn

can be written as

ȳn,k = fT
k BnPhn + ūn,k, (15)

where ūn,k is the kth element of ūn. Now, instead of consid-
ering the system evolving only along time, we imagine a sys-
tem progressing alternately along the path of time and the
WMF observations ȳn,k. The concept is further illustrated
in Figure 1. To describe this new system, we must collapse
the time index n and the observation index k into one time-
observation index l, where l = (n− 1)K + k. This conversion
is reversible or, in other words, we can also calculate k and
n from l by k = mod(l,K) and n = (l − k)/K + 1, where
mod(k,K) is the k modulo K operation. In the following de-
scription of the TOSSM indexed by l, all k and n are assumed
to be obtained from the corresponding l. Now, we introduce
a K × K auxiliary matrix B̃l = diag{bn,1, . . . , bn,k, 0 . . . , 0}.
The state-space representation for the new time-observation
system indexed by l can be then constructed as

hl =
Qhl−1 + Gvl if k = 1,

hl−1 if k �= 1,

ȳl = fT
k B̃lPhl + ūl

(16)
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ȳ1

ȳ2
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Figure 1: Illustrative plot of the TOSSM.

and we call (16) the TOSSM. Note that (16) and (6) describe
the same system. There are, however, key differences between
the two models. Unlike (6), the state transitions of hl in the
TOSSM are time (or index) varying, that is, at different l,
different transition is applied. Specifically, when k = 1 or,
equivalently, n increases by 1, hl updates according to the
ARMA channel model, and otherwise when k �= 1 and n re-
mains unchanged from l − 1, hl is assumed to be static. Ad-
ditionally, in the TOSSM, the number of the unknown user
bits changes with l and especially, only one new unknown
signal bn,k is included each time when l is incremented by
one. Therefore, if we assume perfect detection at l−1, that is,
bn,1, . . . , and bn,k−1 are known exactly, then there is only one
unknown user bit to be detected. Note that in the conven-
tional DSSM (6), K unknown users bits need to be detected
altogether as the system evolves to time n. This is the key of
the model that leads to efficient particle filtering solutions.
We, however, want to stress that the decision on bn,k (except
k = K) is not finalized at l. Since the observations from yl+1

up to yl+r with r = K − k all contain information about bn,k,
the final decision is reached only at l + r, or in general, when
k = K .

4. OPTIMUM BAYESIAN BLIND DETECTION

In a Bayesian framework, the optimum decision on bN can
be obtained by the marginalized posterior mode (MPM) cri-
terion, which is expressed as

(
b̂N ,k

)
MPM = sgn

( ∑
bN∈{−1,1}K

bn,k p
(

bN | ȳ1:NK
))

, (17)

where p(bN | ȳ1:NK ) is the posterior distribution that is es-
sential for computing (17) and the subscript 1 : NK de-
notes a collection of the variable indexed from 1 to NK ,
e.g., ȳ1:NK = { ȳ1, . . . , ȳNK}. Notice that the posterior dis-
tribution p(bN | ȳ1:NK ) is independent of b1:(N−1), that is, the
bits transmitted prior to time n. Further, the marginalization

in (17) suggests that (b̂N ,k)MPM is also independent of other
users’ bits transmitted at n. Therefore, the MPM solution is
immune to decision errors on b1:(N−1) and other users’ bits
transmitted at n.

Now, to derive p(bn| ȳ1:NK ), marginalization on p(b1:N |
ȳ1:NK ) over b1:(N−1) is needed, that is,

p
(

bN | ȳ1:NK
) = ∑

b1:N−1

p
(

b1:N | ȳ1:NK
)

=
∑

b1:N−1
p
(

b1:N , ȳ1:NK
)∑

b1:N
p
(

b1:N , ȳ1:NK
) .

(18)

Considering the TOSSM (16), we found the joint distribu-
tion in (8), where the last equation was obtained by assum-
ing the noninformative priors for bN ,K , that is, p(bN ,K =
1) = 0.5. Equation (8) indicates a recursive calculation of
p(b1:N , ȳ1:NK ) from l = 1 to NK through multiplying the
marginal likelihood p( ȳl|bn,1:k, b1:n−1, ȳ1:l) at each recursion.
These likelihoods p( ȳl|bn,1:k, b1:n−1, ȳ1:l) for l = 1, . . . ,NK
are obtained by marginalizing the channel state vector hl

from p( ȳl, hl|bn,1:k, b1:n−1, ȳ1:l), and we show in the appendix
that

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l

) = N
(
ml, cl

)
(19)

and the mean ml and variance cl can be calculated sequen-
tially through the Kalman filter. This is equivalent to say
that p( ȳl|bn,1:k, b1:n−1) can be calculated from a run of the
Kalman filter. Now, revisiting (18), we see that, to calculate
p(bN | ȳ1:NK ), p( ȳl|bn,1:k, b1:n−1) must be evaluated for 2NK

combinations of b1:N , or 2NK Kalman filters are needed, each
of which corresponding to one possible combination. As a
result, totally 2NK Kalman filters are required for the MPM
solution. The expansion of the numbers of the Kalman fil-
ters with l presents a tree structure illustrated in Figure 2.
The MPM solution has thus a complexity exponentially in-
creasing with both time n and the number of users K . This
is apparently a formidable task not possible for real applica-
tions. We, therefore, must resort to suboptimum solutions
with manageable complexity. One choice is particle filtering.

5. A DECISION-DIRECTED APPROACH
TO BLIND MUD

A decision-directed approach to blind MUD was proposed in
[11] based on DSSM (6). We describe in the following a cor-
responding decision-directed approach on the TOSSM (16).
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Figure 2: The tree structure of the optimum solution. Each path in the tree represents a run of the Kalman filter.

Predictive step: h̃l =
Qĥl−1 + Gul if k = 1,

ĥl−1 if k �= 1,

Σ̂l =
QΞ̂l−1QT + σ2GG� if k = 1,

Ξ̂l−1 if k �= 1.

Detection step:

b̂n,k = sgn(zn,k);

zn,k = ( ȳl −
∑k−1

j=1 fk, jai, jbi, j)a∗i,k ;

ai,k = ρkh̃l .

Update step:

K̂l = Σ̂lĈH
l /ĉl with ĉl = ĈlΣ̂lĈH

l + σ2,

ĥl = h̃l + K̂l( ȳl − Ĉlhl),

Ξ̂l = (I− K̂lĈl)Σ̂l,

where Ĉl = fT
k B̂lP and B̂l = diag{[b̂n,1, . . . , b̂n,k , 0 . . . , 0]}.

Algorithm 1: Decision-directed detector (DD).

One distinct feature of the decision-directed approach on the
TOSSM is that the decision on only one user’s bit is made at

each l. Specifically, let b̂n,k−1 and ĥl−1 represent the decisions
on bn,k−1 and hl−1 at l − 1, then the decision-directed ap-
proach at l can be summarized in Algorithm 1. Clearly, the
above decision-directed algorithm is equivalent to one run
of the Kalman filter, and therefore it is a lot simpler than
the optimum MPM solution. Nevertheless, the user bit is de-
termined based on the prediction of the channel states and
the decisions on previous users’ bits, and thus it is not op-
timum. Compared with the algorithm based on DSSM (6),
at time k with k from 1 to K , the above algorithm makes

a decision on one user at a time and updates the channel
state vector hl whenever a decision is reached. The updated hl

will then influence the decision on bn,k+1. Therefore, in both
a good and a bad way, decisions at early stages (smaller k)
would have more impact on decisions at later stages (larger
k) than those made by the algorithm on DSSM. If detec-
tion error exists in early stages, they will be propagated into
later stages. It is therefore beneficial to rank the users accord-
ing to the estimated SNR. The performance of the decision-
directed algorithm is, however, ultimately limited by error
propagation.

6. PARTICLE FILTERING DETECTOR
FOR BLIND MUD

Particle filtering belongs to the family of Monte Carlo sam-
pling which aims at using samples to approximate posterior
distribution. However, particle filtering distinguishes itself by
employing a sequential importance sampling scheme, and
in particular, it is designed for nonlinear and non-Gaussian
systems described through state-space modeling such as the
problem concerned.

In the context of the proposed problem, when yN , or
equivalently ȳN , is observed at time N , the objective of par-
ticle filtering is to draw, say, J weighted random samples

{b
( j)
1:N ,w

( j)
NK}Jj=1 from p(b1:N | ȳ1:nK ), where w

( j)
NK is the weight

of the jth sample b
( j)
1:N . With the samples, p(bN | ȳ1:NK ) can be

approximated by

p
(

b1:N | ȳ1:nK
) ≈ J∑

j=1

w
( j)
NK

NK∏
l=1

δ
(
bn,k − b

( j)
n,k

)
, (20)



Blind Multiuser Detection by Particle Filtering 135

where δ(·) is the Dirac delta function, and hence the MPM
solution of b by a simple weighted summation is

(
b̂N ,k

)
MPM ≈ sgn

( J∑
j=1

w
( j)
NKb

( j)
N ,k

)
(21)

for k = 1, . . . ,K . By the law of large numbers, the approxima-
tion will converge to the true MPM solution with the increase
of the number of samples J . If these samples are taken directly
from the posterior distribution, then all the samples have
equal weights. However, direct sampling from p(b1:N | ȳ1:NK )
is prohibited since all possible combinations of b1:N must
be evaluated on p(b1:N | ȳ1:NK ), which again requires 2NK

Kalman filters. To circumvent the difficulty, importance sam-
pling is performed where samples are taken from a proposal
importance function π(b1:KN | ȳ1:KN ) and weighted according
to

w
( j)
KN =

p
(

b
( j)
1:KN | ȳ1:KN

)
π
(

b
( j)
1:KN | ȳ1:KN

) ∀ j. (22)

Notice that π(b1:KN | ȳ1:KN ) is a very high-dimensional dis-
tribution and it is burdensome to sample the variables and
calculate the weights altogether. Fortunately, the TOSSM al-
lows a Markovian factorization on the posterior distribution
as

p
(

b1:N , ȳ1:NK
)∝ p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(
bN ,K

)
× p

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
× p

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
.

(23)

Then, if we choose the importance distribution as

π
(

b1:N |ȳ1:NK
) = p

(
bN ,k|bN ,1:K−1, b1:N−1, ȳ1:NK

)
× π

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
,

(24)

the weight can be calculated by

w
( j)
KN =

p
(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
p
(
b

( j)
N ,K

)
p
(
b

( j)
N ,K |b( j)

N ,1:K−1, b
( j)
1:N−1, ȳ1:NK

)
× p

(
b

( j)
N ,1:K−1, b

( j)
1:N−1| ȳ1:NK−1

)
π
(

b
( j)
N ,1:K−1, b

( j)
1:N−1| ȳ1:NK−1

)
= p

(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
p
(
b

( j)
N ,K

)
p
(
b

( j)
N ,K |b( j)

N ,1:K−1, b1:N−1, ȳ1:NK
)w( j)

KN−1

∝ p
(
ȳNK |b( j)

N ,1:K−1, b
( j)
1:N−1, ȳ1:NK−1

)
w

( j)
KN−1

=
∑
bN ,K

p
(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
w

( j)
KN−1

= µ
( j)
KN−1w

( j)
KN−1,

(25)

where µ
( j)
KN−1 is the weight update factor. Examining (24) and

(25), we find that given w
( j)
KN−1 and p(bN ,1:K−1, b1:N−1|

ȳ1:NK−1), the importance function (24) and the

weights (25) are known exactly as long as p( ȳNK |b( j)
1:N ,

ȳ1:NK−1) can be derived. In fact, we have indicated in
Section 4 that p( ȳNK |b1:N , ȳ1:NK−1) can be calculated
through the Kalman filter as

λNK (i) = p
(
ȳNK |bN ,K = 2∗ i− 3, b

( j)
N ,1:K , b

( j)
1:N , ȳ1:NK−1

)
= Nc

(
m

( j)
NK (i), c

( j)
NK (i)

)
(26)

for i = 1, 2 where m
( j)
l (i) and c

( j)
l (i) are calculated the same

way as shown in the appendix but for a set of b1:NK given in
(26). We can therefore obtain samples and weights using a
recursive algorithm. To put the idea in concrete procedure,
we assume that at l − 1, we have obtained from a previous

recursion the trajectories (samples) {b
( j)
0:l−1}Jj=1 appropriately

weighted with the weights {w( j)
l−1}Jj=1. Using the recent ob-

servations ȳl, we update the trajectories and weights as in
Algorithm 2. This process of recursively obtaining particles

is called particle filtering. After each recursion, the mean η
( j)
l

and covariance vectors Ξ
( j)
l are passed on to the next recur-

sion. From (21), we also see that to calculate all the elements
of {bN}MPM, w

( j)
NK is required. Therefore the decision on all

the elements can only be made after recursion l = KN and
the particles for bN ,k for k = 1, 2, . . . ,K − 1 must be stored.

In the above derivation of particle filtering, the adopted
importance function is known as optimum in the sense that
minimizes the variance of the weights. The above particle fil-
tering procedure suffers from particle impoverishment, that
is, after several recursions, some weights of the samples be-
come negligible and stop contributing to the overall evalua-
tion. To prevent it, we insert a residue resampling step [15]
after every fixed recursion. Particularly, during the resam-

pling at recursion l, the particles for b
( j)
n,1:k, the mean vectors,

and covariance matrices must be treated as a set in the re-
sampling process.

7. STOCHASTIC M-DETECTOR FOR BLIND MUD

Recently, a every efficient particle filtering algorithm called
stochastic M-algorithm (SMA) was proposed in [19] for
problems with discrete unknowns. SMA can provide simi-
lar performance as generic particle filtering but with much
reduced complexity. SMA can be considered as a particle fil-
tering algorithm with the discrete delta functions as impor-
tance functions. In addition, each trajectory produces two
samples (−1 and 1) for the binary case rather than one sam-
ple as in the generic PF. A key feature with SMA is that no
two trajectories are identical, which is however rarely true
with the generic PF. As a result, the SMA can provide more
sample diversities with less trajectories than the generic PF.
Nonetheless, notice that the number of trajectories doubles
after each sampling and therefore a selection step is required
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For j = 1 to J , do as follows.

(1) Predictive step:

Calculate

µ
( j)
l =


Qη

( j)
l−1 if k = 1,

η
( j)
l−1 if k �= 1,

and

Σ
( j)
l =


QΞ

j
l−1Q� + σ2GG� if k = 1,

Ξ
( j)
l−1 if k �= 1.

(2) Sampling step.

(a) For i = 1 and −1, calculate

(i) m
( j)
l (i) = c

( j)
l (i)µ

( j)
l and

c
( j)
l (i) = cl(i)Σ

j
l c

( j)
l

H
(i) + σ2,

where c
( j)
l = fT

k B
( j)
l (i)P, B

( j)
l (i) =

diag{b( j)
n,1, . . . , b

( j)
n,k−1, i, 0, . . . , 0};

(ii) λ
( j)
l (i) = Nc(m

( j)
l (i), c

( j)
l (i)).

(b) Sample m ∈ {−1, 1} with probability

proportional to λ
( j)
l (i)∀i.

(c) Set b
( j)
l = m.

(d) Calculate µ
( j)
l =∑i∈{−1,1} λ

( j)
l (i) and the

unnormalized weight w̄
( j)
l = µ

( j)
l w

( j)
l−1.

(3) Updating step. Calculate

(i) K
( j)
l = Σ

( j)
l c( j)(m)H

l /c
j
l (m);

(ii) η
( j)
l = µ

( j)
l + Kl( ȳl − c

( j)
l (m)µ

( j)
l );

(iii) Ξ
( j)
l = (I−K

( j)
l c

( j)
l (m))Σ

( j)
l .

Form the new trajectories b
( j)
0:l = {b( j)

l , b
( j)
0:l−1} ∀ j.

Normalize the weight as w
( j)
l = w̄

( j)
l /

∑J
j=1 w̄

( j)
l .

Algorithm 2: Particle filtering detector (PFD).

to avoid the exponential increase of trajectories. Here, we use
the optimal resampling algorithm [20] since it is a sampling-
without-replacement algorithm and does not produce repli-
cates of the same trajectories, the feature that is required by
SMA. The SMA for the problem concerned at the lth recur-
sion is outlined as in Algorithm 3.

The structure of the SMA resembles the popular M-
algorithm. However, since the SMA is still a PF algorithm,
it can provide probability information about the unknowns
and thus can be applied to iterative MUD of a coded system.

7.1. Discussion on the MPM, decision-directed,
and particle filtering solutions

Comparing the PFD and the SMD with the decision-directed
algorithm, we see that the processes along each trajectory is
almost as identical as a decision-directed algorithm except
that a sampling step is used in the place of the detection step,
and they all resemble one run of Kalman filter which corre-
sponds to a path in the tree of Figure 2. There are two paths
going out at every note in the tree, and in selecting a path,

Trajectory expansion

(1) For j = 1 to J ,

(i) perform the predictive step in the PFD Algorithm;

(ii) perform (2)(a) in Algorithm PFD;

(iii) set b
(2 j−1)
l = 1 and calculate the weight by

w̄
(2 j−1)
l = λ

( j)
l (1)w

( j)
l−1;

(iv) set b
(2 j)
l = −1 and calculate the weight by

w̄
(2 j−1)
l = λ

( j)
l (−1)w

( j)
l−1;

(v) form 2J new trajectories by setting b
(2 j−1)
l =

{b(2 j−1)
l , b

( j)
0:l } and b

(2 j)
l = {b(2 j)

l , b
( j)
0:l }.

(2) Normalize the weights w̄
( j)
k to obtain w

( j)
k .

(3) Trajectory selection: select J trajectories from 2M

trajectories using the optimal resampling algorithm.

(4) Updating step: for j = 1 to J ;

perform the updating step in the PFD Algorithm.

Algorithm 3: Stochastic M detector (SMD).

the decision-directed algorithm uses a deterministic ap-
proach, while PFD and SMD adopt a soft measure which is
based on probability. What is more, each trajectory is also as-
sociated with a weight which indicates the significance of the
trajectory in final decision. Although trajectories with small
weight do not seem to contribute much to current decision
making at the present stage, they, however, might flourish in
later recursions and carry significant weights in decision. The
soft measure can apparently prevent current decision errors
from greatly influencing the future decision, a key advantage
over the decision-directed approach.

Comparing the PFD and the SMD with the optimum
MPM solution, PFD, especially the SMD, has clear edge in
complexity since it only maintains J trajectories or equiva-
lently J Kalman filter at all times, but the required Kalman
filter for the MPM grows exponentially with time. Further,
the PFD and the SMD achieve every effective and efficient
approximation to the true posterior distribution and there-
fore provide decision performance closer to optimum. Since
the two detectors produce soft (probabilistic) results, they are
readily applied in turbo MUD.

8. SIMULATION RESULTS

In this section, the bit error rate (BER) performance of the
proposed PFDs and SMDs are studied through experiments.
In all the experiments, the transmitted signal was differential
BPSK modulated. The number of users was 15. For the PFDs,
151 trajectories were maintained, whereas 4 and 32 trajecto-
ries were tested for SMDs. Further, an AR model was adopted
for the fading process, which was normalized to have a unit
power, and thus the signal-to-noise ratio (SNR) was obtained
by 10 log(1/σ2).

In Figure 3, we provide the BER versus SNR for the dif-
ferent algorithms on a scenario of Ωd = 0.03. The genie-
aided detector is included as a lower bound. We notice that
the PFDs and SMDs with 32 trajectories are of the same
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Figure 3: BERs versus SNR performance for various detectors. Ω =
0.03.
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Figure 4: BERs versus SNR performance for various detectors. Ω =
0.05.

order of magnitude as that of the genie-aided detector at
low SNR (less than 30 dB). On the other hand, the re-
sults obtained by the SMDs with 4 and 32 trajectories are
very close, especially after 20 dB, and comparable to that of
the PFD. The SMD with 4 trajectories is obviously more
favorable since it requires only about 1/35 of complexity
of the PFD. As a final note, the PFD and SMDs achieve
about 7 dB gain over the decision-directed detectors at 10−3

Decision-directed detector SM detector, 4 trajectories

Particle filtering detector
Genie

SM detector, 32 trajectories
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Figure 5: BERs versus SNR performance for various detectors for
users with different power. Ω = 0.03.

BER. In Figure 4, we provide the BER versus SNR perfor-
mance for a higher Doppler frequency of Ωd = 0.05. Simi-
lar observations can be drawn as for the previous case even
though the overall performance of the detectors is worse,
which is reasonable considering that the channels are fading
faster.

In Figure 5, we provide the BER versus SNR of the first
user for the different algorithms on a scenario of Ωd =
0.03. In addition, the users have different power. The dif-
ference between the power of the first user and that of the
last user is 10 dB and the other users’ powers are equally
spaced in between. The genie-aided detector is also included
as a lower bound. In this case, the PFDs and SMDs with 32
trajectories are approximately of the same order of magni-
tude as that of the genie-aided detector at SNRs of the first
user less than 30 dB. As in the case of equal power, the re-
sults obtained by the SMDs with 4 and 32 trajectories are
very close, especially after 30 dB, and comparable to that of
the PFD. Again, the SMD with 4 trajectories is obviously
more favorable since it requires only about 1/35 of complex-
ity of the PFD. In this experiment, the performance of the
decision-directed detector is much worse compared to the
performance of the PDF and SMDs. For example, the lat-
ter achieves about 11 dB gain over the former at 10−2 BER.
In Figure 6, we provide the BER versus SNR performance
for a Doppler frequency of Ωd = 0.05. Since the channels
considered are fading faster, the performance of the detec-
tors is worse. However, in general, similar observations to
the tested detectors can be drawn. It is important to outline
that the performance of the decision-directed detector gets
worse in this case, for example, the PFD and SMDs achieve
about 20 dB gain over the decision-directed detectors at 10−2

BER.
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Figure 6: BERs versus SNR performance for various detectors for
users with different power. Ω = 0.05.

9. CONCLUSION

In this paper, we proposed to solve blind MUD over flat fast
fading channels. We constructed a novel time-observation
state-space model, based on which efficient particle filtering
and stochastic M detectors were proposed. Particularly, the
detectors based on the SMA demonstrated greater potential
than those using generic PF. The former can provide compa-
rable performance as the latter but with much smaller com-
plexity.

APPENDIX

DERIVATION OF THE LIKELIHOOD p( ȳl|bn,1:k, b1:n−1, ȳ1:l)

The likelihood p( ȳl|bn,1:k, b1:n−1, ȳ1:l) can be obtained as

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l−1

)
=
∫
p
(
ȳl, hl|bn,1:k, b1:n−1, ȳ1:l

)
dht

=
∫
p
(
ȳl|hl, bn,1:k

)
p
(

hl|bn,1:k−1, b1:n−1, ȳ1:l−1
)
dhl,

(A.1)

where the last equality is arrived by the fact that, given hl,
and bn,1:k, ȳl is independent of other variables, and hl is in-
dependent of bn,k. In (A.1), two distributions are involved in
the integral. The first distribution is the likelihood defined by
the observation equation which is

p
(
ȳl|hl, bn,1:k

) = N
(

Clhl, σ2), (A.2)

where Cl = fT
k B̃lP. The second distribution p(hl|bn,1:k−1,

b1:n−1, ȳ1:l−1) is the predictive density which can be obtained
from the predictive step of the Kalman filter [21, 22], that is,

p
(

hl|bn,1:k−1, b1:n−1, ȳ1:l−1
) = N

(
µl,Σl

)
, (A.3)

where

µl =
Qηl−1 if k = 1,

ηl−1 if k �= 1,
(A.4)

and

Σl =
QΞl−1Q� + σ2GG� if k = 1,

Ξl−1 if k �= 1.
(A.5)

In (A.4) and (A.5), ηl−1 and Ξl−1 are computed from the
update steps of the Kalman filter expressed in terms of l as

ηl = µl + Kl
(
ȳl −ml

)
, (A.6)

and

Ξl =
(

I−KlCl
)
Σl, (A.7)

where ml = Clµl and Kl = ΣlCH
l /cl with cl = ClΣlCH

l + σ2.
Now the integration in (A.1) is readily derived as

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l

) = N
(
ml, cl

)
. (A.8)
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