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Particle filtering is a statistical signal processing methodology that has recently gained popularity in solving several problems in
signal processing and communications. Particle filters (PFs) have been shown to outperform traditional filters in important prac-
tical scenarios. However their computational complexity and lack of dedicated hardware for real-time processing have adversely
affected their use in real-time applications. In this paper, we present generic architectures for the implementation of the most com-
monly used PF, namely, the sampling importance resampling filter (SIRF). These provide a generic framework for the hardware
realization of the SIRF applied to any model. The proposed architectures significantly reduce the memory requirement of the filter
in hardware as compared to a straightforward implementation based on the traditional algorithm. We propose two architectures
each based on a different resampling mechanism. Further, modifications of these architectures for acceleration of resampling pro-
cess are presented. We evaluate these schemes based on resource usage and latency. The platform used for the evaluations is the
Xilinx Virtex II pro FPGA. The architectures presented here have led to the development of the first hardware (FPGA) prototype
for the particle filter applied to the bearings-only tracking problem.
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1. INTRODUCTION

Particle filters (PFs) [1, 2] are used to perform filtering for
models that are described using the dynamic state-space ap-
proach [1]. Many problems in signal processing and commu-
nications can be described using these models [3]. In most
practical scenarios, these models are nonlinear, the states
are high-dimensional, and the densities involved are non-
Gaussian. Traditional filters like the extended Kalman fil-
ter (EKF) are known to perform poorly in such scenarios
[4]. PFs on the other hand are not affected by the condi-
tions of nonlinearity and non-Gaussianity and handle high-
dimensional states better than traditional filters [5].

PFs are Bayesian in nature and their goal is to find an
approximation to the posterior density of a state of interest
(e.g., position of a moving object in tracking, or transmit-
ted symbol in communications) based on corrupted obser-
vations which are inputs to the filter. In the traditional PFs
known as sample importance resample filters (SIRFs), this
posterior is represented by a random measure consisting of a
weighted set of samples (particles). The particles are drawn
or sampled from a density known as the importance function
(IF) using the principle of importance sampling (IS) [1]. This
sampling step is followed by the importance computation
step which assigns weights to the drawn particles based on
received observations using IS rules to form the weighted set
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of particles. Another important process called resampling is
generally needed in PFs to avoid weight degeneracy [2]. Var-
ious estimates of the state like MMSE or MAP estimates can
be calculated from this weighted set of particles. The number
of particles used to compute the posterior depends upon the
nature of application, dimension of the state, and the per-
formance requirements. From here on, we will refer to the
number of particles used as M and the dimension of the state
as Ns.

The main drawback of SIRFs is their computational com-
plexity. For each observation received, all the M particles
need to be processed through the steps of sampling, impor-
tance computation, and resampling. The sampling and im-
portance computation steps typically involve transcenden-
tal exponential and nonlinear operations. Once all the M
particles have been processed through the above-mentioned
steps, the estimate of the state at the sampling instant is cal-
culated and the next input can be processed. These opera-
tions present significant computational load even on a state-
of-the-art DSP. The performance of SIRF for the bearings-
only tracking problem [6] with Ns = 4 was evaluated on TI
TMS320C54x generation DSP [7]. With M = 1000 particles,
the inputs to the filter could be processed at the rate of only
1 kHz. Clearly this speed would prevent the use of PFs for on-
line signal processing in real-time applications where higher
sampling rates and/or higher number of particles are needed
for processing. Thus, design of dedicated hardware for SIRF
is needed if real-time applications are to become feasible.

SIRF is a recursive algorithm. The sampling step uses the
resampled particles of the previous instant to compute the
particles of the current instant. This requires the particles
to be stored in memories. We will see later that a straight-
forward implementation of the traditional SIRF algorithm
would have a memory requirement of 2Ns × M since sam-
pled and resampled particles need to be stored in differ-
ent memories. Most practical applications involve nonlin-
ear models and high-dimensional states (large Ns) which im-
plies a large number of particles M for SIRFs applied to these
problems [8]. This would make the total memory require-
ment of 2Ns ×M very large. The architectures proposed in
this paper reduce this memory requirement to Ns memories
of depth M (i.e., Ns ×M). This not only reduces the hard-
ware resource requirement of the SIRF but also makes it more
energy-efficient due to reduced memory accesses [9].

The specifics of an SIRF implementation depend upon
the properties of the model to which the SIRF is applied.
However, from a hardware viewpoint, the high-level data
flow and control structure remain the same for every model.
This paper focuses on the development of efficient architec-
tures for these generic operations of the SIRF. They include
the resampling step and memory-related operations of the
sample step. The other model-dependent operations are data
driven and involve mathematical computations. They can be
easily incorporated into the proposed architectures for any
model. We develop two architectures, one using the tradi-
tional systematic resampling (SR) algorithm and the other
using the new residual systematic resampling (RSR) algo-
rithm. These architectures are referred to as scheme 1 and

scheme 2, respectively. As we will see later, the resampling
operation in the SIRFs presents a bottleneck since it is in-
herently sequential and also cannot be executed concurrently
(pipelined) with other operations. Scheme 1 has a low com-
plexity and simple control structure, but is generically slow
since SR involves a while loop inside an outer for loop. As
opposed to this, the RSR algorithm has a single for loop
and hence scheme 2 is faster than scheme 1. We also pro-
pose modifications of these schemes which bring about par-
tial parallelization of resampling and reduce the effect of the
resampling bottleneck on execution throughput.

The rest of the paper is organized as follows. In Section 2
we briefly describe the theory behind the SIRF, the tradi-
tional SR algorithm, and the new RSR algorithm. Section 3
presents the proposed architectures and their modification
for increased speed. Evaluation of resource utilization and
latency of the two schemes on FPGA platform along with an
example application is presented in Section 4. Section 5 con-
cludes the paper.

2. BACKGROUND

2.1. The SIRF algorithm

Dynamic state space (DSS) models to which SIRFs can be
applied are of the form

xn = fn
(

xn−1, qn
)
, (1)

yn = gn
(

xn, vn
)
, (2)

where fn and gn are possibly nonlinear functions describ-
ing the DSS model. The symbol xn represents the dynami-
cally evolving state of the system, qn represents the process
noise, and yn is the observation vector of the system which
is corrupted by the measurement noise vn at instant n. The
SIRF algorithm estimates the state of the system xn based on
the received corrupted observations. The algorithm proceeds
through the following steps.

(1) Sampling step (S). In this step, samples (particles) of
the unknown state are drawn from the IF. In our implemen-
tation we choose the prior probability density function (pdf)
of the state, given by p(xn | xn−1) to be the IF. This prior pdf
can be deduced from (1). The sampling step can be thought
of as propagation of particles at time instant n− 1 into time
instant n through (1). The sampled set of particles at instant

n is denoted by {x(m)
n }M−1

m=0 . The SIRF is initialized with a prior
set of particles at time instant 0 to start the recursion. These
particles are then successively propagated in time.

(2) Importance (weight) computation step (I). This step

assigns importance weights w(m)
n to the particles x(m)

n based
on the received observations. This step is the most compu-
tationally intensive and generally involves the computation
of transcendental trigonometric and exponential functions.
Since we use the prior IF for our implementation, the weight
assignment equation is

w(m)
n = w(m)

n−1 · p
(

yn | x(m)
n

)
. (3)
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for m = 0 to M − 1

(1) Sampling step. Draw sample x(m)
n from p(xn | x(m)

n−1).
(2) Importance computation step. Calculate the weight

w(m)
n = p(yn | x(m)

n ).

end
(3) Resampling step. Determine the resampled set of

particles {x̃(m)
n }M−1

m=0
(4) Output calculation. Calculate the desired (like

MMSE, MAP) estimate of the state x̂n.

Pseudocode 1: SIRF algorithm.

Sampling
Importance

computation Resampling

Input observations
yn

xn wn x̃n, w̃n

Output
estimate

Figure 1: Overall structure of the SIRF.

The implementation of this step is largely dependent on the
nature of the DSS model for the particular problem at hand
and therefore is not discussed in this paper.

(3) Resampling step (R). Resampling prevents degener-
ation of particle weights by eliminating particles with small
weights and replicating particles with large weights to replace
those eliminated. This replication or discarding is done based
on some function of the particle weights. The resampled set

of particles is denoted by {x̃(m)
n }M−1

m=0 , and the weights of these

particles after resampling are denoted by {w̃(m)
n }M−1

m=0 , which
are typically 1/M. The resampled particles along with their

weights form a random measure {x̃(m)
n , w̃(m)

n }M−1
m=0 which is

used to represent the posterior p(xn | y1:n) and calculate es-
timates of the state.

The SIRF algorithm is summarized in Pseudocode 1.
Figure 1 shows the overall structure of the SIRF. The recur-
sive nature of the filter can be seen from the presented data
flow. The sample and importance steps can be pipelined in
operation. Resampling requires knowledge of sum of all par-
ticle weights. Hence it cannot begin before the weights of
all the particles have been calculated. The sample step of
time n + 1 cannot begin until resample step of time n has
been completed. Thus, resampling cannot be executed con-
currently with any other operation and presents a bottleneck
which limits the sampling rate of the SIRF. The architectures
presented in this paper reduce the effect of this bottleneck
by using efficient memory schemes and modified resampling
algorithms.

2.2. Systematic resampling in SIRF

The first architecture proposed in this paper uses the system-
atic resampling algorithm. This is the most commonly used

resampling algorithm for PFs [1]. This algorithm functions
by resampling with replacement from the original set of par-

ticles {x(m)
n }M−1

m=0 to obtain a new set {x̃(m)
n }M−1

m=0 , where resam-
pling is carried out according to

Pr
(

x̃(i)
n = x

( j)
n

)
= w

( j)
n . (4)

In other words, the particles drawn in the sample step
and their weights form a distribution. The Resampled parti-
cles are drawn proportional to this distribution to replace the
original set. The normalized weights of all resampled parti-
cles are set to 1/M.

The SR concept for a PF that used 5 particles is shown
in Figure 2a. First the cumulative sum of weights (CSW) of
sampled particles is computed. This is presented in the figure
for the case of 5 particles (M = 5) with weights w(0), . . . ,w(4).
Then, as shown on the y axis of the graph, a function u(m)

called the resampling function is systematically updated [1]
and compared with the CSW of the particles. The corre-
sponding particles are replicated to form the resampled set
which for this case is {x(0), x(0), x(3), x(3), x(3)}. In the tradi-
tional SR algorithm, it is essential for the weights to be nor-
malized such that their sum is one. However we use a mod-
ified resampling algorithm that avoids weight normalization
by incorporating the sum of weights into the resampling
operation [10]. This avoids M divisions per SIRF recursion
which is very advantageous for hardware implementation.

The determination of the resampled set of particles is
done sequentially as is shown in Figure 2b. In each cycle, de-
pending on the results of comparison between the two num-
bers U and CSW, which represent the current value of the
resampling function and the CSW respectively, the relevant
particle is replicated or discarded and the value of either the
resampling function U or the cumulative sum of weights
CSW is updated. As shown in the figure, in the first cycle,
u(0) and csw(0) are compared. Since CSW > U , particle 0 is
replicated and the resampling function is updated, while in
cycle 4, since CSW < U , particle 1 is discarded and the CSW
is updated. This process is repeated till the replicated set of
particles is obtained.

As we will see later, the SR algorithm needs 2M−1 cycles
for execution in hardware.

2.3. Residual systematic resampling algorithm

In spite of the low hardware complexity, the low speed of
the SR algorithm may not be tolerable in case of high-speed
applications. For these cases, the residual systematic resam-
pling (RSR) algorithm proposed in [11] can be used. This
algorithm has a single for loop of M iterations and hence is
twice faster than SR in terms of number of cycles. This al-
gorithm is based on the traditional residual resampling algo-
rithm [12]. In residual resampling (RR) the number of repli-
cations of a specific particle x(m) is determined by truncating
the product of the number of particles M and the particle
weight w(m). The result is known as a replication factor. The
sum of the replication factors of all particles, except for some
special cases, is less than M. These remaining particles are
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Figure 2: The concept of systematic resampling. (a) Resampling using cdfs. (b) Resampling done sequentially.

obtained from the residues of the truncated products using
some other mechanisms like systematic resampling or ran-
dom resampling. RR thus requires two loops of M iterations:
one for processing the truncated products and the other for
processing residues. RSR calculates the replication factor of
each particle similar to RR but it avoids the second loop of
RR by including the processing of the residues by systematic
resampling in the same loop. This is done by combining the
resampling function U with the truncated product. As a re-
sult, this algorithm has only one loop and the processing time
is independent of the distribution of the weights at the input.
The RSR has an execution time of M +LRSR cycles, where the

latency of the RSR datapath LRSR is typically low (LRSR = 2
for our implementation). The RSR algorithm for M particles
is summarized in Pseudocode 2.

Figure 3 graphically illustrates the RSR methods for the
case of M = 5 particles. The RSR algorithm draws the
uniform random number U (0) = ∆U (0) and updates it by

∆U (m) = ∆U (m−1) + r(m)/M−w(m)
n . The difference ∆U (m) be-

tween the updated uniform number and the current weight
is propagated. Figure 3 shows that r(0) = 2, that is, particle 0
is replicated twice, r(3) = 3, that is, particle 3 is replicated 3
times, and all other particles are discarded. SR and RSR pro-
duce identical resampling result.
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(r) = RSR(M,w)

(1) Generate a random number ∆U (0) ∼U
[

0,
1
M

]
(2) for m = 0 to M − 1
(3) r(m) = �(w(m)

n − ∆U (m−1)) ·M� + 1

(4) ∆U (m) = ∆U (m−1) +
r(m)

M
−w(m)

n

(5) end

Pseudocode 2: Residual systematic resampling (RSR) algorithm.

∆U(0)

∆U(1) ∆U(2) ∆U(3)

∆U(4)

0 1 2 3 4

Particle

W (0)

W (1)
W (2)

W (3)

W (4)

Figure 3: Residual systematic resampling for an example with M =
5 particles.

3. ARCHITECTURES AND MEMORY SCHEMES

We now elaborate on the development of architectures for
the SIRF employing each of the two resampling mechanisms
discussed in the previous section.

3.1. Reduction of memory requirement

In the SIRF algorithm, the sampled particles {x(m)
n }M−1

m=0 are
generated by propagating the previous resampled particles

{x̃(m)
n−1}M−1

m=0 . This is done in the following manner using the
DSS model:

x(m)
n ∼ p

(
xn | x̃(m)

n−1

)
, m = 0, 1, . . . ,M − 1. (5)

A straightforward implementation of the SIRF would
require 2 × Ns memories of depth M, Ns for storing the

sampled particles {x(m)
n }M−1

m=0 , and Ns for storing the resam-

pled particles {x̃(m)
n }M−1

m=0 . This implementation is shown in
Figure 4a. At time instant n, the sampled particles {x(m)

n }M−1
m=0

will be stored in the memory labelled SMEM. Their weights
will be calculated in the importance computation step. Once
all the weights have been determined, the resampling unit

determines the resampled set of particles {x̃n}M−1
m=0 , which are

written to the memory labelled RMEM. The sample unit
then reads particles from RMEM for propagation. These
memories are shown in Figure 4a for Ns = 1.

The memory schemes proposed here reduce this require-
ment to Ns memories of depth M. In our implementation,
the resampling unit returns the set of indexes (pointers) of
the replicated particles instead of the particles themselves.
Then indirect addressing [13] can be used to read the set
{x̃n}M−1

m=0 from the sample memory SMEM itself for propa-
gation. This means that the particles are propagated in the
following manner:

x(m)
n ∼ p

(
xn | xind(m)

n−1

)
, (6)

where ind(m) represents the array of indexes or pointers to
the resampled particles. Here we make use of the fact that
the resampled particles are in fact a subset of the particles
in the sampled particles memory. Hence instead of replicat-
ing them and storing them in a different memory, they can
be read from the same memory by using appropriate point-
ers. The sampling process involves reading of M resampled
particles and writing of M sampled particles to the memory.
If a single port memory is used the reads and writes cannot
be done simultaneously. This would require that a resampled
particle be read, propagated, and written to the memory be-
fore the next resampled particle can be read. The execution
of the sample step would then take 2(M +LS) cycles where LS
is the latency of sample computation.

This execution can be speeded up by using dual-port
memories [14] which are readily available on an FPGA plat-
form.1 This enables reading of {x̃n−1}M−1

m=0 and writing of

{x(m)
n }M−1

m=0 to be executed concurrently. Hence, the sample
step for M particles can be done in M + LS cycles. The mem-
ory scheme is shown in Figure 4b where the single dual-port
memory labelled PMEM replaces the memories SMEM and
RMEM of Figure 4a. Thus, use of index addressing reduces
the memory requirement of the SIRF and use of dual-port
memories reduces the execution cycle time.

However, using index addressing alone does not ensure
that the scheme with the single memory will work correctly.
We illustrate the reason for this with a simple example.

Consider the following one-dimensional random walk
model:

xn = xn−1 + qn,

yn = xn + vn.
(7)

Here xn represents the one-dimensional state of the
system and yn is a noisy measurement. The symbols qn
and vn are the process and the measurement noises, re-
spectively. Consider 5 sampled particles at instant n − 1

(i.e., {x(m)
n−1}4

m=0). In the implementation of Figure 4a, these

1We would like to point out here that on an ASIC platform, use of dual-
port memories incurs a 2x area penalty.
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Figure 4: Memories for storing particles. In the traditional implementation two memories would be needed. These are replaced by a single
dual-port memory. (a) Resampling requiring two memories. (b) Modified architecture needing only one dual-port memory.

SMEM[0] = x(0)
n = RMEM[0] + q(0)

n

SMEM[1] = x(1)
n = RMEM[1] + q(1)

n

SMEM[2] = x(2)
n = RMEM[2] + q(2)

n

SMEM[3] = x(3)
n = RMEM[3] + q(3)

n

SMEM[4] = x(4)
n = RMEM[4] + q(4)

n

(a)

x(0)
n = PMEM[0] + q(0)

n

x(1)
n = PMEM[0] + q(1)

n

x(2)
n = PMEM[3] + q(2)

n

x(3)
n = PMEM[3] + q(3)

n

x(4)
n = PMEM[3] + q(4)

n

(b)

Figure 5: Memory operations in sample step, (a) for implementation with two memories and (b)for implementation with one memory.

particles will be stored in the memory SMEM at loca-
tions SMEM[0], . . . , SMEM[4]. Suppose that after resam-
pling, particle x(0)

n−1 is replicated twice, x(3)
n−1 three times, and

that particles x(1)
n−1, x(2)

n−1, and x(4)
n−1 are discarded. In the imple-

mentation with two memories, the resampled particles will
be written to memory RMEM. The operations performed
in the sample step at instant n for this case are shown in
Figure 5a.

As seen from the figure, the sampled particles are written
to the memory SMEM. In the reduced memory implementa-
tion of Figure 4b, the replicated particles are read out of the
same single memory (PMEM in this case) using resampled

indexes. For this example, the set of indexes of replicated par-
ticles is {0, 0, 3, 3, 3}. Thus the operations of the sample step
will be as shown in Figure 5b. However, if sampled particles
are written to successive locations of PMEM as in the previ-
ous case, the particle x(m)

n will overwrite the resampled par-
ticle x̃(m)

n−1 causing an error if this particle has been replicated
multiple times. In the above example, if the particle x(0)

n is
written to PMEM[0], then for the next particle, we will get

x(1)
n = x(0)

n + q(1)
n (8)

which is incorrect. Thus different strategies for writing sam-
pled particles to the memory need to be devised for the
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reduced memory design to function correctly. In the follow-
ing sections, we will explain the architectures developed us-
ing SR and RSR and how they handle reading and writing of
the particle memory.

3.2. SIRF using systematic resampling: scheme 1

Figure 6 shows the architecture for the resampling unit im-
plementing the SR mechanism. The CSW is stored in the
memory labelled MEM1 at locations corresponding to the
ordinal number of the particle in the sampled set. The re-
sampling function u(m) is generated using an accumulator as
shown. Both the memory and the accumulator are controlled
by enable signals. The outputs of the accumulator and the
memory (U and W) are compared for conditions U ≤ W
and U > W by using a subtractor. The values of the CSW
are read from the memory using one counter (C1). The re-
sults of the comparison are passed to the index generator unit
which determines whether to replicate or discard the particle
(i.e., the index of the particle). The indexes of the replicated
particles are stored in the memory MEM2.

This scheme also records the indexes of the discarded
particles. These indexes are used while writing the sampled

(propagated) particles back to the memory. A particle, which
has been generated by a replication, is written to the loca-
tion of a discarded particle in the memory. The number of
particles before and after resampling is the same. This means
that for every replicated particle there will be a discarded par-
ticle. Hence this scheme can be used effectively for writing
particles to the memory. Since the number of particles that
will be discarded is nondeterministic, we use a FIFO buffer
of depth M to store the discarded particle indexes. The out-
put of counter C1 at an instant is the index of the particle that
is currently being processed. The comparator and the index
generator unit bring about the resampling as in Figure 2. If
the particle is replicated, its index is written to MEM2 whose
locations are addressed by counter C2, and the accumulator
is enabled so as to update the value of the resampling func-
tion. If the particle is discarded or when all its replications
are found, counter C1 is enabled CSW of the next particle
is read from the memory. When an index is to be discarded,
the write enable of the FIFO buffer is asserted and the index
is written to it.

Figure 7 shows the architecture for the sample step under
this scheme. Once resampling is done, the memory MEM2
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Figure 8: Addressing read and write ports of particle memory using stored indexes. (a) Contents of memory and FIFO after resampling. (b)
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Table 1: Function of sample step. Note that writing of particles is done LS cycles after they are read, where LS is the latency of the sample
unit.

Cycle Read address Replication Read from Write to

1 0 No PMEM[0] PMEM[0]

2 0 Yes PREG PMEM[1]

3 3 No PMEM[3] PMEM[3]

4 3 Yes PREG PMEM[2]

5 3 Yes PREG PMEM[4]

represents the array ind(m) containing M replicated indexes.
This memory is read sequentially and the indexes are used as
addresses to the read port of the dual-port memory (PMEM)
storing the particles. The output of this memory is the set
{x̃n}M−1

m=0 . Due to the nature of the SR algorithm, all the repli-
cations of a particular index will be written to successive lo-
cations in MEM2. Thus, since this memory is read sequen-
tially, a replication can be detected by comparing the cur-
rent read index with the previous one. When an index is read
from MEM2 for the first time, the corresponding particle is
read from the memory and stored in the temporary register
PREG. After propagation this particle is written to its original
location in the memory. When the same index is read from
MEM2 in the following cycle, replication is detected, and the
particle is read from the temporary register PREG rather than
from the memory (since the location in the memory will be
overwritten by the propagated particle). Also, the read enable
of the FIFO is asserted high and a discarded index is obtained
which is used as address to the write port of PMEM to write
the replicated particle after propagation (see Figure 8b).

We now further illustrate this scheme with our previous ex-
ample.

Following the same case of the example, the contents of
the replicated index memory MEM2 and discarded index
FIFO in Figure 6 will be as shown in Figure 8a. The sample
step starts by reading of the content of MEM2. The opera-
tions in various cycles are listed in Table 1. Figure 8b shows
how the FIFO is read. A replication is detected by compar-
ing the current read index with the previous one. From the
index memory contents, we see that in this case a replication
will be indicated when MEM2[1], MEM2[3], and MEM2[4]
are read. The result of this comparison is used as read enable
to the FIFO.

SR involves comparison of M values of the CSW with
M values of the resampling function. As seen in Figure 2b,
the two functions cannot be updated simultaneously, except
when obtaining their initial values at the start of resampling.
The result of the comparison in each cycle indicates which
function is to be updated. Thus execution of SR requires
2M − 1 cycles.
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3.3. Modification of scheme 1 for
reduced execution time

Some properties of the SR algorithm can be used to partially
parallelize resampling at the cost of added hardware.

Due to the systematic nature of the resampling func-
tion update, the final value of the resampling function is
fixed. This value is u(0) + (M − 1)/M for traditional SR and
u(0) + S(M− 1)/M for our implementation of resampling us-
ing nonnormalized weights [10]. Also the final value of the
CSW, S, is also known to us. We can use this property of SR to
split the resampling shown in Figure 2a into two concurrent
loops of M/2 iterations each. One loop determines the first
M/2 resampled indexes by comparing csw(0) to csw(M/2−1)

with u(0) to u(M/2−1) and the other loop determines the next
M/2 resampled indexes by comparing csw(M/2) to csw(M−1)

with u(M/2) to u(M−1). From a hardware viewpoint, this would
require reading of two values of the CSW simultaneously
from the memory which can be accomplished by storing
the CSW values (MEM1 in Figure 6) in a dual-port mem-
ory. Also the replicated particle index memory MEM2 would
need to be dual port and the discarded index FIFO would be
replaced by two FIFOs of half the size. All other logic blocks
in Figure 6 would be replicated. This would reduce the loop
bound [15] of the SIRF recursion and increase its through-
put. With this scheme, SR is split up into two parallel loops
of M/2 iterations each. Execution time of SR is reduced to
2×M/2−1 =M−1 cycles at the cost of added hardware. As
an extension of this concept, resampling can be split up into
more than 2 loops of simultaneous comparisons due to the
systematic update of the resampling function. However this
would need more memory blocks and additional hardware.
The tradeoff between added hardware and obtained speed is
considered in Section 4.

3.4. SIRF with residual systematic
resampling: scheme 2

The second architecture introduced in this paper uses the
RSR mechanism for resampling. The RSR has only one loop
of M iterations and is faster than the SR. In this scheme too,
the replicated particles are written to the locations of the dis-
carded particles in the same dual-port particle memory. Un-
like scheme 1, after resampling in this scheme the indexes
of all the particles are stored in one index memory. Another
memory is used to store the corresponding replication factors.
If an index has been discarded, a factor of 0 is recorded at the
corresponding location in the replication factors memory. In
this scheme, the indexes are arranged in such a way that all
replicated indexes are written to the memory starting from
location 0 up, while all discarded indexes are written to loca-
tions from M − 1 down. This method of storing indexes and
replication factors is called particle allocation with arranged
indexes.

Memory usage for the example described in Section 3.1
is shown in Figure 9, where the indexes are arranged in the
memory using the above-mentioned method and the corre-
sponding replication factors are stored in a separate mem-
ory.

Replicated and
discarded indexes

1

2

4

3

0

Replication
factors

0

0

0

3

2
Replicated
indexes

Discarded
indexes

Figure 9: Contents of memories after the RSR method with particle
allocation with arranged indexes.

(i, r) = RSR(M, S,w)
(1) Generate a random number U ∼U[0, 1]
(2) K =M/S
(3) indr = 0, indd =M − 1
(4) for m = 1 to M
(5) temp = w(m)

n · K −U // Temporary variable
(6) fact = �temp�
(7) U = fact− temp
(8) if fact > 0 // Particle allocation
(9) i(indr) = m, r(indr) = fact, indr = indr +1

(10) else
(11) i(indd) = m, r(indd) = 0, indd = indd −1
(12) end
(13) end

Pseudocode 3: Modified residual systematic resampling (RSR) al-
gorithm.

From an implementation viewpoint, the RSR algorithm
is beneficial since it has a single for loop. To make the RSR al-
gorithm suitable for implementation, we make some changes
in Pseudocode 2 in Section 2.3. The changes incorporate par-
ticle allocation with arranged indexes in the algorithm and
also allow for resampling using nonnormalized weights. As in
the case of SR, this saves M divisions at each instant.

The modified RSR algorithm is shown in Pseudocode 3.
In Pseudocode 3, there is one multiplication inside the

loop and one division before the loop. The incorporation of
the number K and generation of U from U[0, 1] is done to
allow nonnormalized weights in the resampling algorithm.
These changes do not affect the correctness of the algo-
rithm and the resampling results produced are the same as
Pseudocode 2.

Lines 9 and 11 bring about particle allocation with ar-
ranged indexes by writing replicated and discarded indexes
to the top and bottom parts of the index memory, respec-
tively.

The memory-related operations in the sample step are
shown in Pseudocode 4. First, the replicated indexes are read
sequentially from the memory of arranged indexes as shown
in the first for loop (line 2). The corresponding replication
factors of the indexes are also read at the same time. If the
particle has been replicated, then it is propagated repeatedly.
This is shown by the second for loop (line 5) whose iterations
equal the replication factor for that particular index. Then,
r(indr ) − 1 sampled particles are written to the addresses of
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(X) = Sampling (i, r,X)
(1) indr = 0, indd =M − 1
(2) for indr = 1 to length(indr)
(3) Reg = X(i(indr))
(4) X(i(indr)) = Sample (Reg), indr = indr +1
(5) for k = r(indr)− 1 down to 1
(6) X(i(indd)) = Sample (Reg), indd = indd −1
(7) end
(8) end

Pseudocode 4: Memory-related operations of the sample step.

the discarded particles (line 6) by reading the arranged index
memory from the bottom. The first sampled particle rewrites
the original replicated particle (line 3). Hence the replicated
particle has to be stored in a variable Reg.

3.5. Architecture for scheme 2

In this section, the architectures for the algorithms presented
in Pseudocodes 3 and 4 are shown in Figures 10 and 11. In
Figure 10, weights are stored in the memory MEMw and ad-
dressed by the address counter that counts from 0 to M − 1
and corresponds to the variable m in Pseudocode 3. The in-
dex generator is the block in which the arithmetics from
the lines 5, 6, and 7 from Pseudocode 3 are implemented.
The other part of the figure represents the implementation
of the particle allocation step (lines 8–12 of Pseudocode 3).
MEMi stores the arranged indexes and MEMr stores the cor-
responding replication factors. Depending on whether a par-
ticle is replicated or not, its index is written to MEMi at ad-
dress pointed to by either the counter counting up (counterr)
or the counter counting down (counterd). The appropriate
replication factor is written to the corresponding location in
MEMr .

There are three main blocks in Figure 11: address gener-
ation, address control, and particle generation and storing.
One dual-port memory PMEM is used for storing particles.
The arithmetics of the sampling step is implemented in the
sampling unit. The delay between read and write operations
for the memory PMEM is determined by the pipeline latency
of the sample unit (LS). It is presented as Delay1 in the fig-
ure. Counter f represents the variable k in Pseudocode 4. The
replication from the memory MEMr is used as the initial
value to the down counter counter f . The other logic blocks
are for generation of controls to bring about sampling as de-
scribed in Pseudocode 4.

3.6. Modification of scheme 2 for
reduced execution time

The RSR algorithm needs M+LRSR cycles for execution where
the latency due to pipelining of the RSR datapath is LRSR (2
in our case). Similar to the SR, the RSR algorithm can also be
parallelized with addition of more hardware for reduced ex-
ecution time. The RSR algorithm used for scheme 2 has only
one loop in which the replication factor of a particle is deter-
mined and the value of the resampling function is systemati-
cally updated. This algorithm can also be modified for paral-
lel execution by splitting the resampling process into multiple

concurrent loops. The modified algorithm for 2 concurrent
loops is shown in Pseudocode 5. The first loop does the usual
RSR of Pseudocode 3 for the first M/2 particles from index 0
to M/2 − 1. The second loop does the same simultaneously
for the remaining particles from index M/2 to M. This algo-
rithm needs the cumulative sum of weights of the first M/2
particles. This is denoted as SM/2. The initial value of the re-
sampling function for the second loop is denoted by U2 in
the pseudocode. Once again the factor K is included so as to
allow resampling using nonnormalized weights. This mecha-
nism can also be directly extended to include more than two
loops at the cost of adding more memory and hardware.

The execution time is thus reduced to (M/2)+2+L1 cycles
where the additional latency L1 is introduced by the compu-
tation of rM/2−1 and U2 before the second loop can start.

4. EVALUATION

In this section, we present the results of the implementation
and a comparison of the two proposed architectures. Both
architectures were captured using Verilog HDL and synthe-
sized on a Xilinx Virtex 2 pro FPGA platform. The design
was verified using Modelsim from Mentor Graphics. After
verification, the Verilog description was used as input to the
Xilinx Development System which synthesized, mapped, and
placed and routed the designs on a Xilinx Virtex 2 pro de-
vice (XC2VP50-ff1152). The implemented design was veri-
fied through a post place and route simulation using Model-
sim.

4.1. Execution time

Figure 12 shows the timing of operations for one recursion
of the SIRF. In the figure, LS and LI represent the startup la-
tencies of the sample and importance unit, respectively. Tres

is the number of cycles required for resampling. The total cy-
cle time of the SIRF is then TSIRF = (M + LS + LI + Tres)Tclk,
where Tclk is the system clock period.

As can be seen from the timing diagram, the resampling
step is a bottleneck in the SIRF execution as it cannot be
pipelined with other operations. Thus, Tres significantly af-
fects the cycle time TSIRF. Hence, developement of faster and
more efficient resampling algorithms is vital to the imple-
mentation of real-time particle filters in high-speed appli-
cations. The architectures and their modifications that have
been presented in this paper help to bring down Tres in dif-
ferent ways and hence reduce the effect of the resampling
bottleneck. A resampling scheme should be chosen such that
its time Tres satisfies the required TSIRF for the application at
hand. The modified versions of the two resampling schemes
partially parallelize resampling and reduce execution time at
the cost of added hardware. The times Tres and TSIRF needed
for resampling and one SIRF recursion respectively in terms
of cycles are summarized in Table 2. k is the number of loops
into which resampling is split as described in Sections 3.3 and
3.6 for modified schemes.

In the table, L accounts for the startup latencies of all the
units in the respective schemes.



2898 EURASIP Journal on Applied Signal Processing

Resampling

Counter W
up

Particle
index (m) Wight

memory
(MEMW)

W Index
generator

Replication
factors (r)

= 0

Comp.

> 0

Particle allocation

En

En

En

Counter d
down

Counter r
up

Delay1

Data

Address

Write en

Data

Address

Replicated
factors

memory
(MEMr)

Replicated
and

discarded
index

memory
(MEMi)

Indd

Indr

Figure 10: The architecture for the RSR algorithm combined with the particle propagation.
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Figure 12: Timing of operations in SIRF.

4.2. Resource utilization
The architectures presented in the paper include all the
memory-related operations of the generic SIRF. We use a Vir-
tex 2 pro FPGA platform for evaluation [16]. All memory
modules are mapped to the 18 kb block RAMs available on

the chip. The memory required by SIRF for processing a cer-
tain number of particles depends upon the dimension of the
state and the number of bits used in the fixed point repre-
sentation of the state, weights (or CSW), and indexes. The
number of 18 kb blocks needed on the Virtex 2 pro device
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Table 2: Timing of SIRF using the different proposed architectures.

Time (cycles) Scheme 1 Scheme 2
Modified scheme 1 Modified scheme 2

with k loops with k loops

Tres 2M − 1 M + Lrsr 2
(
M

k

)
− 1

M

2
+ LRSR

TSIRF 3M + L 2M + L
(
k + 2
k

)
M + L

(
k + 1
k

)
M + L

Table 3: Resource utilization for the two schemes on the XC2VP50-ff1152 device.

Resource
Scheme 1 Scheme 2 Modified scheme 1 Modified scheme 2

(implemented) (implemented) (estimated) (estimated)

Slices 199 294 k · 199 k · 294

Slice registers 130 224 k · 130 k · 224

4 input LUTs 232 348 k · 232 k · 348

Block RAMS 15 14 11 +
⌈
k

2

⌉
10 +

⌈
k

2

⌉
Block multipliers 0 1 0 k

Table 4: Comparison of memory requirement and cycle time with a straightforward implementation.

Parameter
Straightforward

Scheme 1 Scheme 2
implementation

Memory (words)
2 ·Ns ·M Ns ·M + 2 Ns ·M + 2

TSIRF (cycles)
4 ·M + L(SR) 3 ·M + L 2 ·M + L

3 ·M + L(RSR)

for storing M particles (also weights, CSWs, or indexes), BM ,
is given by

BM = Ns

⌈
M · b

18× 1024

⌉
, (9)

where b is the number of bits used for representation of the
word in the memory.

Table 3 summarizes the total utilization of the proposed
architectures. The model we have chosen for our evaluation
is the Ns = 4 dimensional bearings-only tracking (BOT)
problem [6]. The fixed point widths in the design of this pro-
totype were chosen using a methodology similar to that in
[17]. Here a statistical analysis of all the variables in the al-
gorithm over several runs is performed. The first 4 moments
of the value that a particular variable takes are used to de-
termine a fixed point format for representing that variable
in hardware within a tolerable error of 10% to 15% for dif-
ferent variables. This analysis will need to be done for ev-
ery model before the SIRF is applied to it. The chosen bit
widths will not only affect the memory utilization as in (9),
but will also increase latencies LS and LI . However, these la-
tencies are small as compared to M and hence TSIRF will not
be significantly affected by bit widths. For the BOT model,
we have used an 18-bit representation for the M = 2048
particles and the weights and 25-bit representation for the
CSW. The indexes and replication factors are whole numbers

and are represented using log2 M = 11-bits. The indexes and
weights are obviously one-dimensional and the particles for
the BOT problem are 4-dimensional. Accordingly, the num-
ber of memory blocks needed for each of these can be cal-
culated from (9). The total memory requirement of the two
schemes for the mentioned bit widths is shown in Table 3.
Scheme 1 requires more memory than scheme 2 since it
needs to store the CSW which has a wider fixed point rep-
resentation. The amount of block RAMs available on a par-
ticular FPGA will determine the number of particles that an
SIRF realization on that device can process. Thus, (9) can be
used as a guideline for selecting a device for a particular im-
plementation. The mathematical units in scheme 2 like the
adders and multiplier were chosen to be 18-bits wide in input
and output. The table also gives an estimate of the resources
needed for the modified implementations of the two schemes
with resampling being split into k parallel loops.

Finally, Table 4 shows the comparison of cycle time
and memory requirement (in terms of words) for the pro-
posed schemes with a straightforward implementation start-
ing from the traditional algorithm. This approach requires
the sampled and resampled particles to be stored in different
memories. Also if the index-addressing schemes presented
here are not used, another M cycles are added to the SIRF
execution time since resampled particles first need to be read
from one memory and written to another before the sample
step can begin.
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Table 5: Resource utilization for entire SIRF for the bearings-only tracking problem using scheme 1.

Resource
Random no.

Sample
Importance

Resample
Top level

Total
generation computation logic

Slices 300 411 1535 199 623 3068 (13%)

Slice registers 364 568 2578 130 752 4392 (10%)

4 input LUTs 196 404 2674 232 342 3848 (8%)

Block RAMs 2 8 1 7 0 18 (8%)

Block multipliers 6 0 3 0 4 13 (6%)
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Figure 13: Results of tracking for the BOT problem.

4.3. Example application

The entire SIRF along with the computational units of sam-
pling and importance for the above-mentioned bearings-
only tracking problem was implemented on a Xilinx Vir-
tex II pro device (XC2VP50FF1152). This FPGA prototype
used the architecture described in scheme 1 with a resam-
pling time Tres = 2M − 1 cycles as explained earlier. The state
in this model is 4-dimensional and incorporates the position
coordinates and velocities in x and y directions, respectively.
The input to the filter is the time varying angle (bearing) of
the moving object with respect to a fixed measurement point.
This input is sampled by the filter at rate 1/TSIRF. Each input
sample is processed by the SIRF to produce an estimate of the
unknown state at that sampling instant.

The sample and importance computation units have a la-
tency LS = 8 cycles and LI = 53 cycles. M = 2048 particles
are used for processing. Hence the SIRF cycle time is

TSIRF =
[
(2048 + 8 + 53) +

(
(2× 2048)− 1

)]
Tclk. (10)

Thus one recursion of the SIRF needs 6024 cycles. The
designed hardware can support clock frequencies of upto
118 MHz. Using a clock frequency of 100 MHz, we get the
speed at which new samples can be processed 1/TSIRF =
16 kHz. Table 5 shows the resource utilization of the entire

SIRF for the BOT problem. Random number generation is
needed for the sample step in accordance with the state space
model. We have used a quantized version of the Box-Muller
method for generating the random numbers. The impor-
tance step in the model involves exponential and arctangent
operations and hence has a high resource requirement. These
are implemented using 2 pipelined CORDIC units. The re-
sults of the tracking are shown in Figure 13. The position es-
timates are obtained from a post place and route simulation
of the SIRF. The outputs are 32-bits wide and are in fixed
point format. Their values are interpreted using SystemC
fixed point data types and plotted using MATLAB. The figure
also shows the tracking results obtained by the SIRF run in
MATLAB using floating point representation for all variables.
These results are also compared with tracking results ob-
tained with the traditional EKF which for this model has ex-
ecution speed of 10 kHz on a DSP platform (TMS320C54x).

This performance figure of 16 kHz is for 2048 particles.
In practice a much larger number of particles is needed for
tracking in noisy environments. This makes the SIRF compu-
tationally very intensive, and real-time processing using any
software platform or DSP is not possible even for low sample
rates. The FPGA hardware SIRF on the other hand can pro-
cess input samples at rates of upto 3.5 kHz even with 10 000
particles using the basic scheme 1. Large number of parti-
cles will lead to increased memory requirement. But a large
FPGA like the one chosen for our evaluation will support a
high number of particles. Thus, the hardware realization of
the SIRF not only allows for increased sample rates but also
enables real-time processing even with a very large number
of particles.

By using the other schemes introduced in the paper, the
SIRF can be made even faster. Currently, work is being done
on the development of parallel architectures for the SIRF
which perform sampling and importance computation for
groups of particles simultaneously. The goal is to use these
architectures along with the high-speed resampling schemes
presented here to increase the speed of the SIRF to the MHz
range. This will enable the application of SIRF to wireless
communications applications [5].

5. CONCLUSION

In this paper, we have presented a generic architectural
framework for the hardware realization of SIRFs applied to
any model. The architectures reduce the memory require-
ment of the filter in hardware and make efficient use of the
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Method: (i, r) = RSR(M, S, SM/2,w)
(1) Generate a random number U1 ∼U[0, 1]
(2) K =M/S
(3) rM/2−1 = �(SM/2 −U1)K�
(4) U2 = U1 + rM/2 − SM/2 · K

Loop 1 Loop 2

Initialize ind1
r = 0, ind1

d =M/2− 1 Initialize ind2
r =M/2, ind2

d =M − 1

for m = 0 to M/2− 1 for m =M/2 to M − 1

Perform steps 5–12 of Pseudocode 3 Perform steps 5–12 of Pseudocode 3

end end

Pseudocode 5: Modified implementation of the RSR algorithm.

dual-port memories available on an FPGA platform. Two ar-
chitectural schemes, scheme 1 and scheme 2 were proposed
based on the SR and RSR algorithms, respectively. The re-
sampling process cannot be pipelined with other operations
and is a bottleneck in the filter execution. Hence for high-
speed applications, the high latency of SR in scheme 1 is un-
acceptable. Scheme 2 uses the faster but more complicated
RSR algorithm which allows for lower SIRF cycle times. We
also introduced modifications of the two schemes involving
parallelization of the resampling process by splitting it up
into multiple concurrent loops. This allows for reducing the
resampling latency and thus the SIRF cycle time at the cost
of added hardware. The tradeoff between speed and hard-
ware cost will dictate the choice of architecture for an SIRF
realization. The results of this work have been used to de-
velop the first FPGA prototype of the SIRF (using scheme 1
in this paper) for the bearings-only tracking problem in [6].
For 2048 particles, this prototype can process input obser-
vations at 16 kHz which is about 32 times faster than speed
achieved for the same problem with the same number of par-
ticles on a state-of-the-art DSP.
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