
1144 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

High-Throughput Scalable Parallel Resampling
Mechanism for Effective Redistribution

of Particles
Sangjin Hong, Senior Member, IEEE, and Petar M. Djurić, Fellow, IEEE

Abstract—A novel resampling mechanism for parallel pro-
cessing of fixed-point particle filtering is discussed. The proposed
mechanism utilizes a particle-tagging scheme during quantization
to compensate possible loss of replicated particles due to the finite
precision effect. Particle tagging divides replicated particles into
two groups for systematic redistribution of particles to eliminate
particle localization in parallel processing. The mechanism utilizes
an efficient interconnect topology for guaranteeing complete re-
distribution of particles even in case of potential weight unbalance
among processing elements. The proposed architecture supports
high throughput and ensures that the overall parallel particle
filtering execution time scales with the number of processing
elements employed.

Index Terms—Fixed-point processing, parallel resampling, par-
ticle filters, residual resampling, scalable architecture.

I. INTRODUCTION

PARTICLE filters are used in nonlinear signal processing
where the interest is in tracking and/or detection of random

signals. Particle filters base their operations on representing rel-
evant densities by discrete random measures composed of parti-
cles and weights and compute integrals by Monte Carlo methods
[1]–[5]. More specifically, at every time instant , a random mea-
sure is defined, where is the th particle
of the signal at time is the th trajectory of the signal,
and is the weight of the th particle (or trajectory) at
time . If now, for example, an estimate of is
needed, where is a function of , the estimate can easily
be computed using the random measure from

(1)

The particle filters have three important operations: genera-
tion of new particles, computation of the particle weights, and
resampling. The resampling operation is very important for ac-
curate tracking [6]–[9]. The idea of resampling is to remove
the trajectories that have small weights and to focus on tra-
jectories that are dominating. Standard algorithms used for re-
sampling are different variations of stratified resampling [3],

Manuscript received May 30, 2004; revised May 5, 2005. This work was
supported by the NSF under Award CCR-0220011. The associate editor co-
ordinating the review of this manuscript and approving it for publication was
Prof. Chaitali Chakrabarti.

The authors are with the Department of Electrical and Computer Engineering,
Stony Brook University—SUNY, Stony Brook, NY 11794-2350, USA (e-mail:
snjhong@ece.sunysb.edu; djuricA@ece.sunysb.edu).

Digital Object Identifier 10.1109/TSP.2005.863004

[10]. The two most common methods for resampling are sys-
tematic and residual resampling [1], [11], [12]. While these al-
gorithms are very effective in particle filtering, physical imple-
mentation of such algorithms pose challenges especially when
parallel processing is sought for large number of particles. When
the number of particles, , becomes large, parallel processing
of particle filtering is often considered to reduce its execution
time of an iteration. There has not been any attempt for an effec-
tive parallel resampling mechanism in the research community.

An efficient mechanism for single processing element (PE)
in fixed-point processing of a particle filter has been previously
discussed [13]. It has also been shown that the execution time
of a fully pipelined particle filtering including resampling is

, where is the total number of particles dedicated
for the resampling, and is the execution clock period.
Operational concurrency in particle filters, other than the
resampling, can be exploited in the algorithm, which can be
parallelized. However, the resampling requires a sequential
processing, which negates the benefit of parallel processing.
This is because the resampling has to consider all the
particles for their correct replication. For simple parallel pro-
cessing with PEs, the execution time for particles can be
represented as , where is the time
for concurrent parallel processing of filtering operations other
than resampling, and is the time required by resampling
[14]. Thus, the overall execution throughput is lower bounded
by , even with infinite number of PEs. On the other hand,
resampling can be done locally within each PE in parallel,
where the PEs resample their own particles. In this case,
the execution time can be reduced to . However,
such parallel processing has a serious limitation. Particles will
be highly localized within each PE (i.e., bad particles will stay
in the same PE if not enough replicated particles or some of
the good particles will be discarded if there are more replicated
particles in the PE). Thus, serious weight degeneracy may
occur. For example, two particles in two different PEs may have
the same weights, but their replication factors, which indicate
the number of times that one particle should be replicated based
on the decimal equivalent values of the weights, may differ
significantly.

In this paper, we introduce a mechanism that solves problems
of finite precision effects due to fixed-point implementation, and
particle localization and/or weight degeneracy within any one of
the PEs comprising the parallel particle filter. The mechanism is
based on residual resampling where the number of total particles
is always maintained and the execution time is at the minimum

1053-587X/$20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1145

TABLE I
ROUNDING/TRUNCATION SCHEME AND TAGGING METHOD. THE SCHEME

DIVIDES RESAMPLED PARTICLES INTO TWO SETS OF PARTICLES R AND T

due to unnecessary data accesses. The mechanism incorporates
very efficient interconnect topology that is highly scalable that
can support any number of PEs. Incorporation of the proposed
mechanism in parallel particle filter achieves a guaranteed exe-
cution time of the bound. The proposed architec-
ture has been specified and modeled with SystemC [15] for eval-
uation and verification of the execution and timing of the parallel
architecture.

The remainder of this paper has four sections. Section II
discusses a parallel resampling methodology including par-
ticle quantization and classification. Section III discusses the
proposed particle distribution mechanism. The overall oper-
ation of a central unit, which is a core of the architecture, is
described. The proposed parallel resampling mechanism is
evaluated in Section IV. Finally, our contribution is summarized
in Section V.

II. PARALLEL RESAMPLING METHODOLOGY

A. Weight Quantization Scheme

A weight of each particle, denoted as for
, is computed and these weights are normalized

so that the sum of all weights is equal to one. This computation
is done in the PEs before resampling. During the resampling,
normalized particles are replicated according to the values of
their weights in decimal representation. The most critical issue
in replication of particles is that replicating exactly particles
with fixed-point processing is not guaranteed with traditional
quantization and rounding [13].

As discussed in [13], these weights are quantized with bits
(excluding the sign bit), where . Thus, each
weight is represented by . Two ad-
ditional bits are used to simplify the rounding and trun-
cation operations called tagging. The tagging is performed ac-
cording to Table I. Thus, when tagging is employed, rounding
by any hardware is not necessary. When a particle is tagged,
the particle is additionally replicated. This simplifies hardware
complexity and speeds up the resampling process. Moreover, the
tagging ensures that the total number of replicated particles be
always larger than or equal to . In the table, the entries of the
first column are the last three bits of the binary representation
of a weight, the entries of the second column represent the used
rounding scheme, and the entries of the third column are the re-
sults due to rounding. After rounding, the last two bits are no
longer used. The entries of the fourth column represent the tag

Fig. 1. Illustration of the average number of replicated particles classified as
R and T . The results are based on 100 independent resamplings. In this plot,
we ignore 101 and 001 tags.

status. Notice that the bit pattern 111 is not rounded but tagged.
Without tagging, an adder is needed to incorporate carry prop-
agation to the most significant bit. The tagging maintains the
final replication factor without such hardware. However, the bit
pattern 011 is rounded where a simple bit reversal is sufficient.
The particles with 001 and 101 are also tagged.

Fig. 1 illustrates the average of the total number of repli-
cated particles classified as and without 101 and 001
tags. is the sum of the weights of particles according to the
rounding and truncation schemes, and is the total number
of tagged particles. We can see that the results from proper
rounding (round-up) of each weight. From the empirical study,
the number of particles classified as and are 91.5% and
7.7% of , respectively. As can be seen in the figure, the total
number of replicated particles is slightly less than . Thus,
this is the reason that particles with 101 and 001 in their last
three bits are tagged to ensure that . The number of
particles due to this additional tagging is about 2.2% of . This
problem is introduced due to the finite precision processing and
the problem will not appear when the resampling is performed
with infinite precision processing. In the resampling, the tagged
particles will have priority over the particles classified as .
Hence, about 1% of the particles classified as will be elimi-
nated in the actual processing. Therefore, the additional tagging
will introduce some bias on the resampling performance. How-
ever, if the total number of replicated particles is less than ,
the tracking performance will be worse than the performance
of the resampling when tagging is used. We will show, with
simulation, that the tagging has very little effects on resampling
performance later in this paper.

The above quantization scheme also supports a situation
where one particle has a weight equal to 1.0 and the rest are
all zero. Without any special modification, the scheme will
get all the weights to zero since it considers only the least
significant bits. The problem is avoided without having an ad-
ditional bit. When the weight of 1.0 in decimal representation

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

1146 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 2. Illustration of R and T particle sets redistribution.

is , then the tagging method will guarantee that
the total number of replicated particles is greater than or equal
to .

B. Particle Set Classification and Distribution

The tagging not only ensures enough particles to be repli-
cated but also naturally classifies replicated particles into two
groups of particles. In parallel resampling, particles classified as

and are treated differently in particle redistribution among
the PEs. Basically, all replicated particles in will be used by
other PEs in order to eliminate potential localization of particles
(i.e., particles are not shared among the PEs).

Particles are distributed as shown in Fig. 2. Particle classified
as will be used by the same PE while particles classified as
will be used by an adjacent PE. While all the particles classified
as will always be used by an adjacent PE, any additional par-
ticles classified as may go to the other PEs if enough particles
are created at the PE. Thus, as iterations (i.e., successive resam-
pling) of particle filtering continue, computations at all PEs are
affected by all of the particles. Under this distribution scheme,
localization of particles within any single PE is eliminated. We
will provide an efficient mechanism that guarantees such par-
ticle redistribution in the next section. We will also show that
classifying particles into two groups allows simple interconnec-
tion in the hardware implementation for high-speed redistribu-
tion among parallel PEs.

C. Architecture Support for Special-Cases

The effectiveness of particle redistribution in parallel resam-
pling is measured by how the architecture supports the special
cases. In particle redistribution, the number of replicated par-
ticles is proportional to the sum of weights in each PE. Then,
there are three special cases:

1) A single PE has the sum of weights equal to one, and the
rest PEs have the sum of weights equal to zero.

2) All PEs have the sum of weights larger than , and one
PE has the sum of weights equal to zero.

3) Each PE has the sum of weights equal to , and the
number of particles classified as is zero.

The first two cases are directly related to the architecture effi-
ciency in particle redistribution since collision occurs (i.e., many
PEs send particles to one PE, or one PE sends particles to the
other PEs). We fully utilize the concept of particle classification

and efficient routing structure for supporting the case with no
degradation in execution speed. In fact, we can achieve the exe-
cution speed of parallel resampling equal to , which
is the perfectly scalable architecture. The third case will never
happen since we systematically create a finite amount of parti-
cles classified as .

III. PARTICLE DISTRIBUTION MECHANISM

A. Overall Architecture Overview

A fast and efficient central unit (CU) mechanism is crucial for
real-time particle filtering with large . The CU must guarantee
that 1) each PE will have particles after the resampling,
2) the resampling completes with deterministic execution time,
and 3) there is no deadlock in particle access operations. More-
over, the CU architecture should be scalable so that the mecha-
nism works with a larger number of PEs.

The proposed CU architecture, which performs particle redis-
tribution for parallel particle filtering with PEs, is shown in
Fig. 3. For illustration, . Each PE executes independently
but synchronously with its own particles, where

is the total number of particles. During the resampling, each
PE interacts with the CU through a PE-CU interface. Thus, there
are such interfaces in the CU.

Each PE-CU interface (we will denote it as , where
designates the th PE) consists of a set of buffers for storing

particles in the CU. Each set of buffers contains two levels of
buffer operations. The first level employs and , that di-
rectly interface with the using a bidirectional data bus for
sending and receiving particles. A same bidirectional bus is used
for transferring both the sum and particles. The second-level
buffers consist of and . The particles stored in

can be moved to where the subscript index id rep-
resents the index of the PE CU interface and the direction of
data movement is down (i.e., out of the PE CU interface). Simi-
larly, can obtain particles from , where the direction
of particle is up toward the PE CU interface. sends all the
particles classified as to and the particles classified as

to . The weights of the particles from each PE are also
transferred to the CU through a bus so that particle replication
is performed in the CU. Each weight consists of
two parameters and , where is the replication factor and
is the tagged factor. The value of is either 0 or 1, whereas the

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1147

Fig. 3. Block diagram of parallel particle filter resampling. The central unit is responsible for correct particle exchanges.

Fig. 4. Internal particle balancing network. P = 4 is assumed. Each circle indicates interconnect switch.

value of varies from 0 to . When the particles clas-
sified in are sent back to the PE, the particles in the adjacent
TB buffer are transferred. This arrangement is to make sure that
each PE receives particles from other PEs to eliminate particle
localization.

In order to facilitate effective particle distribution, an ef-
ficient internal balancing network is necessary as shown in
Fig. 4. In this architecture, we define physical connection types,
inner-connection and outer-connection. The inner-connection
uses buses shown on the top of the RTB buffers in the figure
whereas the outer-connection uses buses shown at the bottom of
the RTB buffers. In addition, there are logical connection types,

inter-connection and intra-connection. The inter-connection
represents connectivity between the RTBs in different PE CU
interfaces whereas intra-connection represents connectivity
between the RTBs within the same PE CU interface. With this
reconfigurable balancing network, particle transfers between
different PE CU are carried out through this reconfigurable bal-
ancing network. Each connectivity can be classified uniquely
based on the type of connection discussed above. The number
of buses for inner-connection is fixed to one and the number
of buses for outer-connection is equal to so that the par-
ticles can be transferred in pairs of RTBs simultaneously. The
number of these bidirectional busses is a function of where

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

1148 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 5. Block diagram of the buffer used in the architecture.

. This provides necessary one-to-one connection so
that particles can be exchanged concurrently.

For handling of the clock speed mismatch between the PE and
the CU, there are two FIFOs at the PE and CU interface. We as-
sume that where and are execution clock
speeds of the CU and PE, respectively. The particles from each
PE are put into the FIFO before transferring them to the RB,
TB, or RTB. The size of the input FIFO depends on the speed
of the CU operation. Similarly, the output FIFO is to buffer the
output particles from the RB and TB. In each , there
are counters that keep track of the number of particles in the
CU. A detailed description of these counters is provided in the
following sections.

B. Buffer Structure With Condition Generation

Buffers used in the CU need a special set of functions for
the dual-port memory to maintain accurate state of the buffer
activity. The structure of the buffer used in the CU is shown
in Fig. 5. The buffer consists of a dual-port memory with read
and write address generators. In addition, the buffer contains
a track counter that keeps tracking of the number of particles
in the memory. The track counter has two incrementers. One
is for tracking the number of read particles and the other for
tracking the number of written particles. These two separate in-
crementers are needed since one cannot track simultaneously by
the read and write accesses of the memory. The difference be-
tween these two incrementers is then the number of particles in
the buffer. The actual value that is incremented depends on the
weights. Both incrementers are initialized to zero.

C. PE–CU–PE Interface Operation

Before resampling, the computes and accumulates the
weights of the particles and sends its local sum of weights of

particles to the CU. Then the CU adds sums of weights
from all the PEs and returns the sum of weights of parti-
cles, , back to each PE. Each PE normalizes the weights
using . The total number of particles generated by the
PE is approximately equal to the normalized sum of weights.
The resampling process is started as each PE starts to send a

Fig. 6. Block diagram of the interface between each PE and CU.

particle and its normalized weight to the CU. The interface be-
tween each PE and CU is shown in Fig. 6 where is as-
sumed. When the CU receives a particle from , it first checks
whether its weight is zero. The particles are stored in the
input FIFO only if the weight is nonzero. At the output of the
input FIFO, a particle that is sent to the split operator is also
stored in if it is tagged.

Before a particle is written to the memory, a particle split
operation is performed as shown in Fig. 6. The main reason for
using a split operation is that it is possible to have a particle
with its replication factor larger than 1. Such a split operation
always reduces the replication factor of a particle whenever a
particle is written to a buffer except . Since it is very
critical to redistribute particles among PEs, it is necessary
that the largest replication factor of a particle must be less than
or equal to . After a particle is split, a FIFO is used to

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1149

Fig. 7. Execution time schedule of the PE–CU–PE interface activity.

buffer the output of the split operator before it is written in a
memory. Thus, when a particle is read from any PE, the CU has
to make sure that the maximum replication factor of a particle
is satisfied. This is accomplished by splitting a particle times
where .

The split operation can be described as follows. When a repli-
cation factor is larger than 1, it is divided by 2 (a simple shift
operation is necessary). Then if the least significant bit of a
replication factor before the split operation is 0, then no addi-
tional operation is done except writing the particle twice to the
memory. If the least significant bit of the replication factor be-
fore split is 1, then 1 is added back to one of the two split par-
ticles. Consider a particle in which the replication factor is 4.
In this case, the least significant bit is 0 and a simple division
generates two identical particles with a replication factor of 2.
On the other hand, if the replication factor is 3, this number is
divided via a simple shift, which results in a replication factor
of 1 each. Therefore, 1 is added back to one of the two particles.
The splitting function at the RB is required to satisfy the gran-
ularity condition. But in order to further reduce the granularity,
the split mechanism is also incorporated in the RTB. However,
no mechanism is necessary in the TB since all the particles in
the TB have a replication factor of 1.

Fig. 7 illustrates execution time schedule of the PE–CU–PE
activity. During particle reception, before cycles of
resampling, the particles from the split operator are written
to the and . If the total number of particles (i.e.,
sum of replication particles) in the is larger than ,
the rest of the particles are transmitted to the from
the . The number of unique particles may be less than

because a replication factor of a split particle may be
greater than 1. At the same time, the CU has the information
of the exact numbers of particles in each and
(and , respectively) provided by their
corresponding track counters, , and ,
respectively. The CU handles the internal particle balancing
such that , where is the number
of particles stored in the is the number of particles
stored in the adjacent , and is the number of parti-
cles needed by the . Initially, each PE needs particles
so that , but the number is decreased every time
a particle is transferred to the .

The sends particles back to the from the
and after cycles of resampling. is the sum
of latency incurred due to particle reception through by the CU
via FIFO, denoted as , and the worst-case latency due to
the internal particle balancing operation, denoted as . These
latencies are analyzed in Section IV-C. In order to guarantee that
all tagged particles are exchanged, all the particles stored in

are first transferred to its adjacent PE. Once all the particles in
are read out (i.e., put into FIFO), the particles in are

accessed by the through the output FIFO until .
When a particle is sent to the output FIFO from the , each
particle is written consecutive cycles so that every particle will
have its replication factor of 1.

D. Internal Particle Balancing Operation

The internal particle balancing operation begins as soon as
the following conditions are satisfied for at least one :

(2)

(3)

The expressions (2) and (3) indicate that at least one PE will
have enough particles for itself and the additional particles are
in . Even if the above condition is not met, the internal
particle balancing begins after cycles of resam-
pling. The goal of the internal particle balancing is to guarantee
that for

(4)

Thus, the internal particle balancing operation is ended when all
the satisfy .

Note that (4) cannot be always satisfied if the particles in the
RTBs are not allowed to be transferred to the RBs during the
internal particle balancing. However, the particles in the
cannot be read out by the before the first cycles
of the resampling operation because particles from the may
still be written into the . In order to avoid reading particles
from an empty , the can only read out particles from
the after cycles. The symbol
denotes a component of and is discussed in Section IV-C.

Moreover, the particles from the should be allowed to
be transferred to . However, during the first
cycles of the resampling operation, the cannot send parti-
cles to since may also write data to . On the
other hand, after cycles of resampling, the
cannot write data to if is sending particles to .
Therefore, the only available time for the to write data to

is after cycles of resampling (i.e.,
particles have been written in or still has particles).

Valid particle transfers among the buffers and a PE are enu-
merated and also shown in Fig. 8. The internal particle balancing
mechanism depends on the following conditions.

1) A particle is transferred from to , or
whenever the particle weight is larger than 0 (i.e.,
or) during the start of resampling until
cycles of resampling.

2) A particle is transferred from to after
cycles of resampling, when

and are satisfied. This does not
interfere with condition 1.

3) A particle is transferred from to after
cycles of resampling, when and
and are satisfied.

4) A particle is transferred from to after
cycles of resampling, when

is satisfied.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

1150 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 8. Illustration of a valid range of all the buffer (including PE) operations.

5) A particle is transferred from to during
internal particle balancing operation. The connection is
established based on a connection policy described later.
The controller determines the source and the destination.
Note that .

6) A particle is transferred from to when
, and neither nor is

writing data into . This is to move particles stored
in to directly. Note that whenever a par-
ticle is written to , the particle is split to reduce the
value of the replication factor. This is to ensure that the
particles have small values of replication factors. Without
this, it is not possible to balance the particles perfectly.

During the internal particle balancing operation, each
must be in one of two states: source or destination.

Basically, a becomes a source if .
On the other hand, a becomes a destination if

. However, we allow that
can be either a source or a destination depending on

the condition flag for interface, .
Based on the status of each group of buffers, the CU con-

troller sets up the connections between the RTBs. The
is encoded with three bits of information , and , where

if if , and
if . A possible state for a
given set of condition bits is summarized in Table II.

When the buffers are accessed concurrently, it is possible
that a deadlock may occur. For each set, it is possible to have
multiple states. The reason for multiple states for each set of
conditions is to avoid a deadlock. This is the case when all

are determined as sources. If enough particles are
in the , and , no further particle balancing is
needed. However, if at least one of the needs more par-
ticles, a deadlock happens. On the other hand, a situation where
all the are destinations, it will not be a problem since
we have more than particles in the CU by the quantization
scheme discussed previously and some of the s will be
changed to the source.

In order to avoid such deadlock, a priority decoder is needed
to modify the state, so that internal particle balancing network
can be established. A priority decoder is used to set and reset
the connections between sources and destinations based on all

so that data confliction does not occur. As shown in
Table II, each set of may have multiple possibilities.

TABLE II
CONNECTION STRATEGY DURING INTERNAL PARTICLE EXCHANGE.

i AND j DESIGNATE DIFFERENT PE CU INTERFACE

Fig. 9. Condition flags generator.

Fig. 10. PE–CU–PE controls.

The connection termination condition is when the source does
not have any particles in the or the destination received
enough particles. Once any one of these conditions is satisfied,
the connection is reset and a new connection is established. In
order not to get back to the original condition, the controller
must ensure that at least one particle is transferred before ter-
minating the connection; otherwise it will get back to the orig-
inal condition and cause an infinite loop without any particle
transfer. If there are no particles in and

, the corresponding interface
will not participate in the particle exchange.

E. Concurrent Execution Control

There are four major controller components for proper execu-
tion of the CU as shown in Fig. 10. A status generator generates
all the necessary signals to be used by various components of
the controller. The signals are mainly generated using the buffer
counters as shown in Fig. 9. Since all the buffers are distributed,
the status generator is physically distributed. These signals are

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1151

used by the exchange controller, priority decoder, and indepen-
dent interface controller. The exchange controller de-
cides the pairing of buffers for the particle transfers. The pri-
ority decoder generates correct pairing of each PE CU interface
based on the current state of the internal particle balancing.

There are two approaches in designing the overall exchange
controller. One approach is to connect “ALL” the PE CU inter-
faces at any given cycle. While this can connect as many PE CU
interfaces, the complexity of the controller is prohibitive be-
cause of the enormous number of possible states. The second
approach is to connect two out of all the available PE CU inter-
faces at any given cycle. The second approach, which is adopted
in the proposed mechanism, has a key benefit that it has very
low complexity comparing to that of the first approach. More-
over, the controller is scalable where the only modification is on
the priority decoder which suggest the best pairing based on the
conditions from the status generator and the current activity of
the PE CU interfaces.

The priority decoder is extremely important to maximize
the concurrency of all the buffers so that the time it takes to
transfer particles is minimized. Moreover, the priority decoder
is responsible to avoid a possible deadlock due to sharing
buffers. The priority decoder is ROM where the address of the
ROM is set to and the activity condition of the
interface. The activity condition indicates whether a particular

interface is currently participating in the particle
transfer. Thus, based on these flags, final outputs suggesting the
particle transfer topology are generated. When considering a
possible connection, the inter-connection has a higher priority
over intra-connection (i.e., particle transfers between different
PE CU interfaces have higher priorities). The output of the
priority decoder is used by the exchange controller for the
actual particle transfer. The size of the ROM depends on the
number of PEs employed.

At any given cycle, the priority decoder generates two sets
of signals based on the information which it received as inputs.
They are and . These sets of signals signify two PE CU
interfaces in which the internal particle transfer is to be per-
formed. One restriction is that both interfaces indicated by these
signals cannot be sources and destinations. There are two cases
for pairing. The source and destination are in different PE CU
interfaces and, the source and destination are within the same
PE CU interface. In the second case, we can establish two si-
multaneous connections. To support these capabilities, and

consist of where is an index of interface,
indicates whether the connection is intra (1) or inter (0),

indicates whether the corresponding interface is a source (1) or
a destination (0), and denotes whether the interface is valid
or not. For example, if and

, it signifies that interface 2 is
a source and interface 1 is a destination for inter-connection (i.e.,

to). In case of an intra-connection, two indepen-
dent connections will be initiated at any given cycle. Since it is
possible that only one intra-connection is available, we have to
provide additional information from the priority decoder, which
is . If is 11, both and are valid. If it is 10, only
is valid. If it is 01, only is valid. If it is 00, no connection
should be made. In case of intra-connection, for connec-

TABLE III
BUFFER ACTIVITY STATUS CONDITIONS OF THE PE CU INTERFACE

tion from to , and for connection from
to .

The exchange controller establishes connection between a
pair of buffers. This is accomplished by providing signals to the
switches that configure the routing. Once routing is established,
the connection is created and at least one particle is transferred.
Otherwise, undesired infinite loop may occur as mentioned pre-
viously. As discussed in the previous section, pairing is only
established between RTBs. to signifies particle
transfers between different PE CU interfaces, and to

signifies particle transfers within a PE CU interface. We
also indicated that particles in can be transferred to .
This process conflicts when this is used as its own desti-
nation (i.e., is the source). Therefore, the exchange con-
troller must generate appropriate signals to this inter-
face. On the other hand, when is transferring particles to

, there will be no conflict since will never be chosen
as a source to its own . (i.e., short of particles). Since we
have separate data ports, this can be a destination for

. We have to make sure when both are active and that
correct counting is accomplished. This is displayed in Fig. 5.

The exchange controller provides controls and monitors exe-
cution of particle transfer. The exchange controller monitors the
activity according to , described in Table III.
These flags are set and reset by both the exchange controller
and PE CU interface controller. is set if the inner-connection
is not available and is set if the outer-connection is not avail-
able. When the exchange controller sets up a connection, the
flags are modified. When the interface controller completes the
buffer access, the flags are again modified. One important note
is that since there is connection from to , when there
is any particle transfer, the interface controller signals so that the
exchange controller makes sure that the inner-connection is not
available. This is only applicable for eliminating conflict with
particle transfers from to .

The PE CU Interface Controller interfaces with the exchange
controller as shown in Fig. 11. There is one Interface Con-
troller for each PE CU interface. Their functions are identical
and operational under tight control by the exchange controller.
Structurally, each interface controller contains address genera-
tion logic for each buffer in the PE CU interface.

Interface controllers are mainly composed of counters and in-
crementors. The interface controller then reads and writes par-
ticles between a buffer pair. The initiation of buffer accesses by
the interface controller is controlled by the exchange controller
through the write enable and read enable signals. The PE CU
interface makes sure that local particle transfers, from
to and from to , are not active when connec-
tion between and is established by the exchange
controller. While buffers are being accessed, this interface con-

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

1152 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 11. Interaction between the exchange controller and interface controller.

troller sets busy flag to the exchange controller indicating that
the corresponding PE CU interface is not available. In turn, the
exchange controller uses this information in establishing appro-
priate connection using the priority decoder. Once the exchange
controller generates write enable and read enable for a partic-
ular buffer, each interface controller acknowledges back to the
exchange controller. The interface controller reads or writes par-
ticles until the condition changes or particles are transferred
where is small and constant. A reason for transferring finite
number of particles at any connection is to minimize the non-
deterministic latency . The effects of on the latency is
explained in Section IV. When the interface controller reads par-
ticles from FIFO, an additional condition is that it reads if FIFO
is not empty. Formally, possible conditions for terminating the
entire particle transfer are 1) there are no more particles to read
from RTB or 2) the source PE CU interface has enough parti-
cles. If one of these conditions is met, the interface controller in-
dicates that the operation is completed and returns to wait state.

F. Rom Reduction in the Priority Decoder

To generate and , the input to the ROM requires sets
of and . This implies that the size of ROM in-
creases significantly as becomes large. In order to reduce
the ROM requirement, we employ a set of ROMs where only
two sets of and are used. We select the ap-
propriate ROM based on the availability of PE CU interfaces.
Table IV illustrates the ROM section strategy. In the table, the

- pair implies that the corresponding ROM has
priority information when the and are se-
lected for particle transfers. If is not
available (set to 0 in the table). Otherwise, is available
(set to 1). For illustration, is chosen. Availability indi-
cates if the PE CU interface is available (i.e., 0 is not available, 1
is available). In case of multiple possible connections, a ROM is
selected in a round robin way. In addition, note that the connec-
tion between the nearest PE CU interfaces has a higher priority.
As shown in the table, there are six unique ROMs. The number
of ROMs required by PEs is given by

(5)

TABLE IV
MULTIPLE ROM USAGE TABLE. ROM INDEX ij INDICATES THAT THE ENTRIES

CONTAIN S AND S WHEN PE CU AND PE CU ARE USED FOR

PARTICLE TRANSFER. THE CONNECTION BETWEEN THE NEAREST

PE CU INTERFACES HAVE HIGH PRIORITY

Thus, for ROMs are needed. The number
of ROMs increases rapidly as a function of , and the total size
of ROMs grows slowly rather than the case where one ROM is
used.

For a case where the PU CU index is 0000, the default ROM
that provides and is used even though no
connection will be made by the exchange controller. A case for
1111, three ROMs are used but not at the same time. When one
ROM is used, the size of ROM becomes (1M entries).
On the other hand, when six ROMs are used, the total size of
each ROM becomes (10 K entries).

IV. ARCHITECTURE EVALUATION

A. Guaranteeing Complete Redistribution

As we have discussed in the previous section, as long as we
can maintain for all

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1153

, we can guarantee that each PE will get enough par-
ticles for the next iteration. During internal particle balancing,
a replication factor of any particle may have a large value. This
replication factor is modified whenever a particle is transferred
(i.e., reduced by the splitting operator) so that the replication
factor becomes small enough to balance the particles among the

s.
In addition to the number of particles requirement, the dead-

lock of internal particle balancing must be avoided. This occurs
when all the become sources (i.e., they have particles
to send out) or destinations (i.e., they all need particles). This
deadlock is completely eliminated by a priority decoder, which
decides the appropriate source and destination pair during the
internal particle balancing. Thus, as long as the resampling pro-
vides a total number of replicated particles larger than

, which is guaranteed by the quantization scheme, a perfect
redistribution is guaranteed.

B. Scalability of the Architecture

Thus far, we implicitly assume that the number of PEs is a
power of two. However, the proposed architecture is perfectly
scalable in a sense that the execution time is without
overhead for any number of PEs as long as there are enough
busses available between the PEs and the CU. The only condi-
tion, which is a function of the number of PEs (i.e.,), is the
number of split operations required at the PE and the CU inter-
face. The number of split operators required is given by

(6)

where is the smallest number in power of two that is larger
than . For example, if , then . Thus, the number
of split operators before writing to the RB is 3.

When increases, the number of busses in the balancing net-
work also increases. To maintain full concurrency during the in-
ternal particle balancing operation, the number of busses that is
contained in the internal particle balancing network is equal to

so that the particles can be transferred in pairs of RTBs si-
multaneously. The number of bidirectional busses, , is a func-
tion of , where .

C. Execution Time

We have shown in Fig. 7 that the completion time of resam-
pling and redistribution varies depending on the initial particle
distribution before resampling (i.e., the difference in weights
among the different PEs). However, the mechanism guarantees
that the new set of replicated particles is available after
cycles to be used by each PE, even though the internal particle
balancing may continue for the entire cycles. This
is because the architecture guarantees to generate a new set of
particles for the PE to process in cycles.

The value of is finite and is not a function
of . is a finite latency due to the FIFO write and read at
the PE–CU interface during the particle transmission to the CU.
Thus, this latency is a constant and consists of one write and one
read (i.e., two cycles). The latency is also
finite and is not a function of , where and are the
latencies that are required to support the worst-case situation.

is finite due to the FIFO write and read at the PE–CU

Fig. 12. Performance of the resampling mechanism. A single PE operated with
1024 particles is considered.

interface during the particle transmission back to the PE. Thus,
this latency, again, consists of one write and one read (i.e., two
cycles).

is a latency required to delay the operation to avoid
particles access from an empty . These latencies may arise
when and are empty after cycles. Before
sending particles to the PE, at least one particle must be present
in the . The worst case is when a particle is coming from
another RB through read and write of particle via and

. When a connection is established, the latency involves
read and write access of the source PE CU interface, read and
write between RTBs, and read and write at the destination in-
terface. In order to maintain a fixed latency, a parameter of
is employed (i.e., this parameter has already been discussed).
By restricting the maximum number of particle transfers at any
given connection to , the value of is , where cy-
cles are needed for particle transfers not involving the PE CU
interface in consideration. After the connection is established,
four additional cycles are needed where one cycle is for reading
a particle from the source RTB and one cycle is for writing to
destination RTB, one cycle is for reading a particle from the des-
tination RTB, and finally one cycle is for writing to the destina-
tion RTB. This is the reason that the Priority Decoder alternates
selection of ROM accesses so that any one of the connections
is connected for a long time. The value of is usually chosen
to be less than 10. Thus, the PE can assume that a new set of
particles (resampled particles) after cycles and the
deterministic execution time is always . The value of

is negligible when is large.

D. Resampling Performance

We can measure a degree of resampling performance by com-
paring the replication of particles on single PE versus multiple
PEs. In the evaluation, weights are randomly generated and
their weight distributions are compared with those of the full
precision resampling. Fig. 12 illustrates the performance of the
resampling for the cases with and without using tagging method

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

1154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 13. Performance of the resampling mechanism. Four PEs operated with
1024 particles is considered. A balanced weight distribution is assumed.

Fig. 14. Performance of the resampling mechanism. Four PEs operated with
1024 particles is considered. The worst-case weight distribution is assumed.

for . As shown in the figure, the number of repli-
cated particles for the scheme with tagging method is closer to

(full precision resampling). On the other hand, the replica-
tion without tagging always produces less than particles. In
the figure, the stairwise curves are due to integer values of the
replication factors.

Fig. 13 illustrates the performance of the resampling for the
cases where four PEs are operated with and without the tagging
method for . We assume that the weights are balanced
among the PEs. Each PE operates with 256 particles and gets
tagged particles from its adjacent PE. As shown in the figure,
the number of replicated particles for the scheme with tagging
method is also closer to . Similarly, Fig. 14 illustrates the
performance of the resampling for the worst-case where one PE
generates all the weights, , and the rest of the PEs have zero
weight. Therefore, the PE that has the value of weights equal to

shares its particles to others. As shown in Fig. 14, the number
of replicated particles for the scheme with tagging method is
still closer to comparing to the operation without using the
tagging method.

E. Memory Requirement and Bus Complexity

The memory complexity is a function of , and
where is the wordlength used to represent particles and
weights and is the number of data that one particle contains.
In addition, bits are necessary to represent the
replication factor and the tag factor . For , the resam-
pling operation can be incorporated into the particle filter [13].
When , only one RTB (instead of and) is
necessary since the two PE CU are directly connected.

For example, for the particle filter used in the bearings-only
tracking application, one particle contains four data where two
are used to represent the position and the other two are used to
represent the velocity of an object being tracked. The size of
the memory should be large enough so that the particles can be
buffered before the designated PE reads them out. Thus, the total
amount of memory for and , respectively, is given
by

(7)

(8)

Bus complexity between the PE and the CU heavily depends on
, which is the dimension of the particle filter. In the bearings-

only tracking problem, . The number of total bus wires
between PEs and CU is given by

(9)

Thus, when the value increases, the wires required can be
significant. The choice of is then depending on wires avail-
ability and feasibility for integration. It is possible that particle
transfers are time-multiplexed using a smaller set of
wires. Then, the speed of particle resampling is reduced by a
factor of . As long as , we can achieve speed up
through parallelism. Otherwise, it is better to reduce the paral-
lelism so that the required number of bus wires is decreased.

V. CONCLUSION

In this paper, we have presented a novel parallel resampling
mechanism for perfect redistribution of particles. The proposed
mechanism utilizes a particle-tagging scheme during the quan-
tization to compensate for a possible loss of replicated particles
due to finite precision effect in weight computation. The archi-
tecture incorporates a very efficient interconnect topology for
efficient particle redistribution. We have shown that the perfor-
mance of multiple PE resampling is very close to that of a single
PE. We have also shown that the mechanism ensures that the
resampled particles are always available for further processing
in deterministic time. Moreover, the overall parallel particle fil-
tering execution time perfectly scales with the number of pro-
cessing elements. The mechanism allows for realizing particle
filtering with large in parallel fashion, which has not been
realized in the literature.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

HONG AND DJURIĆ: HIGH-THROUGHPUT SCALABLE PARALLEL RESAMPLING MECHANISM 1155

REFERENCES

[1] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York: Springer Verlag, 2001.

[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE J. Signal Process., vol. 50, no. 2, pp. 174–180, Feb. 2002.

[3] J. Carpenter, P. Clifford, and P. Fearnhead, “An improved particle filter
for nonlinear problems,” Inst. Elect. Eng. Proc.—F: Radara, Sonar, Nav-
igation, vol. 146, pp. 2–7, 1999.

[4] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “A novel approach to
nonlinear and non-Gaussian Bayesian state estimation,” Inst. Elect. Eng.
Proc.—F: Radara, Sonar, Navigation, vol. 140, pp. 107–113, 1993.

[5] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Miguez, “Particle filtering,” in IEEE Signal Process.
Mag., vol. 20, Sep. 2003, pp. 19–38.

[6] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, “Dynamic condi-
tional independence models and Markov chain Monte Carlo methods,”
J. Amer. Statist. Assn., vol. 92, pp. 1403–1412, 1997.

[7] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and beye-
sian missing data problems,” J. Amer. Statist. Assn., vol. 89, no. 425, pp.
278–288, 1994.

[8] J. S. Liu and R. Chen, “Blind convolution via sequential imputations,”
J. Amer. Statist. Assn., vol. 90, no. 430, pp. 567–576, 1995.

[9] D. Crisan, “Particle filtersA theoretical perspective,” in Sequential
Monte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N.
J. Gordon, Eds. New York: Springer-Verlag, 2001.

[10] G. Kitagawa, “Monte Carlo lter and smoother for non-Gaussian non-
linear state space models,” J. Comput. Graphic. Statist., 5 1-25, 1996.

[11] E. Baker, “Reducing bias and inefficiency in the selection algorithms,”
in Proc. 2nd Int. Conf. Genetic Algorithms, 1987, pp. 14–2.

[12] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic
systems,” J. Amer. Statist. Assn., vol. 93, pp. 1032–1044, 1998.

[13] S. Hong, M. Bolić, and P. M. Djurić, “An efficient fixed-point implemen-
tation of residual systematic resampling scheme for high-speed particle
filters,” IEEE Signal Process. Lett., vol. 11, no. 5, pp. 482–485, May
2004.

[14] M. Bolić, P. M. Djurić, and S. Hong, “Resampling algorithms for par-
ticle filters: A computational complexity perspective,” EURASIP J. Appl.
Signal Process., vol. 15, pp. 2267–2277, Nov. 2004.

[15] T. Grotker et al., System Design with System C. Norwell, MA: Kluwer,
2002.

Sangjin Hong (S’98–M’99–SM’04) received the
B.S. and M.S. degrees in electrical engineering and
computer science from the University of California,
Berkeley and the Ph.D. degree in electrical engi-
neering and computer science from the University of
Michigan, Ann Arbor.

Previously, he was a Systems Engineer with the
Computer Systems Division, Ford Aerospace Corpo-
ration. He also was a technical consultant at Samsung
Electronics, Korea. Currently, he is with the Depart-
ment of Electrical and Computer Engineering at State

University of New York (SUNY), Stony Brook. His current research interests
are in the areas of low-power VLSI design of multimedia wireless communi-
cations and digital signal processing systems, reconfigurable SoC design and
optimization, VLSI signal processing, and low-complexity digital circuits.

Prof. Hong served on numerous Technical Program Committees for IEEE
conferences.

Petar M. Djurić (S’86–M’90–SM’99–F’06) re-
ceived the B.S. and M.S. degrees in electrical
engineering from the University of Belgrade, in
1981 and 1986, respectively, and the Ph.D. degree in
electrical engineering from the University of Rhode
Island, in 1990.

From 1981 to 1986, he was Research Associate
with the Institute of Nuclear Sciences, Vinča, Bel-
grade. Since 1990, he has been with Stony Brook
University, Stony Brook, NY, where he is a Professor
in the Department of Electrical and Computer Engi-

neering. He works in the area of statistical signal processing, and his primary
interests are in the theory of modeling, detection, estimation, and time series
analysis and its application to a wide variety of disciplines, including wireless
communications and biomedicine.

Prof. Djurić was the Area Editor of Special Issues of the IEEE SIGNAL

PROCESSING MAGAZINE and Associate Editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING. He is also member of editorial boards of several
professional journals.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 18:07:19 UTC from IEEE Xplore. Restrictions apply.

	toc
	High-Throughput Scalable Parallel Resampling Mechanism for Effec
	Sangjin Hong, Senior Member, IEEE, and Petar M. Djuri, Fellow, I
	I. I NTRODUCTION

	TABLE I R OUNDING /T RUNCATION S CHEME AND T AGGING M ETHOD . T
	II. P ARALLEL R ESAMPLING M ETHODOLOGY
	A. Weight Quantization Scheme

	Fig.€1. Illustration of the average number of replicated particl
	Fig.€2. Illustration of R and T particle sets redistribution
	B. Particle Set Classification and Distribution
	C. Architecture Support for Special-Cases
	III. P ARTICLE D ISTRIBUTION M ECHANISM
	A. Overall Architecture Overview

	Fig.€3. Block diagram of parallel particle filter resampling. Th
	Fig.€4. Internal particle balancing network. $P=4$ is assumed. E
	Fig.€5. Block diagram of the buffer used in the architecture.
	B. Buffer Structure With Condition Generation
	C. PE CU PE Interface Operation

	Fig.€6. Block diagram of the interface between each PE and CU.
	Fig.€7. Execution time schedule of the PE CU PE interface activi
	D. Internal Particle Balancing Operation

	Fig.€8. Illustration of a valid range of all the buffer (includi
	TABLE II C ONNECTION S TRATEGY D URING I NTERNAL P ARTICLE E XCH
	Fig.€9. Condition flags generator.
	Fig.€10. PE CU PE controls.
	E. Concurrent Execution Control

	TABLE III B UFFER A CTIVITY S TATUS C ONDITIONS OF THE PE $_$ C
	Fig.€11. Interaction between the exchange controller and interfa
	F. Rom Reduction in the Priority Decoder

	TABLE IV M ULTIPLE ROM U SAGE T ABLE . ROM I NDEX ij I NDICATE
	IV. A RCHITECTURE E VALUATION
	A. Guaranteeing Complete Redistribution
	B. Scalability of the Architecture
	C. Execution Time

	Fig.€12. Performance of the resampling mechanism. A single PE op
	D. Resampling Performance

	Fig.€13. Performance of the resampling mechanism. Four PEs opera
	Fig.€14. Performance of the resampling mechanism. Four PEs opera
	E. Memory Requirement and Bus Complexity
	V. C ONCLUSION

	A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte
	M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutori
	J. Carpenter, P. Clifford, and P. Fearnhead, An improved particl
	N. J. Gordon, D. J. Salmond, and A. F. M. Smith, A novel approac
	P. M. Djuri, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F
	C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, Dynamic co
	A. Kong, J. S. Liu, and W. H. Wong, Sequential imputations and b
	J. S. Liu and R. Chen, Blind convolution via sequential imputati
	D. Crisan, Particle filtersA theoretical perspective, in Sequent
	G. Kitagawa, Monte Carlo lter and smoother for non-Gaussian nonl
	E. Baker, Reducing bias and inefficiency in the selection algori
	J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynami
	S. Hong, M. Boli, and P. M. Djuri, An efficient fixed-point impl
	M. Boli, P. M. Djuri, and S. Hong, Resampling algorithms for par
	T. Grotker et al., System Design with System C . Norwell, MA: Kl

