
Journal of VLSI Signal Processing 44, 47–62, 2006

c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11265-006-5919-9

Design and Implementation of Flexible Resampling Mechanism for
High-Speed Parallel Particle Filters

SANGJIN HONG, SHU-SHIN CHIN AND PETAR M. DJURIĆ
Mobile Systems Design Laboratory, Department of Electrical and Computer Engineering,

Stony Brook University — SUNY, Stony Brook, NY 11794-2350

MIODRAG BOLIĆ
School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

Published online: 27 May 2006

Abstract. There are many applications in which particle filters outperform traditional signal processing algorithms.
Some of these applications include tracking, joint detection and estimation in wireless communication, and computer
vision. However, particle filters are not used in practice for these applications mainly because they cannot satisfy
real-time requirements. This paper presents an efficient resampling architecture for parallel particle filtering. The
proposed architecture is flexible such that it supports various modes of parallel resampling operations with up to
four processing elements. The resampling algorithm is developed in order to compensate for possible error caused
by finite precision quantization in the resampling step. Communication between the processing elements after
resampling is identified as an implementation bottleneck, and therefore, concurrent buffering is incorporated in
order to speed up communication of particles among processing elements. The flexible resampling mechanism is
implemented in 0.35 μm CMOS process and its complexity and performance are analyzed.

1. Introduction

Particle filters are used in non-linear signal process-
ing where the interest is in tracking and/or detection
of random signals. Particle filters recursively generate
random measures that approximate the distributions of
the unknowns [1]. The random measures are composed
of particles (samples) drawn from relevant distribu-
tions and of importance weights assigned to the par-
ticles. These random measures allow for computation
of all sorts of estimates of the unknowns. In this paper,
we consider sample importance resampling (SIR) type
of particle filters as a typical representative of parti-
cle filtering methods. However, our analysis can easily
be extended to other types of particle filters, for exam-
ple, auxiliary particle filters.

Commonly, the weights of the particles degenerate
after several time instants. In that case, it is necessary

to replicate the particles with large weights and to dis-
card the ones with small weights. This is known as
resampling. Since by resampling we must process a
large number of particles in a short period of time, an
efficient mechanism is necessary for real-time appli-
cations. To improve throughput, multiple processing
elements are necessary. While local computation can
be improved with multiple processing elements execut-
ing in parallel, the resampling still becomes sequential
because of non-deterministic (i.e., the number of par-
ticles transfered from a PE to the resampling unit is
not determined and varies in every iteration) nature of
data transfer between the processing units [2, 4, 3].
Thus, the architecture must support various data ex-
change patterns so that the performance can scale with
the number of processing elements.

In this paper, we consider a parallel particle filter ar-
chitecture consisting of multiple processing elements



48 Hong et al.

(PEs) connected with a single central unit (CU) respon-
sible for resampling. While processing of particles in
the sample and importance steps exploits spatial paral-
lelism where feasible, the CU forces the filters to work
sequentially. Thus, an efficient resampling mechanism
is necessary in order to increase the speed and mini-
mize the communication overhead among the PEs. In
this paper, we present a flexible resampling mechanism
for high speed parallel particle filters. First, a low com-
plexity resampling mechanism is discussed and then its
implementation is presented.

While realization of particle filters on digital signal
processors is feasible when the throughput require-
ment is not imposed, the entire process is sequential
which limits the overall performance significantly [5].
It is also possible to realize the central unit on a digital
signal processor (DSP) but due to the limited number
of input and output pins that can be accessed in paral-
lel, this implementation is not suitable for supporting
multiple PEs. In addition, the resampling process
is inherently memory-centric. Hence, typical DSP
suffers from extensive memory accesses which seri-
ously degrade the throughput of the particle filtering.
Moreover, standard addressing schemes on standard
buses are not suitable for handling non-deterministic
data exchanges among the processing elements. On the
other hand, commercial FPGAs are viable since they
provide enough I/O pins for supporting concurrent data
exchanges with the processing elements [6]. Moreover,
FPGAs have fast logic elements, flexible intercon-
nects, and memory. However, for high-throughput
designs with the low-complexity that supports non-
deterministic data exchanges among the processing
elements, we consider VLSI implementations. The
ASIC version of the architecture incorporates efficient
(small and fast) memory organization with low density
interconnect topology. Thus, delay overhead that
arises from interconnection of distributed memory in
FPGA is eliminated in the design.

With the implementation of the SIR filter which
uses 1000 particles applied to the bearings-only track-
ing problem [7], the following approximate sampling
rates can be achieved: 1 kHz when SIR runs on a
TMS320C67xx from Texas Instruments, 50 kHz when
it runs on the FPGA Xilinx Virtex II Pro that uses a
single PE, and 110 MHz when it runs using the imple-
mentation using a single PE described in this paper.

Here, we present a VLSI design and implementa-
tion of a flexible resampling mechanism. The proposed
architecture supports configurations with 2 or 4 PEs.

With 4 PEs, 3 different subconfigurations are supported
where the difference is in the performance and through-
put tradeoff. The architecture is designed for tracking
applications [7] but can be modified to support differ-
ent particle filtering because the resampling process is
identical. The main difference will be in the number
of input and output pins, and the size of buffers. The
architecture is designed for a 0.35 μm CMOS process
with a highly flexible interconnect mechanism. Static
dual-ported SRAM is incorporated to maintain high
throughput.

The remainder of this paper has five sections. Section
2 describes general resampling mechanisms of parti-
cle filters. Section 3 presents novel resampling mech-
anisms suitable for fixed-point implementation as well
as parallel resampling mechanisms. In Section 4, ar-
chitectures and their different configurations are de-
scribed. Implementation and analysis are discussed in
Section 5. The paper is summarized in Section 6.

2. Resampling in Particle Filters

Particle filters belong to the class of Bayesian signal
processing algorithms. They are applied to problems
that can be described using dynamic state space (DSS)
models. DSS models are used for modeling gradual
changes of the system state in time and the observa-
tions as a function of the state. In comparison to classi-
cal signal processing algorithms, particle filters do not
impose any restrictions to the DSS model, i.e., they can
deal with any non-linear and/or non-Gaussian models,
where ensuring distributions are computable.

In DSS models, signals are described using the state
and the observation equations:

xn = fn(xn−1, un)
zn = gn(xn, vn)

(1)

where n ∈ N is a discrete-time index, xn is a signal
vector of interest, and zn is a vector of observations.
The symbols un and vn are noise vectors, fn is a signal
transition function, and gn is a measurement function.
The analytical forms of fn(·) and gn(·) are assumed
known. The densities of un and vn are parametric and
known, but their parameters may be unknown, and un

and vn are independent from each other. The objectives
are to estimate recursively the signal xn , ∀n, from the
observations z1:n , where z1:n = {z1, z2, · · · , zn}.

The estimation of xn is handled in Bayesian signal
processing by computing the posterior distribution. In



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 49

this paper, we are actually interested in estimating the
filtering density p(xn|z1:n) which allows us to compute
the estimates of the states xn given the whole history of
observations z1:n . Commonly, the expressions for com-
puting and updating filtering densities are not tractable
and involve multidimensional integration. The compu-
tation of the estimates also involves integration. The
estimate of the posterior expectation E(f) of the func-
tion f(xn) is defined by

E(f(xn)) =
∫

f(xn)p(xn | z1:n)dxn (2)

Monte Carlo techniques allow for computing mul-
tidimensional integrals by converting the integration
into summation. However, it is necessary to draw sam-
ples from the distribution p(xn|z1:n). If it is difficult
to draw samples from the original distribution, impor-
tance sampling techniques can be applied. Then the
samples are drawn from the importance sampling func-
tion π (xn) from which it is easy to sample, and each
sample has an associated weight. Each sample is ob-
tained from π (xn|z1:n) and is weighted with respect
to p(xn|z1:n). The basic operations of particle filters
are the generation of new particles (particle generate)
{x(m)

n }M
m=1 and computation of particle weights (particle

update) {w(m)
n }M

m=1.
Besides these two operations, the SIR filters perform

the resampling step. This step is critical in every im-
plementation of particle filtering because without it, the
weights of many particles quickly become negligible
that inference is made by using only a very small num-
ber of particles. The idea of resampling is to replicate
particles with significant weights and to discard those
with negligible weights. Typically, particles are repli-
cated proportionally to their weights r (m) = w(m)

n · M
times. The total number of replicated particles should
remain M which means that the following condition
should be satisfied �M

m=1r (m) = M . Since r (m) has to
be an integer, w(m)

n has to be either rounded or truncated.
In case of rounding or truncation, the total number of
replicated particles will not be equal to M in general.
There are several types of resampling algorithms which
assure that the total number of replicated particles is M
and that the replication is proportional and unbiased.
Standard algorithms used for resampling are different
variants of stratified sampling such as residual resam-
pling (RR) [8], branching corrections [9], systematic
resampling (SR) [1, 7] as well as resampling methods
with rejection control [10]. As a result of resampling,

Figure 1. The residual resampling algorithm.

a new set of resampled particles {x̃(m)
n }M

m=1 with equal
weights 1/M is formed.

The basic operations of the RR algorithm are shown
in Figure 1. The output r , is an array of replication
factors which shows how many times each particle is
replicated. We should note that RR is composed of two
steps. In the first step, the number of replications of par-
ticles is calculated and the particles are stored in mem-
ory (blocks 1 and 2). Since this method does not guar-
antee that the number of resampled particles is M , the
weights of the residual particles are computed together
with the sum of residual particles, and the number of
replicated particles Mr (blocks 3 and 4) is computed.
The weights of residual particles represent the portion
that is not used in the first step due to truncation.

The residual particles have to be resampled again
in order to produce the remaining M − Mr particles.
This can be done by applying the SR algorithm for the
remaining particles. A necessary step before applying
SR is to normalize the weights which is shown in block
5. The normalized weights are used as input for the SR
procedure. Finally the residual particles are formed and
written to the memory.

3. Novel Resampling Mechanisms

3.1. Single PE Particle Filtering

For physical realization, it is critical to have an ef-
ficient mechanism that reduces hardware complexity



50 Hong et al.

and maintains filtering performance. The RR algorithm
possesses interesting features for fixed-point imple-
mentation. The computation of the replication factor
r (m) in block 1 in Figure 1 is performed in hardware
without multiplication if the number of particles is of
the order of two. However, the second step of the RR
algorithm can be significantly simplified. The RR im-
plementation requires M divisions for normalization
in block 5 and running an additional resampling al-
gorithm for processing normalized residual particles
(block 6). In the following text, an approximate method
suitable for fixed-point hardware implementation is
proposed. It’s main purpose is to replace the second
step of RR. Detailed operation of this algorithm and
the corresponding architecture are described in [11].
In this section, we describe the operations of a mod-
ified resampling algorithm with tagging as well as a
different architecture for this algorithm.

Before resampling, the particle weights are com-
puted and normalized in the particle update step. The
normalized value of each weight is always non-negative
and less than one. These weights are quantized with
K + 2 bits where K = log2 M . After the quantiza-
tion via simple truncation, integer representation of the
higher K bits corresponds to the number of times the
particle should be replicated. For example, for the case
when M = 4, the weight of 0.25 is represented bi-
nary as 0.0100. The most significant (excluding first
bit) K = 2 bits are 01 which means that this particle
will be replicated once.

Since the number of replicated particles R obtained
by simple truncation is less than M , the residuals are
processed using the tagging method. Each particle is
tagged based on the last three bits of the K + 2 bit

Figure 2. Memory organization for residual resampling that uses tagged particles. PB is abbreviation for particle buffer.

Table 1. Truncation scheme for parallel particle filtering.

Last three bits Rounding scheme Results Tag status

000 Truncate 0 none

001 Truncate 0 Tag2

010 Truncate 0 Tag2

011 Truncate 0 Tag1

100 Truncate 1 none

101 Truncate 1 Tag2

110 Truncate 1 Tag1

111 Truncate 1 Tag1

representation of the weights as shown in Table 1. If
the last three bits are 011, 110 or 111, the particles are
labeled with tag 1 which means that they have a chance
to be replicated once more. Particles whose weights end
with 001, 010 or 101 are labeled with Tag 2, and they
will be replicated only if the total number of replicated
R and Tag 1 particles T is less then M .

The algorithm and the organization of the memory
in which the replicated particles are written are illus-
trated in Figure 2. The replication factors are computed
and the particles are stored into a particle memory PB
from address 0 using increasing addresses. The address
counter for replicated particles is named ParticleAd-
dress. Tag 1 particles are stored from address M − 1
using decreasing addresses. The address counter for tag
1 particles is named TaggedAddresses. The memory
organization during the resampling process is shown
in Figure 2(a). During resampling, it can happen that
the total number of tagged and replicated particles is
greater than M . This condition is tested by checking



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 51

Figure 3. The operations that are performed by the PEs and by the CU. The data exchanged between the PEs and the CU is also shown.

if ParticleAddress < TaggedAddress. If the condition
is not fulfilled, then storing tag 1 particles is stopped
in order to prevent overwriting of the replicated parti-
cles. The replicated particles can overwrite the tagged
particles as shown in Figure 2(b). Tag 2 particles are
stored in a dedicated memory (block 8) and they are
used only if after resampling T + R < M . In this case,
it is necessary to transfer missing particles from the
tag 2 memory to the particle memory. This situation is
presented in Figure 2(c).

3.2. Particle Sharing Scheme

A particle filter with 4 PEs is used to speed up the
process by parallel operations. In order to support cor-
rect operation in multiple PEs configuration, an ad-
ditional unit, which is the focus of this investigation,
called the central unit (CU) is needed. The algorithms
for parallel particle filtering called distributed resam-
pling algorithms with proportional allocation (RPA)
and non-proportional allocation (RNA) of particles are
described in [12]. In this paper, the CU is designed to
support both of these algorithms with different modes.

Table 2. Illustration of particle sharing modes.

Mode Configuration Resampling algorithm Mode

0 single PE Resampling algorithm with tagged particles 000

1 2-fixed Only 2 PEs are used 001

2 2-2-fixed 2 separate particle filters each using 2 PEs 010 (2)

3 2-2-fixed RNA without regrouping 011

4 2-2-mixed RNA with regrouping with defined rules 100

5 2-2-adaptive RNA with adaptive regrouping 101

6 4-mixed RPA 111

Each PE performs in parallel the particle update and
particle generate steps. Together with the weight com-
putation (particle update), PEi computes the local sum
of weights sumi for i = 1, 2, ..., P . Then the PEs send
the local sum to the CU and receive the total sum
sumtotal. The total sum is used for weight normaliza-
tion which is done locally within each PE. Then the PEs
perform resampling in order to determine the replica-
tion factors r (m) for m = 1, ..., M . The CU is mainly
responsible for two basic operations (Figure 3). The
first operation is done before resampling in which it
gathers the sum of the weights generated from each
PE and computes the summand (sumtotal). In the sec-
ond operation, the CU assists during the exchange of
particles after resampling. This process is called state
update.

We can distinguish between different algorithms and
different modes based on how the normalization and
particle exchange are performed. Different modes are
shown in Table 2. There are a total of 7 different con-
figurations. The coding of each configuration (mode)
is also shown in the table. These modes are illustrated
in Figure 4.



52 Hong et al.

Figure 4. Illustration of particle sharing for fixed, mixed and adap-

tive configurations.

The state update requires extensive data commu-
nication among the PEs and the CU. In the example
shown in Figure 5, a particle filter with P = 4 PEs
and M = 16 particles is used. The particles and their
weights are computed during the particle generate and
particle update steps. In this example, it happened that
most of the probability mass is contained in PE2. The
normalized sums sumi for the PEs 1 to 4 are: 0, 13/16, 0,
3/16. In this example, the algorithm with proportional
allocation is used (RPA), so that each PE generates the
number of particles as a result of resampling propor-
tional to its local sum. So, PE1 generates 0 replicated

Figure 5. In this example, a particle filter with 4 PEs and 16 particles is used. The posterior distribution of the unknown is presented. After

resampling, the most of the propability mass is contained in PE2.

particles, PE2 13 replicated particles and so on. It was
shown in [12] that RPA produces the same resampling
result as the sequential resampling algorithms. In order
to start the next particle filtering iteration, the number
of particles in each PE has to be the same, namely four.
So, PE2 has to send its particle surplus to the PEs 1,
3, and 4. The way that it is done in RPA is shown in
Figure 6(a). It can be noticed from this example that the
communication pattern during the particle exchange is
random. Namely, after each particle filtering operation,
it is not known which PE will have surplus and which
will lack particles. So, the direction and the amount of
particles exchanged among the PEs is unknown. We
refer to the implementation of the RPA algorithm as
4-mixed configuration.

In order to reduce the amount of particles exchanged
through the network as well as to make the communi-
cation deterministic, the parallel particle filtering algo-
rithm with non-proportional allocation (RNA) is used.
The main difference between RNA and RPA is that in
RNA the PEs are grouped in groups of two and they act
almost as separate particle filters. Let us assume that
the sums sumi for the PEs 1 to 4 are: 0, 13/16, 0, 3/16
as in the previous example. Also, let us assume that
PE1 and PE2 form one group and PE3 and PE4 form
another group as it is shown in 6(b) using solid lines.
The resampling is done inside these groups as if they
are separate particle filters. Since all the probability
mass is contained in PE2, it has to send four particles
to PE1. The same happens in the second group, i.e.,
PE3 sends four particles to PE4. After resampling, the
weights of the particles are not equal as in the RPA
algorithm. They are set to the sum of the weights of the
group. In the first group composed of PE1 and PE2, the
sum of the weights is 13/16 so that the weights of the



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 53

Figure 6. The example of particle exchange for a) RPA and b) RNA

algorithm in which the groups are formed from two PEs.

replicated particles are 13/16. The implementation of
the RPA algorithm with fixed groups is referred to as
2-2 fixed (Mode 3) configuration.

If the groups are fixed, the weights in one group
can become dominant in comparison to the weights
from another group. In the case of unequally distributed
weights, the particle filter performance will deteriorate
because only one half (one group) of particle filter will
contribute to the final estimate. This problem is solved
by regrouping the PEs. In Figure 6(b), new groups are
formed from PE1 and PE3, and PE2 and PE4 shown
with dashed lines. Regrouping can be done using some
defined rules or adaptively. The rule that is used in
Figure 6(b) is that groups are formed alternatively as
PE1-PE2, PE3-PE4 and PE1-PE3, PE2-PE4. In adap-
tive configurations, the groups are formed in a way
that the PE with the largest weight is grouped with the
PE with the smallest weight. In this way, weights of

Figure 7. Logic diagram illustrating the structure of the proposed resampling schemes. It is assumed that the particles and their weights are

provided before resampling.

particles are more evenly distributed among the PEs.
The implementation of the RPA algorithm with re-
grouping with fixed rules is referred to as 2-2 mixed
(Mode 4) and with adaptive regrouping as 2-2 adaptive
(Mode 5).

Several additional modes are considered. For a sin-
gle PE operation (Mode 0), the resampling is integrated
into each PE and no particle sharing scheme is pre-
sented. Four independent particle filterings with dif-
ferent parameters can be processed concurrently. Al-
though a single PE mode is supported by the proposed
resampling units, a PE with integrated resampling unit
is more efficient in terms of data access and speed [13].

In Mode 1, only two PEs are active. In Mode 2, two
fixed groups made of two PEs each are formed. There
is no interaction among these two groups, and therefore
two separate particle filters.

4. VLSI Implementation

4.1. Single PE Resampling Architecture

We have designed and analyzed two viable resampling
schemes. These two schemes illustrated in Figure 7 are
suitable for particle filter implementation with a single
PE. Its extension to the multiple PE case is described
in the next section. The resampling mechanisms start
as soon as the first data are read out by the state buffer
(SB) and the weight buffer (WB). The data stored in SB
consist of four-dimensional vector of the states (x , y,
Vx and Vy) for the case of bearings-only tracking appli-
cation, and those stored in WB are a one-dimensional



54 Hong et al.

vector of the weights. WB stores decimal equivalent
representation of the weights which are used to repli-
cate the particles stored in SB. The resampling scheme
RS1 is shown in Figure 7(a). In this scheme, parti-
cles are copied to a buffer (PB) that stores the four-
dimensional vector of the states. The number of copied
particles is determined by the relative value of the cor-
responding weight stored in the WB. After resampling,
the resampled particles are copied from PB into an-
other state buffer (SB′) which is the input in the next
sampling step (particle generate).

For RS1 shown in Figure 7(a), each weight is read
out from WB and decoded. An integer value of K bits
representing r is loaded to down-counter for particle
replication. Depending on the value of r , the down-
counter generates a pulse every cycle for r consecutive
cycles. The incrementor2 increments the write address
of PB if there is a pulse generated from the down-
counter. Once the output from the down-counter is 0
(finish counting), the incrementor1 will increment the
read addresses of both SB and WB. The read between
WB and PB has an offset M + 1 cycles. This offset is
chosen to handle the worst case weight distribution in
WB where only the weight at the Mth address is non-
zero and the rest are zero. Additional cycle added to M
is the buffer access time of PB.

While a particle is being replicated in PB starting
from the lowest address, the same particle, if it is tagged
(Tag1), is also written to the same memory but start-
ing from the highest address. This is to ensure that
the tagged particles can be over-written and discarded.
Thus, the total number of replicated particles is always
M . However, it is still possible that the sum of R and
T is less than M . This possibility is handled by hav-
ing a small Tag2 memory for storing tagged particles
(Tag2) and these particles will be copied to PB only if
R + T < M . The inequality is checked by adding the
last memory addresses where the replicated particles
and tagged particles are inserted. If the sum of these
two addresses is less than M , tagged particles (Tag2)
will be inserted from (R+1)th address of PB. The Tag2
memory can store at most 128 particles with Tag2. If
T2 is more than 128, the tagged particles in Tag2 mem-
ory will be over-written. The structure has data feed-
forward property. Although we have assumed that the
number of particles is a power of two, the scheme can
be extended to handle an arbitrary number of particles.
The difference will be in the tagging method. This re-
sampling structure actually forms a local controller for
generating the read addresses of SB and WB.

It is observed that particles are unnecessarily copied
twice in this scheme. Copying particles from SB to PB
can be avoided by using index addressing. An alterna-
tive way to implement the resampling structure, RS2,
is shown in Figure 7(b). The four states of one particle
have the same address location in SB. So, RS2 adopts a
memory (AB) with 1M size to store addresses of these
four states instead of using PB with 4M size. Besides,
RS2 maintains the same cycle time of resampling as
that of RS1. The other operations of RS2 are the same
as those of RS1.

Let the resampling time be defined as a time be-
tween the first access of r and the end of successfully
transmitting the last replicated particle to PB or AB.
The timing of the single PE particle filtering as well
as the resampling time is illustrated in Figure 8. The
resampling process begins as soon as the last weight
is computed by particle update. The output generate
for the current iteration (iteration i) and the particle
generate for the next iteration (iteration i + 1) begin at
the first access of SB or AB, which is the (M + 1)th cy-
cle after the beginning of resampling. The resampling
process and the state update take 2M cycles. The main
reason for the 2M cycle latency of output generate is to
support the worst case timing of resampling. The worst
case occurs when the values of all the weights are zero
except the last one. So, the replication of the particles
will start at the Mth cycle after the beginning of the
resampling process.

Both RS1 and RS2 are not efficient in the multiple
PE operation. Without proper mechanism to support
the multiple PE operation, the resampling time cannot
be improved even though the number of cycles taken
by other unit operations (from particle generation to
weight normalization) is reduced by P . Here P is the
number of PEs processed in parallel.

4.2. Multiple PE Resampling Architecture

The proposed architecture that consists of four PEs sup-
ports the configuration of different modes shown in Ta-
ble 2 . It is reconfigurable so that any two PEs can share
their particles in any iteration. By properly controlling
the connections, any two PEs can share their particles
via the CU without conflicts. The timing of the mul-
tiple PE resampling is illustrated in Figure 8(b). The
processing time of the individual operation is reduced
by P . For the worst case timing of resampling, the first
particle from PEi is sent to the CU at t ′. After two ad-
ditional cycles overhead time due to buffers accesses



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 55

Figure 8. Illustration of the resampling time. (a) In single PE resampling, t1 is the beginning of the resampling and state update for iteration

i . t2 is the beginning of the output generate for iteration i and the particle generate for iteration i + 1. t1 and t2 are separated by at least M + 1

clock cycles. In addition to the M cycles, one additional cycle is added because the particles will be transferred from PB or AB. t3 is the end

of resampling and state update, and t4 is the end of output generate. (b) In multiple PE resampling, there are two cycles overhead time due to

buffers accesses defined as difference between t1′ and t1′′.

in the CU, PE j starts to receive particles from the CU
at t ′′.

The interactions between the PEs and the CU as well
as their connections are shown in Figure 9. In maxi-
mum, four PEs are processed in parallel. For the best
case of resampling, each PE replicates M/P particles.
However, some PEs may replicate more than M/P par-
ticles and others less than M/P . This is because the sum
that each PE uses for weight normalization is sumtotal

and not the sum generated locally from each PE. In
other words, the sum of weights for each PE is not
balanced. The PEs with particle surplus send the ex-
ceeding particles to the CU, and the PEs with missing
particles receive particles from the CU. Since the num-
ber of particles generated by each PE is proportional
to the normalized sum of weights, it can be determined
if the PE has exceeding or missing particles. Based on
this information, the CU distributes particles. Unlike

in the single PE resampling scheme, tagged particles
will not be stored locally. Instead, the tagged particles
will be sent to the CU. After the exceeding particles
are transferred to other PEs, tagged particles in the CU
are used only if there are still some PEs with missing
particles. The reason for sending tagged particles to the
CU is to exchange particles among different PEs even
when the sums of weights are balanced. When the sums
of weights are equally balanced among the PEs, all the
particles are used only by the corresponding PE. By
redistributing the tagged particles, all other PEs will
receive surplus form the other PEs as if the processing
is done by a single PE.

As shown in the figure, a two-level interconnection is
adopted. The first level is used for interactions between
the PEs and the CU and the second level is exploited for
interactions inside the CU. In the figure, RBi and RTBi

are buffers used to store exceeding particles which will



56 Hong et al.

Figure 9. A parallel PE resampling architecture.

be transmitted to different PEs respectively. TBi is a
buffer used to store only tagged particles. Particles are
written to RBi and TBi in the CU by the resampling
interface (RS I/F) of PEi and they are read by the RS
I/F of PE j where j �= i . Also, particles can be written
to RBi from RTB j . It is important to stress that the first
level interconnection supports reconfigurability. Con-
nections can be reconfigured in order to support several
different modes of operations. The first level intercon-
nection shown in the figure is an example where each
PEi gets particles from RBi−1. In the first level inter-
connection, not all PEs can exchange particles among
themselves. This problem is addressed through the sec-
ond level of interconnection where unconnected PEs
are indirectly connected using RTBi . The second level
interconnection is fixed (it is not reconfigurable). RTBi

contains two banks, RTBia and RTBib, which are con-
nected to designated RBs respectively. RTBi gets the
exceeding particles directly from PEi and the tagged
particles from TBi . TBi is accessed after all the particles
stored in RBs or RTBs are sent out to the PEs.

The sizes of RBi and TBi are chosen to handle the
worst case condition for the four-dimensional vector of
the states. Among the configuration modes, the worst
case happens when 2 PEs process in parallel. Even
though it is possible that all the particles generate tags,
we chose the size of TBi as (M/2)×10%×4(states) =
M/5 for 2 PEs mode because usually the tagged parti-
cles are around 10% of total replicated particles [11].
Data in RBi are read out after M/2 + 2 cycles of

resampling. But it is possible that before they are read
out, all the particles supporting the designated PE of
this RBi are generated. The RBi should be large enough
to handle this situation. Therefore, the size of each RBi

is chosen to be M/2 × 4 = 2M . The overflow buffer is
used when the 4-mixed configuration is adopted. Once
the data are written in the overflow buffer, they are
read out as soon as possible by their designated RBi .
However, RTB ja has to stall transferring its particles to
RBi until RBi stops receiving particles from PEi . Also,
RTBkb has to wait to transfer its particles to RBi until
RTB ja has sent all its particles to RBi . The worst case
amount of particles that have to be stored in the over-
flow buffer determines the size of the two banks of over-
flow buffer. Let us consider the case where four PEs are
processed in parallel. There are situations where each
PE1, PE2, PE3 has large value of R (R > M/P), and
PE4 has a small value of R (R < M/P). In this case,
many replicated particles from PE1, PE2 and PE3 will
be stored in RTB1b, RTB2a and RB3, respectively, and
then will be used by PE4. For a situation where PE1

and PE3 have large values of R but PE2 and PE4 have
small values of R, most of the particles will be used
without having to transfer to overflow buffer.

4.3. Interface and Control

In order to minimize the resampling time in the multi-
ple PEs operation, resampling has to replicate as many
particles as possible in one cycle. For example, if the



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 57

Figure 10. RS3 scheme.

replication factor for particle m is r (m) = 4 in only one
PE with surplus of particles (Ri > M/P), then this
particle should not only be written to the PB but also
be sent to the CU in one clock cycle. The CU treats this
particle as three which will be buffered in three differ-
ent memories in the CU. In this case, resampling takes
only one clock cycle to copy the particle for r (m) = 4.
Without this modification, the resampling time is the
same as that of a single PE. The reason is that particle
allocation in the CU takes M cycles. With this modifi-
cation, the resampling time is reduced by a factor of 1/P
in average. However, the resampling scheme in the PE
has to support the computation of the number of par-
ticles that resampling has sent to the CU in one clock
cycle, so that the read addresses of both SB and WB
are generated correctly. This modified scheme, RS3, is
shown in Figure 10, which actually forms the RS I/F
in Figure 9.

One bit signal sri is generated by comparing sumi

and M/P . It indicates whether the PEi has exceeding
particles (PEi in sending operation, sri = 0) or missing
particles (PEi in receiving operation, sri = 1). For the
PEi in sending operation, during the first M/P cycles,
the PEi sends particles to the CU. One bit signal ti

informs the CU whether the coming particle is tagged or
not. The PEi in receiving operation only sends tagged
particles to the CU during the first M/P cycles and will
receive particles from the CU after M/P + 2 cycles.
The received particles are written to PB starting from
the (sumi + 1)th address. Meanwhile its own particles
may still be copied from SB to PB depending on the
weight distribution in WB.

The NSP generator generates a 2-bit signal nspi
which indicates how many particles are sent to the CU
from PEi in one cycle. nspi will be further used to cal-
culate the number of cycles that RS3 takes to process
a weight with r so that the read address of SB and WB
is generated correctly. In order to describe the gener-
ation of nspi , several control signals are defined. The
signal filledi is a one bit signal that indicates whether
the highest write address of PB is accessed. The CU
calculates the rough number of particles to be trans-
ferred to PE j by PEi . When PEi in sending operation
generates enough particles for PE j , one bit signal s fi

generated in the CU switches from low to high. In the
table, there are three signals, s fi , s fia and s fib corre-
sponding to the other three PEs. If PEi does not need
to support PE j , its corresponding s f signal is always



58 Hong et al.

Table 3. Conditions for generating nsp.

Number of particles sent to

nspi the CU in one cycle Conditions

(sri = 0) and (m0m1m2 �= 000) and

{ (r=1 and filledi =1) or

01 1 particle (r=2 and filledi =0 and at least one of (s fi , s fia , s fib) equals to 0) or

(r=2 and filledi =1 and only one of (s fi , s fia , s fib) equals to 0) or

(r ≥ 3 and only one of (s fi , s fia , s fib) equals to 0) }
(sri =0) and (m0m1m2 �= 000) and

{ (r=2 and filledi =1 and at least two of (s fi , s fia , s fib) equals to 0) or

10 2 particles (r=3 and filledi =0 and at least two of (s fi , s fia , s fib) equals to 0) or

(r=3 and filledi =1 and only two of (s fi , s fia , s fib) equals to 0) or

(r ≥ 4 and only two of (s fi , s fia , s fib) equals to 0) }
(sri =0) and (m0m1m2 �= 000) and

11 3 particles { (r=3 and filledi =1 and all of (s fi , s fia , s fib) equals to 0) or

(r ≥ 4 and all of (s fi , s fia , s fib) equals to 0) }
00 0 particle otherwise

high. A control signal mode contains three bits, m0,
m1 and m2 which are used by the NSP generator in-
stead of s fi , s fia and s fib when it is in single PE mode
(m0 = m1 = m2 = 0). The maximum number that
nspi can represent is 3 since maximum three PEs re-
quire particles from PEi . The conditions for generating
nspi are listed in Table 3. For example, the CU treats
the particle from PEi as three particles (nspi = 11)
under the following conditions. First, PEi must not be
in a single PE mode. If PEi is in a single PE mode,
nspi is always 00, which means that the CU does not
accept any particle from PEi . Also, PEi must be in
sending operation (sri = 0). Under these constraints, r
for the weight must be at least 3. When r = 3, the CU
treats this particle as three only if the PB in PEi is filled
(filledi = 1) and the CU has not received enough par-
ticles from PEi (s fi = s fia = s fib = 0). On the other
hand, when r > 3, the CU treats this particle as three
only if PEi does not generate enough particles for the
other three PEs regardless if PB in PEi is filled or not.

Once nspi is generated, RS3 starts to calculate the
number of cycles which it takes to process a weight with
the replication factor r . The factor r is first subtracted
by (nspi + 1) if its own PB is not filled, where 1 stands
for one particle to fill its own PB in one cycle. If the PB
is filled, r is subtracted by nspi . If the subtracted value
sub is smaller than or equal to 0, this means, in the next
cycle, the same weight and particle will not be read
again. The case of sub < 0 occurs when r = 0. Then
the gated clock disables the Incrementor2; otherwise it
produces a pulse to Incrementor2 controlling the write

addresses of PB so that particles from SB can be written
to PB. When sub ≤ 0, in the next cycle, Incrementor1
will be incremented and the next weight and particle
will be read out correctly. The logic of RS3 computes
the number of particles sent to the CU in one cycle.
However, it has no information which PE will receive
these particles. This assessment is made by the CU.

5. Architecture Evaluation

5.1. Inter-Chip Data Communication Analysis

Figures 11 and 12 illustrate the number of particle com-
munications between PEi and the CU in term of M for
2-fixed, 2-2-fixed, 2-2-mixed and 4-mixed modes. Both
RS1 and RS3 schemes are compared. Assume that the
sum of all the local R of each PE is M . Tagged particles
are not considered here. Since the power consumption
is especially expensive for inter-chip data communi-
cation, it is highly desirable to minimize the particle
communications between the PEs and the CU.

Figure 11 shows the case for 2-fixed and 4-mixed
modes. For 2-fixed mode, when R = 0.5M in each
PE, the sums of the weights in the two PEs are equally
balanced and no particle needs to be transferred be-
tween PEi and the CU. PEi is in sending operation
when R > 0.5M and in receiving operation when
R < 0.5M . The advantage of using RS3 in each PE
cannot be shown in this mode in term of data communi-
cation and it has the same performance as that of RS1.



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 59

Figure 11. Relationship between the value of R of PEi and the number of particle communications between PEi and the CU for the 2-fixed

and 4-mixed modes. y-axis represents the normalized (by M) number of data transfers.

This is because in this mode each cycle the CU receives
only one particle from PEi in maximum when PEi is in
sending operation. When PEi is in receiving operation,
the particles are received sequentially by both the RS1
and RS3 schemes.

For a 4-mixed mode, the sum of the weights in the
four PEs are balanced when R = 0.25M in each PE.
PEi sends particles to the CU if R > 0.25M and re-
ceives particles from the CU if R < 0.25M . For the use
of RS1, the number of data communications is propor-
tional to the number of exceeding or missing particles
of PEi . This is also true for RS3 when PEi is in re-
ceiving operation due to the sequential nature of the
receiving particles. When PEi is in sending operation,
the CU can receive at most three particles from RS3

Figure 12. Relationship between the value of R of PEi and the number of particle communications between PEi and the CU for the 2-2-fixed

and 2-2-mixed modes. y-axis represents the normalized (by M) number of data transfers.

in one cycle for the best situation and the number of
communicated data is reduced. Otherwise the CU may
also receive particles sequentially for RS3 depending
on the weight distribution in PEi .

Figure 12 illustrates the number of particle commu-
nications between PEi and the CU for the 2-2-fixed and
2-2-mixed modes. For the same reason as for the 2-fixed
mode, it makes no difference of using RS1 and RS3 for
both modes. The sums of the weights in the four PEs
are balanced when when R = 0.25M in each PE. PEi

sends particles to the CU if R > 0.25M and receives
particles from the CU if R < 0.25M . For both modes,
for the best case where the number of particle commu-
nications is minimum, PEi cannot send all its exceeding
particles or receive all the missing particles. For PEi



60 Hong et al.

in receiving operation, this number is reduced to 0.
This is because PEi and its designated PE, PE j , are
both in sending or receiving operation. On the other
hand, the worst case happens when PEi has to transmit
or receive a full amount of particles to/from PE j . For
R = M in PEi for both modes, the other three PEs
must be in receiving mode. In this situation, PEi has
3M/4 exceeding particles but it only needs to trans-
mit M/4 particles to PE j . In the 2-2-mixed mode,
for R = M/2 and R = 3M/4, the number of parti-
cle communications for the best case is different from
0 since the PE with largest value of R has to share
its particles with the PE with smallest value of R.
When the particles are evenly distributed in the other
three PEs, the number of particle communications is
minimized.

5.2. Chip Implementation

The CU chip has been designed and implemented using
Cadence with TSMC 0.35μm, 4 metal CMOS process.
The layout is shown in Figure 13. The CU chip contains
360 pins surrounding evenly on the four sides. The total
number of pins depends on the dimensionality of the
dynamic system. The particle filter considered in this

Figure 13. The layout of the CU (9.5mm × 9.6mm). The CU is

designed and implemented using Cadence with tsmc 0.35μm, 4 metal

CMOS process.

paper has a dimensionality of 4. The overall CU chip
size is 9.5 mm × 9.6 mm. The major area is dominated
by the memory and interconnect. The first level inter-
connection which supports reconfigurability is located
between the pins and the RBs. Each of the interconnect
line contains transmission gate switch for multiplexing
to select correct routing paths. As we have discussed,
this first level interconnect supports non-deterministic
nature of data transfers between the processing ele-
ments. Each RB is facing each side of the chip in order
to minimize interconnect paths to the PEs. The over-
flow buffers and a central controller are located in the
center of the chip. The central controller is responsible
for generating all the control signals of the CU. It also
includes logic for generating the sumtotal. The speed of
the CU is limited by the largest dual-port static mem-
ory whose size is 4k × 16 bits with four banks. Each
memory cell is designed with 6-T SRAM cell config-
uration. The maximum achieved clock speed of the
CU is 284 MHz. The capacity of the particle filters
(i.e., the value of M) can be increased by incorporat-
ing larger memory in the unit. An efficient placement
of the memory and interconnect is one of the advan-
tages over the FPGA realizations in terms of area and
speed.

5.3. Performance Comparison

We compare the performance of the CU unit with that
of commercial DSP (TI TMS320C67xx series). Fig. 14
illustrates the execution time of the resampling units
only. Fig. 14(b) shows curves without DSP. The execu-
tion time is plotted as a function of the particles, M . In
determining the execution time of the DSP, the VLSI
implementation is replaced by the DSP with standard
memory address scheme. A standard bus structure
with the External Memory Interface (IMIF) of the DSP
is modeled for multiple PEs configuration [14]. The
DSP is running at 600 MHz. The execution time of the
DSP is determined with TI Code Composer instruction
profiling tool. The bus performance is modeled with
the Verilog for computing data exchange time. Three
plots for multiple PE execution time is plotted for
the VLSI implementation. Note that increase in the
number of PEs does not significantly increase the
performance. However, multiple PEs reduce overall
particle filtering by a factor of P where P is the
number of PEs. Thus, overall execution time for
multiple PEs will be significantly faster. On the other
hand, the performance is significantly degraded due to



Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters 61

Figure 14. Performance comparison. DSP is running at 600 MHz

with standard address scheme and the bus structure. (a) Curves with

DSP. (b) Curves without DSP.

extensive sequential memory access. Even though the
clock speed of the DSP is higher than that of the VLSI
implementation, the overall resampling time does not
change for multiple PEs. There is a slight but insignif-
icant increase in the execution time due to overhead in
handshaking mechanism (i.e., the I/O pins of the DSP
is time-multiplexed where the data transfer becomes
serialized).

In both platforms, the capacity of the particle fil-
ter can be increased since the memory requirement is
linear in M . In the VLSI implementation, more mem-
ory needs to be incorporated to support higher capacity
without any change in the interconnect topology. On the
other hand, the DSP requires a large amount of external
memory, which significantly affects the performance of
the overall operation.

6. Conclusion

In parallel particle filters, resampling is the most crit-
ical unit that directly influences the performance and
overall hardware complexity. In this paper, we have
proposed and designed a flexible resampling architec-
ture that can be employed for high throughput particle
filtering. A very efficient resampling mechanism is in-
corporated which reduces the overall resampling time
by a factor of the number of PEs. The unit is synthe-
sized using 0.35 μm CMOS processing technology and
its performance is evaluated. The design supports up to
four parallel PEs executing bearings-only tracking ap-
plication with various modes of operations. The num-
ber of PEs is limited only by the number of input/output
pins. The architecture presented in this paper can be ex-
tended to other particle filters.

References

1. A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential
Monte Carlo Methods in Practice, New York: Springer Verlag,

2001.

2. M. Bolić, P. M. Djurić, S. Hong, “New Resampling Algorithms

for Particle Filters,” IEEE ICASP, 2003.

3. M. Bolić, P. M. Djurić, S. Hong, “Resampling Algorithms

for Particle Filters: A Computational Complexity Perspec-

tive,” submitted to the Journal of Applied Signal Processing,

2003.

4. M. Bolić, P. M. Djurić, S. Hong, “Resampling Algorithms for

Particle Filters Suitable for Parallel VLSI Implementation,”

IEEE CISS, 2003.

5. R. Tessier and W. Burleson, “Reconfigurable Computing and

Digital Signal Processing: A Survey,” Journal of VLSI Signal
Processing, May/June 2001.

6. Xilinx, “Virtex-II Platform FPGA Handbook,” 2000.

7. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “A

novel approach to nonlinear and non-Gaussian Bayesian state

estimation,” IEE Proceedings F, vol. 140, pp. 107–113,

1993.

8. E. R. Beadle and P. M. Djurić, “A fast weighted Bayesian boot-

strap filter for nonlinear model state estimation,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 33, pp. 338–343,

1997.

9. D. Crisan, P. Del Moral, and T. J. Lyons, “Non-linear filter-

ing using branching and interacting particle systems,” Markov
processes and Related Fields, vol. 5, no. 3, pp. 293–319,

1999.

10. J. S. Liu, R. Chen, and W. H. Wong, “Rejection control and se-

quential importance sampling,” Journal of American Statistical
Association, vol 93, no.443, pp. 1022–1031, 1998.

11. S. Hong, M. Bolić, and P. M. Djurić, “An Efficient Fixed-Point

Implementation of Residual Systematic Resampling Scheme for

High-Speed Particle Filters,” IEEE Signal Processing Letters,

vol. 11, No. 5, May 2004.



62 Hong et al.

12. M. Bolić, P. M. Djurić, S. Hong, “Resampling Algorithms and

Architectures for Distributed Particle Filters,” accepted for pub-

lication in IEEE Transactions on Signal Processing, 2004.

13. S.-S. Chin and S. Hong, “VLSI Design and Implementation of

High-Throughput Processing Elements for Parallel Particle Fil-

ters,” IEEE SCS, 2003.

14. FPGA Interface to the TMSC6000 DSP Platform Using EMIF,

Xilinx Inc. - XAPP753, May 2004.

Sangjin Hong received the B.S and M.S degrees in EECS from

the University of California, Berkeley. He received his Ph.D

in EECS from the University of Michigan, Ann Arbor. He is

currently with the department of Electrical and Computer Engi-

neering at State University of New York, Stony Brook. Before

joining SUNY, he has worked at Ford Aerospace Corp. Com-

puter Systems Division as a systems engineer. He also worked

at Samsung Electronics in Korea as a technical consultant. His

current research interests are in the areas of low power VLSI de-

sign of multimedia wireless communications and digital signal

processing systems, reconfigurable SoC design and optimiza-

tion, VLSI signal processing, and low-complexity digital cir-

cuits. Prof. Hong served on numerous Technical Program Com-

mittees for IEEE conferences. Prof. Hong is a Senior Member

of IEEE.

Shu-Shin Chin was born in Kaohsiung, Taiwan, ROC, in

1974. He received his M.S. and Ph.D degrees in electrical and

computer engineering from Stony Brook University – State

University of New York in 1999 and 2004, respectively. His

research interests include low-power digital circuits, and coarse-

grained reconfigurable architectures for high-performance DSP

systems.

Miodrag Bolić received the B.S. and M.S. degrees in electri-

cal engineering from the University of Belgrade, Yugoslavia,

in 1996 and 2001, respectively, and his Ph.D. degree in electri-

cal engineering from Stony Brook University, NY, USA. He is

currently with the School of Information Technology and En-

gineering at the University of Ottawa, Canada. From 1996 to

2000 he was Research Associate with the Institute of Nuclear

Science Vinĉa, Yugoslavia. From 2001 to 2004 he worked part-

time at Symbol Technologies Inc., NY, USA. His research is

related to VLSI architectures for digital signal processing and

signal processing in wireless communications and tracking.

Petar M. Djurić received his B.S. and M.S. degrees in electrical

engineering from the University of Belgrade, in 1981 and 1986,

respectively, and his Ph.D. degree in electrical engineering from

the University of Rhode Island, in 1990. From 1981 to 1986 he

was Research Associate with the Institute of Nuclear Sciences,

Vinĉa, Belgrade. Since 1990 he has been with Stony Brook Uni-

versity, where he is Professor in the Department of Electrical

and Computer Engineering. He works in the area of statistical

signal processing, and his primary interests are in the theory of

modeling, detection, estimation, and time series analysis and its

application to a wide variety of disciplines including wireless

communications and bio-medicine. Prof. Djurić has served on

numerous Technical Committees for the IEEE and SPIE and has

been invited to lecture at universities in the US and overseas.

He is the Area Editor of Special Issues of the Signal Processing

Magazine, the Treasurer of the IEEE Signal Processing Confer-

ence Board, and Associate Editor of the IEEE Transactions on

Signal Processing. He is also the Chair elect of the IEEE Signal

Processing Society Committee on Signal Processing—Theory

and Methods, and an Editorial Board member of Digital Signal

Processing, the EURASIP Journal on Applied Signal Process-

ing and the EURASIP Journal on Wireless Communications

and Networking. Prof. Djurić is a Member of the American Sta-

tistical Association and the International Society for Bayesian

Analysis.


