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Abstract—This paper presents a reconfigurable particle filter
design methodology for a real-time bearings-only tracking ap-
plication. The methodology provides the capability of selecting a
single particle filter from multiple particle filter realizations with
maximum resource sharing. The autonomous buffer controller
mechanism for the architecture ensures correct operation of the
particle filters. Parameter adaptation and algorithm reconfigura-
tion can be accomplished with negligible reconfiguration overhead
through buffer controllers and a set of switches for transforming
dataflow structures such that any desired particle filter can be
implemented. Two target particle filters, sample importance
resample filter (SIRF) and Gaussian particle filter (GPF), are
realized using field programmable gate array (FPGA) based on
the proposed methodology. However, the architecture can be
extended for a wide range of particle filters with different sets of
dynamics. This paper successfully demonstrates that implemen-
tation of a domain specific processor for particle filters is feasible
with performance that is much higher than that of commercially
available digital signal processors (DSPs).

Index Terms—Buffer controller, field programmable gate array
(FPGA) design methodology, particle filter, reconfigurable design.

I. INTRODUCTION

PARTICLE filtering is an emerging powerful method-
ology for sequential signal processing, especially for

nonlinear and non-Gaussian problems [1]–[3]. The applications
include wireless communications, navigation systems, sonar,
and robotics, where sequential (adaptive) signal processing is
needed [2], [4]. A common problem in all of these applications
is the estimation and/or detection of dynamic signal parameters
or states in real time. Executing different types of particle
filtering algorithms on state-of-the-art digital signal proces-
sors (DSPs) suffers significantly due to lack of concurrency
exploitation. Particle filters (PFs), which require a significant
amount of computations, present an important challenge for
hardware implementation. There are many applications where
PFs can make considerable improvements in performance but
often they have not been used because they cannot meet the
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stringent requirements of real-time processing. Hence, it is
highly desirable to develop a programmable particle filtering
hardware that can replace the use of DSP.

In this paper, we consider the design of such a programmable
particle filtering hardware for tracking applications. In practice,
a PF algorithm for tracking must change to cope with the type
of objectives and the dynamics of the target. The main contribu-
tion of the paper is a design methodology for a high speed, do-
main specific, parameterizable particle filtering hardware with
reconfigurability. A reconfigurable PF can be used in a wide
range of applications depending on the statistical parameters
of input observation and dynamic models. Reconfigurability in-
cludes the type of PF used, dimension of state spaces, and the
number of particles that may change dynamically to adapt to
changing environments. For many real-time applications, dy-
namically varying degree of parallelism is desirable where pro-
cessing elements duplicate for higher throughput processing. In
addition, a multiple instance of the same PF is useful for tracking
more than one object at a time. It is also desirable to change the
execution speed for power reduction if the real-time require-
ment is relaxed. Thus, we can envision a reconfigurable pro-
cessor that can support the above situation dynamically during
run-time without redesigning particle filters whenever specifi-
cations change.

The use of reconfigurable DSP is not new [5], but most of re-
configurability has been focused at traditional fine-grain opera-
tions such as multipliers and adders. To the best of our knowl-
edge no previous works focus on the reconfigurable architecture
for the PF. Commercial DSPs provide ultimate flexibility for
PF design. Filtering parameters as well as type of filters can be
easily adapted through change in software routines for a specific
filtering task. Even though current DSPs are highly pipelined
and support some level of concurrency, they are not suitable for
high-speed real-time particle filtering. On the other hand, in the
field programmable gate array (FPGA) implementation, oper-
ational concurrency can be achieved by utilizing multiple pro-
cessing elements or parallelizing the overall filtering algorithms.
However, a key problem with the FPGA implementation using
commercial design environment is that programming/reconfig-
uration is done statically during the design stage with long time
to program, and without special support at the implementation
level. Recently, commercial FPGAs have started to support par-
tial dynamic reconfiguration, but this comes at the cost of a com-
plicated design flow and larger overheads which make it imprac-
tical for large designs [6].

The reconfigurable PF architecture presented here is based
on maximizing reuse of processing blocks common to different
PF algorithms. The interconnection and interface between the
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processing blocks is done using distributed buffers, controllers,
and multiplexers. In the design, we consider two different types
of particle filtering algorithms, namely Gaussian particle filter
(GPF) and sample importance resample filter (SIRF), for the
bearings-only tracking problem [7], [8]. Using the proposed
architecture, dynamic reconfiguration can be done by simply
loading a set of parameters into the controllers. We demonstrate
the methodology using commercial FPGA.

The rest of the paper is organized as follows. Section II
briefly describes the background and motivation of the work.
We discuss characteristics of PFs and requirements for recon-
figurable architectures. In Section III, two types of algorithms,
SIRF and GPF, for bearings-only tracking (BOT) applications
are discussed. Section IV discusses the structure of the pro-
cessing blocks used for performing operations in the PFs. The
combined architecture with processing blocks and buffer con-
trollers is presented in Section V. The designs are mapped to
FPGA and are evaluated in Section VI. Finally, our contribution
is summarized in Section VII.

II. BACKGROUND AND MOTIVATION

A. PF Characteristics

PFs are used in nonlinear signal processing where the in-
terest is in tracking and/or detection of random signals. PFs base
their operations on representing the posterior density of the state
of interest by discrete random measures composed of particles
(samples) and their respective weights [1]–[3]. Accordingly, the
posterior at every time instant is represented by the random
measure where is the th particle of the
signal at time , is the th trajectory of the signal, and

is the weight of the th particle (or trajectory) at time .
The particles are drawn from known densities (importance func-
tions, IFs) and weights assigned to each particle using the prin-
ciple of importance sampling [3]. This weighted set of particles
can then be used to find various estimates of the state like the
MMSE or MAP estimate. As new observations become avail-
able, the particles are propagated and the weights are calculated
by exploiting Bayes theorem and sequential importance sam-
pling [3]. There are many variation of PFs, but in this paper
we consider two general types. One employs the sample-impor-
tance-resample (SIR) algorithm and we refer to these filters as
sample-importance-resample filters (SIRFs). The other filters do
not employ resampling but use Gaussian approximations to de-
sired densities, and we call these filters Gaussian particle filters
(GPFs) [7]. The selection of an algorithm from these two types
of filters depends upon the characteristics of the dynamic state
space of interest.

PFs, as many real-time signal processing algorithms, work
on blocks of data as frames. They can be represented as coarse
data-flow graphs such that nodes (or blocks) can be executed
concurrently [9]. While the complexity of each node (or block)
differs in granularity, the data-flow graph can be clearly rep-
resented as a function of data dependency. Each node in the
data-flow graph executes on a set of data every iteration cycle.
Depending on applications, the size of data set can be large re-
quiring significant amount of buffers. Considering the dataflow
within these applications, a two-level hierarchy is often obvious,

Fig. 1. Illustration of the block-level pipelining structure of data flow. A pos-
sible recursion is also illustrated with dotted connection between the processing
blocks C and A.

where data frames are processed as a unit in a sequence of logic
blocks at a global level, and elements within a frame are pro-
cessed in a loop fashion within each block at a local level. For
example, for the function , the data frame

of dimension is processed by the func-
tions and in a loop, and, at the global level, the sums
of elements from these two functions are processed by the func-
tion generating the data frame .

B. Block-Level Pipelining

Block-level pipelining is a hardware realization of the
dataflow model previously described. The block (frame) based
processing is incorporated in the architecture by introducing
two-level pipelining, i.e., fine-grained (register based) and
block-level (buffer based) pipelining.

A buffer along with associated controller is inserted between
successive processing elements at the block level. This buffer-
controller serves as a pipeline element, and also allows for in-
corporation of local architectural parameters such as latency and
rate difference between a pair of processing blocks. Through
block level pipelining, we can achieve three key objectives.

1) It is possible to maintain concurrency of each processing
block while providing correct synchronization between
them for proper execution.

2) Since the control signals, data and clock become local,
hardware implementation is much easier in terms of main-
taining performance by minimizing clock skews and data
routing. Any change in logic will only affect its buffer size
and controller configuration so that reconfigurable design
and/or core reuse is possible.

3) Since the entire design is centered around the buffers,
performance mismatches between memory and logics are
minimized.

Fig. 1 illustrates a block-level pipelining structure. Data are
transferred by the read and write access of the buffers concur-
rently but at different address locations. The offset or difference
between the write and read address can be determined from the
rate differences of processing blocks as well as data dependency
between them. Each buffer can have different offset as required
by the logic operation writing to or reading from it. The overall
operation is logically viewed as just buffer to buffer operations
separated by latency of the processing blocks introduced by the
processing block logic implementation. The data path may be
recursive.

The above structure is characterized by the parameters
, and , as indicated in Fig. 1. The values repre-

sents the latency of processing block and is obtained from the
implementation, is the size of the data frame transferred
between processing blocks and . The buffer write-read offset,
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, is determined from the operational data dependency of
the pair of processing blocks. While a pair of processing blocks
in Fig. 1 produces and consumes the same number of data, their
data rates are not necessarily identical.

C. Orthogonal Controller Design

When we consider dynamic run-time reconfiguration of PFs,
a method for controlling the desired operation becomes an im-
portant issue. Two approaches for controller design are possible,
namely centralized and distributed. In the centralized approach,
a single large controller is used to generate the different control
signals for all the units. While [10] takes a centralized controller
approach arguing on the grounds of area overhead, [11] and
[12] take a distributed approach where the control is localized at
the units and they operate by transferring information between
them. We adopt a distributed approach in this paper. The main
difference between our controller design methodology and other
distributed approaches is that our design assumes that the exe-
cution characteristics of the processing block are known. This
is a valid assumption since we can always characterize the pro-
cessing blocks based on their implementation. This has the ben-
efit that the processing blocks can be a logic core designed by
another party. Moreover, we provide the flexibility in changing
the controller locally with minimum information and overhead.
Such benefit is not possible with the centralized approach where
a small change in logics translates to overall redesign of the con-
troller. In the reconfigurable design, the centralized approach
will lead to longer time to reconfigure the overall design be-
cause of the tightly integrated control signals. Our methodology
is specifically targeted for block based processing for buffer
centric applications. The methodology isolates local controllers
from each other such that it is possible to provide operation pre-
dictability in the overall system design.

The two algorithms considered in this paper share several
common processing blocks but differ in their dataflow struc-
tures. Even though only two possible PFs are considered, the
architecture can be easily extended for other PFs as long as the
resources are available. Reconfiguration is achieved by config-
uring distributed buffer controllers for local processing blocks
and structural controller for algorithm selection. We can view
this reconfiguration scheme as one based on execution context.

III. TARGET APPLICATION: BEARINGS-ONLY TRACKING

In this paper, we consider design of PFs applied to the BOT
problem. Here two positions of the object of interest at time
instants and are shown. The measurements taken by the
sensor to track the object are the bearings or angles with
respect to the sensor, at fixed intervals. The range of the object,
that is the distance from the sensor, is not measured. The goal
is to estimate the position and velocity of the
tracked object in the Cartesian coordinate system.

A. SIRF Particle Filters

The data flow of the SIRF for the BOT problem is shown in
Fig. 2.

Fig. 2. Dataflow of SIRF.

In Pseudocode 1, the SIRF algorithm for processing one ob-
servation is presented. The input argument to the SIRF is the ob-
servation , and the outputs are the estimates of the system states

which represent estimates of the position and ve-
locity, respectively. The symbols , in the pseudocode de-
note two length sequences of Gaussian random numbers used
in the sample step. In processing the input observation, the SIRF
sequentially performs the following three steps: particle gen-
eration or sampling SIRF , computation of the importance
weights SIRF , and systematic resampling SIRF . There
are two additional steps, one of which is used for updating the
states after resampling SIRF , and the other, used for calcu-
lating the estimates SIRF . Each step processes particles
where is typically of the order of a few hundred to a few
thousand.

Pseudocode 1: Processing of one observation by the SIRF.

The generation of particles is performed by drawing
them from the importance density in the sample step. In
Pseudocode 2, the sample step for the BOT is presented. The
input argument is the set of resampled particles from the
previous time instant . For the sake of
simplicity of implementation, the prior density of the state is
selected as importance density. The output of the sampling step
is a new vector of states .

Pseudocode 2: Algorithm for Sample step.

The algorithm for computation of the importance weights
(importance step) is shown in Pseudocode 3. First, the weights
are evaluated up to a proportionality constant and subsequently,
they are normalized. The input arguments are the current obser-
vation and the sampled particles and .
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Pseudocode 3: Algorithm for Importance step.

The process of resampling is performed using the traditional
systematic resampling algorithm [3]. This algorithm is pre-
sented in Pseudocode 4. Here, is an array of scaled weights
from the importance step. When the weights are normalized,
the sum of weights is 1. The output is an array of indexes,
which indicates the particles that form the resampled set.

Pseudocode 4: Algorithm for systematic resampling.

The particles have to be updated (Pseudocode 5) in order de-
fined by the index array from the resampling step. The output
of the updated states is the new random measure , where

and for .
The states updating is performed simply by indirect addressing

using the index array .

Pseudocode 5: Algorithm for state update.

The computation of the output estimates is shown in
Pseudocode 6.

Pseudocode 6: Algorithm for output generation
(Computation of estimates).

Fig. 3. Dataflow of GPF.

B. Gaussian Particle Filters (GPFs)

The details of the GPF algorithm are discussed in [7]. A
dataflow for the GPF algorithm is shown in Fig. 3. Each ele-
ment of GPF is on the critical path. In Pseudocode 7, the GPF
algorithm for processing one observation is presented. The input
and output argument to the GPF are the same as for the SIRF.
Also, sample step, weight computation (importance) step, and
computation of estimates are the same as in the SIRF algo-
rithm. Generation of conditioning particles GPF , covari-
ance calculation GPF , and Cholesky decomposition oper-
ation GPF are specific for the GPF algorithm. The resam-
pling operation of SIRFs is absent in GPFs.

Pseudocode 7: Processing of one observation by a GPF.

Generation of conditioning particles is pre-
sented in Pseudocode 8. Conditioning particles are drawn from
a Gaussian distribution with parameters where is a
4 1 vector and is a 4 4 covariance matrix. In order to
draw Gaussian random numbers, matrix is necessary, where

. This is an upper triangular matrix obtained by
Cholesky decomposition of the covariance matrix.

Pseudocode 8: Algorithm for conditioning particle
generation.

In the GPF, the posterior is approximated as a Gaussian. The
mean and covariance of this Gaussian are calculated from the
weighted set of particles. The covariance calculation is shown
in Pseudocode 9. The covariance coefficients are first updated in
the loop and then the final calculation is performed. Cholesky
decomposition is shown in Pseudocode 10. The purpose of this
step is to calculate the square root of the covariance matrix so
that . As opposed to the other steps, this step is
not performed in the loop and its complexity does not depend
on the number of particles.
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Pseudocode 9: Algorithm for Covariance calculation.

Pseudocode 10: Algorithm for Cholesky decomposition.

IV. RECONFIGURABLE PARTICLE FILTER DESIGN

A. Coarse-Grain Data Flow Models

To fully utilize locality of the buffer controller, we follow
three key strategies in designing the processing blocks.

1) Each processing block is designed to eliminate control
signal dependency between processing blocks. If there ex-
ists such control dependency, we combine them for single
processing block. If such integration is unavoidable, we
treat the control signal as data between processing blocks
under consideration.

2) We design each processing block so that the data con-
suming and producing rates are deterministic. Since all the
blocks, including buffers, use a single global clock, rela-
tive rates can be defined. Moreover, the numbers of data
produced and consumed are also made to be deterministic.
It is also possible that the processing block is complicated
enough to require its own local controller. However, we
consider such highly localized controller to be a part of
processing block. Thus, as long as we maintain determin-
istic input and output data flow, we can treat it as regular
logic block.

3) We assume that there is only one global clock and all other
clock signals feeding to processing blocks are derived from
the global clock.

Fig. 4. Dataflow graph (with buffers and processing blocks) of the SIRF par-
ticle filter. Each dashed box is translated to a buffer controller. The same buffer
controller is used for a grouped dashed box. A value inside the shaded box rep-
resents the number of data going into the buffer in each iteration.

Fig. 5. Dataflow graph (with buffers and processing blocks) of the GPF par-
ticle filter. Each dashed box is translated to a buffer controller. The same buffer
controller is used for a grouped dashed box. A value inside the shaded box rep-
resents the number of data going into the buffer in each iteration.

The architecture of the SIRF for the BOT problem is con-
structed as shown in Fig. 4. The figure shows both processing
blocks and buffers (i.e., the buffer and its controller are shown
with shaded boxes). Resampling and state update are combined
into one block and output (estimate) computation step gets data
directly from the sample step [13].

Similarly, the architecture of the GPF for BOT is constructed
as shown in Fig. 5. The figure shows the processing blocks and
the buffers. The diagram is a block level pipeline configuration
of the dataflow shown in Fig. 3. In these two architectures, each
processing block does not change but the buffer controllers are
reconfigured depending on the target algorithms.

B. Shared Processing Blocks in Design

From the initial observation, we can classify the operations
that are common to both filters. In this section, we describe the
shared processing blocks that are common to the SIRF and GPF,
and the processing blocks that are unique to each filter. In order
to maximize the resource sharing, some of the processing blocks
are divided into several smaller processing blocks.



1992 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 9, SEPTEMBER 2007

Fig. 6. Block diagram of Importance step.

1) Sample Step (Particle Generate): In the Particle Gen-
erate (PG) processing block, there are four buffers associated
with input vectors and 4 buffers associated with
output vectors . The input vectors stored in the
input buffers are generated by the RS processing block. The out-
puts from the PG processing block are used again by the RS pro-
cessing block in the following iteration. In addition, two more
buffers are associated with to be used by the IMP1 pro-
cessing block. All inputs and outputs are of the size of .

The arithmetic operations of the PG step are described in
Pseudocode 2. The outputs are computed in parallel operations.
In the PG processing block, there are two noise generators. For
thegenerationofnoise samples,weuse theBox–Muller approach
for efficient FPGA implementation [14]. The design is based
on our previous study on effects of VLSI noise generators on
performance and complexity of real-time PFs [15]. The noise
generation isacombinationofa lookup tableandarithmetic logic.

2) Weight Computation (Importance) Step: The arithmetic
operations of the weight computation step are illustrated by
Pseudocode 3. The and operations are done using
unrolled CORDIC. Because of the size of the arithmetic units,
and to maximize resource sharing, the importance step is func-
tionally split into three processing blocks: IMP1, IMP2, and
IMP3. All of these processing blocks will be a part of the SIRF,
but the GPF uses only IMP1 and IMP2. The normalization, which
is done in the IMP3, is done by another unit in the GPF to improve
the speed by more than 30%. This is illustrated in the next section.

The block diagram of the whole Importance step along with
the mentioned sub-steps is shown in Fig. 6. The IMP1 processing
block has two input buffers for from the PG processing
block and one output buffer to the IMP2 processing block. The
IMP1 processing block computes and generates tem-
porary data sequence of size . The CORDIC unit de-
termines the angle by vector rotation. This produces an output in
the range [16]. The function has unique values in
the range . Hence, additional logic is used to convert
the output of the CORDIC core to this range. All the variables are
represented in fixed point format. The inputs to the IMP1 unit are
16 bits wide. After fixed point analysis, we observe that the value
of the weight reduces to 0 in fixed point if the variable shown
in Fig. 6 is greater than 255. We use this fact to reduce the area and
resources required by the importance step. Accordingly, only 8
LSBs of are propagated through the weight computation logic.
This leads to a loss in accuracy of at most 10%. The 8 MSBs are
compared with a constant, and if is greater than 255, the value 0

Fig. 7. Block diagram of implementation of exp() function.

is selected as the output weight via a multiplexer. The delay units
are added for synchronization due to the fine-grain pipelining of
the CORDIC units. The weights are summed using an accumu-
lator as shown and the sum of weights is sent to the IMP3 block
for normalization.

Block IMP2 performs the other mathematical operations and
the function to find the value of the weight (when it is
not zero). The implementation of the function is shown
in Fig. 7. The input range of the CORDIC core used for the

function is restricted to [16]. Hence, we split
the input exponent into an integer and a fractional part based
on the fixed point format used. The of the integer part is
precalculated and stored in a ROM look-up table. The of
the fractional part is calculated using the CORDIC unit as shown
and the two results are then multiplied for the final result. IMP2
has two output buffers; one for to the IMP3 processing
block and the other for also to the IMP3 processing block.

The IMP3 processing block has two input buffers for
from the IMP2 processing block. The IMP3

normalizes each unnormalized weight with . The
normalized weights are then stored in the output buffer to
be used by the RS processing block along with the particles
generated at the PG processing block.

It is very important to note that, even though we are creating
buffers at the output of these processing blocks in the figure,
when the data are used by the successive processing block right
away, we can replace these buffers by pipeline registers in the
actual implementation. In this case, the value of latencies of the
blocks will be added to the last buffer controller.

3) Mean Calculate/Output Generation (MC/OG): The MC
processing block is used by both SIRF and GPF filters to gen-
erate the filter outputs. When only the SIRF is considered, the
output can be efficiently generated by

(1)

where are from the RS processing block. Since
it is normalized at the RS processing block, simple adders can
be used. But in the GPF, the RS processing block is not used.
Thus, normalized inputs are not available. To share the pro-
cessing blocks and the buffers, we design the block to use the
data generated from the PG processing block with weights and
sum calculated at the IMP2 processing block. Then this block
implements the Pseudocode 6 and the outputs are normalized
with the value as

(2)
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Fig. 8. Architecture of resampling unit implementing systematic resampling
(SR).

C. Processing Blocks Unique To the SIRF

1) Resampling/State Update (RS): The RS processing block
implements both the resampling process and the state update
computations described in Pseudocode 4 and Pseudocode 5. The
RS processing block has five input buffers with four buffers
for from the PG processing block and one buffer
for normalized weights from the IMP3 processing block.
The resampled outputs are stored in four output
buffers. All inputs and outputs are data streams of size .

The architecture of the resampling unit performing system-
atic resampling (SR) is shown in Fig. 8. The input weights are
cumulatively summed to form the cumulative sum of weights
(CSW) and are stored in the memory. The comparator compares
the corresponding values of the CSW and the resampling func-
tion . Based on the result of this comparison, the index gen-
erator unit computes the resampled index and generates appro-
priate controls for updating the two functions. The whole resam-
pling process takes 2 cycles. However, valid indexes will be
available at the output after at most cycles in the worst case.
Thus, the PG processing block and the OG processing blocks
must wait for cycles before reading the valid data. A more de-
tailed description of the implementation of the resampling step
for SIRFs can be found in [17].

D. Processing Blocks Unique To the GPF

1) Condition Particle Generation (CPG): In the CPG step,
the decomposed covariance matrix and the mean ob-
tained from the CU processing block are used for calcula-
tion of conditioning particles. The matrix is a 4 4 upper
triangular matrix, so the number of data that are transferred
from the CU processing block is 10 (not 16). All the multi-
pliers are pipelined and they operate concurrently producing

conditioning particles. Since the outputs are
computed using different number of operators, we have to in-
troduce additional delay which is different for each state in
order to get all the conditioning particles at the same time
instant at the output. The CPG requires four random number
generators [14].

In the CPG processing block, there are two input buffers for
from the CU processing block and four output buffers for

to the PG processing block. The data size of mean
is 4 and decomposed covariance is 10. These data are gen-

erated sequentially to save interconnect buses. Internally, these
data are used in parallel. The output data size is . Initially, the

Fig. 9. Architecture of central unit implementing Cholesky decomposition.

mean and the decomposed covariance elements are obtained ex-
ternally and not from the CU.

2) Covariance Calculate (CC): In the CC processing block,
the partial covariance 4 4 matrix is calculated. This
processing block implements the first loop of the Pseudocode 9.
This block generates the normalized partial covariance. In
the CC processing block, there are six input buffers for

from the PG processing block and
from the IMP2 processing block. There is one output buffer

to the CU processing blocks. These outputs are serialized.
3) Central Unit (CU): The architecture of the GPF CU

for implementing Cholesky decomposition is shown in Fig. 9.
The inputs and the outputs of the CU are produced once
during the sampling period. The CU processing block executes
Pseudocode 9. As seen from this pseudocode, this operation
involves several expensive operations like divisions and square
root. There also exist data dependencies between the various
coefficients of the Cholesky decomposed matrix. Due to this
use of dedicated hardware units for each of these operations
proves to be expensive due to the nature of the operators and
does not speed up processing greatly due to the inherent data
dependency. Observing concurrency of operations from the
data flow for Cholesky decomposition, we see that at any time,
the maximum number of concurrent square root operations
that can be performed is one, and additions, multiplications,
and divisions are three. Hence, we implement the Cholesky
decomposition with only these resources. The square root
operation is implemented using the CORDIC core [16] and the
division is implemented using the pipelined divider core [18].
The intermediate results are stored in internal registers and sent
back to the computation unit to use in the calculation of the
next coefficients. All the hardware units are time multiplexed
(reused by subsequent operations). Like any other processing
block in the design, this unit has a local controller that gen-
erates the controls for the multiplexers and read/write signals
for the input and output buffers. Due to its sequential nature,
the Cholesky decomposition can also be implemented on a
sequential coprocessor, like the IBM PowerPC core embedded
in the Virtex II pro FPGA.

The bit widths and fixed point representation formats used
in all the processing blocks were determined, for the BOT
problem, using a methodology outlined in [19].
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E. Distributed Buffer Controller

The operations in the block based processing are viewed as
buffer to buffer operations with coarse-grained processing blocks
operating in between them. A block diagram of the buffer con-
troller, which is a key element in the proposed design, consists
of concurrent controller and a dual-ported memory [20]. When
handling multidimensional data, the buffer controller has mul-
tiple dual-port memory units controlled by the same controller
(grouped dashed boxes in Figs. 4 and 5). The number of memory
units is equal to the dimension of the data. The concurrent con-
troller has two logic sections: read and write. The write logic
section is configured by the parameters and , and the read
logic section is configured by and where and denote
the producing and consuming processing blocks, respectively.
Note that these parameters are derived from the dataflow struc-
ture and the processing block implementation details.

When this buffer controller is activated, both the write and read
logic sections are concurrently executed. Initiation of the write
section indicates that data have arrived at the processing block
that is connected to this buffer as a producer. The actual data
computed by the producing processing block is valid at the buffer
controller after waiting for cycles. The write logic section will
not write these invalid data from the producer. This will guar-
antee correctly receiving the valid data stream if the producer is
purely pipelined hardware. However, it is also possible that the
processing block needs finite amount of computation time re-
gardless of the pipeline depth (i.e., delayed data generation by the
processing block). To support this type of processing block, we
use one more parameter . After this wait period ,
the data are written to the buffer. Once correct data samples are
being written to the buffer, the read process is started by the read
logic section. The parameter represents the offset between
writing and reading the data from the buffer. This parameter is to
support data dependency. Even if there is no data dependency,
it is also possible that the producer data generation rate is dif-
ferent from the consumer data consuming rate. To support such
rate mismatch between two processing blocks connected by the
buffer controller, we use another parameter . After this wait
period , the data are read from the buffer. Thus,
the write logic section is configured by and the read
logic section is configured by . The same buffer con-
troller is used to support different data transfer characteristics by
modifying these parameters.

There activation of the buffer controller is governed by three
key synchronization signals: , , and

, where the index represents a buffer controller
placed between the processing blocks and . The start of the
write waiting process is synchronized with the start read process
of the previous buffer controller, indexed as . The start of the
read process is synchronized with the start of the write waiting
process of the same buffer controller. They have the following
relationships:

(3)

(4)

(5)

Each buffer controller is controlled by periodic signal, denoted
by , generated from the global controller with a counter
driven by a global clock. For each buffer controller, the
timing signal indicates the start of one iteration process. Suc-
cessive buffer controllers are separated by signals. The
global controller is also responsible for the loading of timing
information into the local controllers.

One of the main advantages of this scheme is that the buffer
controller knows exactly when the data are being transferred.
This is determined from the parameters. Thus, when the pro-
ducing block or consuming blocks are not active (i.e., no data are
written to or read from the buffer), the corresponding processing
block can be disabled for energy saving. In the buffer controller,
it may seem that the memory for buffer is used unnecessarily
and large. However, the size of the buffer controller is well de-
fined from its parameters, and the actual size of the memory
can be identical to the number of registers that may be needed
in traditional pipelining with handshake. The predictability of
the processing block execution is especially beneficial for low
power design. A simple handshake mechanism does not have a
clear information of the processing block activity.

V. COMBINED ARCHITECTURE

The structure of the reconfigurable hardware implementing
SIRFandGPFfor theBOTproblemisshowninFig.10.Thefigure
shows both processing blocks and buffers. In addition, there are
switches associated with all the shared processing blocks and
buffer controllers for selecting the appropriate structure. These
switches are configured dynamically, along with buffer con-
troller parameters, before the beginning of any iteration.

A. Buffer Controller Parameter Configuration

The parameters are derived from the func-
tional (algorithmic) description presented in Section III. The
parameters are determined from the processing block
implementation. The synchronization parameters of buffer
controllers and global controller are also determined from this
information.

In the SIRF realization, key data dependencies that must be
resolved are as follows.

1) through and the last value of through
must arrive at the same time. This requires

, since will take cycles from
its initialization to calculate the sum of weights.

2) The RS processing must wait for the sum of weights before
it starts to execute. This dependency results in

, where 61 is the sum of latencies of all processing
blocks in the path from the PG block to the RS block.

3) The PG processing block must wait for the first data gen-
erated by the RS processing block ( cycles).

4) The particle arriving at the OG block via and
the corresponding weight arriving via must be
synchronized.

Similarly, the GPF has the following important data
dependencies.

1) The particle and weight arriving at MC through and
, respectively, must be synchronized. Hence,

reading must delayed until the first weight is calculated.
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Fig. 10. Dataflow graph structure of the reconfigurable particle filter. The structure contains both SIRF and GPF. Some buffer controllers are shared in the
realization.

TABLE I
EDGE INFORMATION TABLE (EIT) FOR RECONFIGURABLE REALIZATION. EACH EDGE REQUIRES A BUFFER. EACH ENTRY, DENOTED BY [a; b] REPRESENTS

PARAMETERS FOR SIRF AND GPF (I.E., a IS FOR THE SIRF AND b IS FOR THE GPF. THE SYMBOL — MEANS THAT THE BUFFER CONTROLLER IS NOT USED FOR

THE CORRESPONDING REALIZATION).X = (x; V ; y; V ) AND ~X = (~x; ~V ; ~y; ~V )

2) Data arriving at the CPG block from and
must be synchronized.

3) The CC and MC blocks need cycles after reading
their first data to generate result. Hence,

.
Thus, using the buffer controller parameters and , the data
dependencies in the algorithms presented in Section III can be
quantified and incorporated into the design. In both realizations,
the values of are all 1 since there is no rate mismatch. The
parameters of the other buffer controllers in the design are de-
termined using a similar reasoning. The depth of each buffer is
bounded by , where is the read offset and

is the number of data words passing through that buffer
per iteration. In reality, some buffer controllers in the design
need to have additional dual-port memory units to account for
multi dimensional states. Accordingly, if is the dimension
of the state involved in the filtering, some buffer controllers
in Fig. 10 will need to incorporate dual-port memory units
of appropriate depth. The read/write operations of all memory

units within a buffer controller will be done using the same con-
trol signals. The Edge Information Table (EIT) (Table I) shows
the values of the various buffer controller parameter for realiza-
tion of SIRF and GPF using the architecture of Fig. 10 for the

dimensional BOT problem. The sizes and format of
memory in each buffer controller for a general dimensional
state model is also shown in Table I. Note that stands for
the number of data words passing through the buffer controller
between block and , while stands for the number of parti-
cles used for filtering.

The total amount of buffer used for the synchronization for
SIRF and GPF, respectively, is and where

and are constants that depend on the implementa-
tions of the processing blocks. Thus, the GPF has a much lower
buffer usage than the SIRF.

B. Synchronization Signals

The overall buffer synchronization parameters are generated
according to (3), (4), and (5). Table II summarizes the param-
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TABLE II
SYNCHRONIZATION PARAMETERS FOR BUFFER CONTROLLERS FOR SIRF AND

GPF. THE SYNCHRONIZATION POINTS ARE A FUNCTION OFM

eters for all the buffer controllers for the SIRF and the GPF,
respectively. The parameters for the start instant are computed
with respect to . The executions of the PG, IMP, OG, and
RS processing blocks are overlapped in time. The minimum it-
eration period of the SIRF is ,
where . Note that is not
included since the output generation can be done within this
cycle without creating a dependency. Thus, the iteration period,

, is indicated by the reset time in-
stant. For the GPF, the executions of CPG, PG, IMP, MC, CC,
and CU processing blocks are overlapped. The minimum itera-
tion period of the GPF is , where

and where
includes the latency due to hardware and delayed output

generation resulting from time-multiplexing within the CU pro-
cessing block. The overall latency is longer than the con-
stant pipelining latency of the SIRF, . Thus, the iteration
period, , is indicated by the reset time
instant. For , the GPF is almost twice as fast as the
SIRF.

When the value of the counter in the global controller coin-
cides with the binary representation of the , the cor-
responding buffer controller becomes activated. Thus, the global
controller is simply an array of AND gates where the output of
each gate controls the buffer controller. Assuming that is
1024, we need a 12-bit counter for the global controller.

C. Reconfigurability and Parameterizability

As seen from the previous sections, execution of the hard-
ware can be alternated between SIRF and GPF by changing
buffer controller parameters and interconnect switch states. The
advantage of this architecture is that the processing blocks in
the design are slaves to the buffer controllers which are simply
configured by a small set of parameters. The processing blocks
themselves do not implement any global controls. The buffer
controllers with their appropriate parameters and global syn-
chronization signals maintain the overall execution flow. As
a result, changing parameters of the buffer controller allows
for modifying individual filter characteristics dynamically be-
tween iterations within limitation of provided resources. The
maximum number of particles that can be used is bounded, in
case of the SIRF, by the depth of . The maximum dimen-
sion of the state is bounded by the number of dual-port memory

units in and . Within
these bounds, the number of particles and the dimension of the
state can be varied between iterations by changing the param-
eters and control signal timings of various buffer controllers in
accordance with Tables I and II.

In practical scenarios, changing the number of particles
brings about a tradeoff between accuracy of the filter and
the iteration period. Dynamically changing the dimension of
the state is needed in multiple target tracking problems with
unknown number of targets. In such problems, the state vector
represents positions and/or velocities of the targets being
tracked. Depending upon the number of targets, the dimension
of the state changes. The proposed architecture allows for
implementation of such algorithms since the dimension of the
state can be changed dynamically between iterations.

The design methodology also allows for exploitation of in-
herent parallelizability in the PFs. The blocks CPG, PG, IMP1,
IMP2, IMP3, and OG perform data parallel computations each
iteration, i.e., each block processes a large data set where the
individual computations are independent of each other. Hence,
these computations can be parallelized if multiple instances
of the processing blocks are available such that each instance
processes a fraction of the total particles. The proposed
methodology allows for easily incorporating additional pro-
cessing blocks, if they are available, into the design. Using
standard design methodologies, parallelizing the filters would
need a major redesign. Moreover, the methodology is extremely
scalable in terms of design complexity as more and more blocks
are added to increase the degree of parallelizability. The re-
sampling step is inherently sequential. However, we have
developed several resampling algorithms and that allow for
parallel and distributed resampling [21]. Processing blocks
implementing such algorithms can also be incorporated into the
design if parallelization of resampling is needed. Fig. 11 shows
how multiple processing blocks can be included in the design
using the buffer controller parameters for the SIRF illustrated
in Table III. The RS block implements traditional resampling
and, hence, cannot be parallelized. The execution period for
the SIRF using parallelization reduces to
where is the degree of parallelism. For the GPF, similar
replication can be done which leads to an execution period of

. The timing parameters presented in
Table II will scale accordingly for each buffer controller.

Parallelization provides higher speeds at the cost of higher
resource and power consumption. The buffer controllers along
with the interconnection switches allow for dynamically
changing this degree of parallelism for power saving depending
upon the speed requirement.

VI. PHYSICAL REALIZATION AND EVALUATION

A. Processing Block and Buffer Controller Synthesis

Fig. 12 illustrates the percentage of power and area of the
processing blocks synthesized on a Xilinx Virtex II pro device
(XC2VP50). The actual achievable speed varies among the pro-
cessing blocks. The global clock is set to 100 MHz for
all the blocks for simplification of the controller design. It has
been observed that overall speed is limited by the speed of the
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Fig. 11. Parallelizing SIRF execution by duplicating processing blocks.

TABLE III
PARAMETERS OF THE VARIOUS BUFFER CONTROLLERS

Fig. 12. Percentage of FPGA resources of the processing blocks in terms of
area and power consumption. The power is estimated at 100 MHz. In the imple-
mentation,M = 512.

CORDIC. The power consumption of the RS block will increase
with increasing .

The buffer controller can be synthesized with either em-
bedded BRAMs or with distributed memory on the FPGA.
Table IV illustrates the results for the buffer controller synthesis.
As the number of words increases from 4 to 64, the number
of slices increases due to larger counters and other peripheral
logics. These delays are fast enough to be nonbottleneck in the
system integration.

In general, the buffer controller based on BRAM will use
fewer logic resources than the one based on distributed memory.
While the buffer controllers will not be a bottleneck for the

TABLE IV
ILLUSTRATION OF FPGA MAPPING RESULT OF BRAM BASED BUFFER

CONTROLLER FOR DIFFERENT WORD SIZE. DATA IN PARENTHESES ARE FOR

THE RESULT OF DISTRIBUTED MEMORY BASED BUFFER CONTROLLER

system performance, the interconnection between them and the
processing blocks will be an issue. Since the use of BRAM re-
duces location flexibility, buffer controllers based on distributed
memory reduce interconnect overhead in many cases.

B. Execution Performance

The execution diagrams for the SIRF and the GPF of the re-
configurable architecture are shown in Figs. 13 and 14, respec-
tively. The simulation shows the data transfer activities for two
iterations of all the active buffer controllers. In the simulation,
the value of is chosen to be 256, which can be arbitrarily se-
lected depending on the applications. In both filter realizations,
the external input is synchronized with the start of the IMP2
processing block. As shown in the figures, the activities of the
buffer controllers are overlapped, which indicates that the pro-
cessing blocks are concurrently executed. The vertical lines in
both figures represent the beginning of each iteration. It is clear
that for the same , the second iteration of the GPF starts more
quickly than that of the SIRF.

The performances of the reconfigurable PFs are faster because
of operational concurrency in the implementation. When the
concurrency is fully exploited, the GPF is much faster for large

. On the other hand, the SIRF is faster when the algorithm is ex-
ecuted on DSP because when these two algorithms are executed
sequentially, there are more computations for the GPF. Fig. 15
shows two curves that correspond to the execution times for
processing particles using the SIRF and GPF algorithms. The
curves represent the sampling period as a function of number of
particlesobtained from the implementation on Texas Instruments
(TMS320C67x) processors. In sequential implementations, the
sampling period increases almost linearly with the number of
particles for . We can observe that most
of the speed-up is from the functional concurrency exploitation
and deep pipelining. While DSPs provide some degree of paral-
lelism, functional concurrency cannot be fully exploited.

Fig. 16 illustrates comparison of energy consumption. The
plot is normalized so that the value indicates the energy required
to process one particle. The energy for the DSP is estimated
with Code Composer for instruction profiling and Power Es-
timation Spreadsheet. The FPGA resource power is estimated
using Xilinx XPower. As shown in the figure, the energy per
particle is much lower for the DSP than that of the FPGA. This
is due to the highly pipelined implementation for the FPGA
implementation. However, as we have discussed, the potential
throughput is much lower for the DSP implementation.

C. Discussion of Reconfiguration Overhead

The proposed architecture maximizes the buffer controller
usage and minimizes the dynamic reconfiguration efforts. The



1998 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 9, SEPTEMBER 2007

Fig. 13. Timing diagram of SIRF. The vertical lines indicate the start of the iterations. The diagram illustrates buffer activity. Overlap of the buffer activities
indicate concurrent execution of the processing blocks.

Fig. 14. Timing diagram of GPF. The vertical lines indicate the start of iterations. The diagram illustrates buffer activity. Overlap of buffer activities indicate
concurrent execution of the processing blocks.

Fig. 15. Sampling period of the reconfigurable PFs (GPF and SIRF) versus
number of particles. The DSP version of the filters are implemented on TI
TMS320C67 Series processor.

design does not suffer from the additional memory used by
buffers since we can view these buffers as pipeline registers

Fig. 16. Normalized energy consumption of different design configuration.
The energy is normalized for one particle.M = 512 for FPGA implementation.

(i.e., the registers are needed in any design with standard de-
sign flow whether it is distributed or centralized). In comparison
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to the processing with DSP, the energy consumption for FPGA
will be more as it is using more resources and performing op-
erations concurrently. These additional resources are necessary
when the reconfigurability and high execution speed are of ut-
most concern.

When we consider FPGA as the target platform, two separate
implementations will take up much more area than the proposed
design. In terms of power consumption and speed (i.e., when we
compare SIRF of the proposed design versus fixed SIRF), power
dissipation due to the processing elements are identical and the
speeds are also the same because overall throughput is limited
by the processing elements not buffer controller.

In the proposed design, 13% of resources are used for buffer
controllers (with design targeted for ). Usually, this
percentage will go up for finer processing elements but will go
down for coarser processing elements. Fixed SIRF design would
use 71% of the resources used in the proposed design. Similarly,
fixed GPF design would use 82%. Thus, if these two are imple-
mented separately, it would use 50% more resources than that of
the proposed combined design. This will go up if we implement
more than two types of particle filters since we can still share
many processing elements and buffer controllers.

In the proposed architecture, because of the very small
amount of information associated with each structure (i.e., one
set of data for each buffer controller and global controller),
the reconfiguration time is almost nonexistent (i.e., all the pa-
rameters for the controller and structural switch can be loaded
with a few clock cycle but as low as one cycle simultaneously).
This is illustrated in the simulation diagram showing that
parameter loading takes a few cycles before the processing can
begin. This is an attractive attribute since the execution flow
of the algorithm can change without redesigning the overall
controllers.

VII. CONCLUSION

This paper introduced an effective design methodology for
overall synchronization in reconfigurable PF realizations. The
controller configuration is simple and systematic such that the
reconfiguration is significantly simplified. The paper illustrates
the effectiveness of the reconfiguration by considering two dif-
ferent types of PFs. We have demonstrated that by completely
controlling the data transfer behavior, the processing blocks be-
come mere slaves of the overall execution. Moreover, the de-
sign strategy of the processing blocks is well defined to satisfy
the design methodology. The design can be extended to support
many different PFs. The reconfigurable processor outperforms
conventional DSPs.
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